首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Evolution and deposits of a gravelly braid bar, Sagavanirktok River, Alaska   总被引:2,自引:0,他引:2  
The evolution, migration and deposits of a gravelly braid bar in the Sagavanirktok River, northern Alaska, are described in unprecedented detail using annual aerial photographs, ground‐penetrating radar (GPR) profiles, trenches and cores. Compound braid bars in the Sagavanirktok River form by chute cut‐off of point bars and by growth of mid‐channel unit bars. Subsequent growth is primarily by accretion of unit bars onto their lateral and downstream margins. The upstream ends of braid bars may be sites of erosion or unit bar deposition. Compound braid bar deposits vary in thickness laterally and are thickest in medial sections and near cut banks. Compound bar deposits are typically composed of three to seven sets of simple large‐scale inclined strata, each simple set formed by a unit bar. The simple large‐scale strata contain medium‐scale cross‐strata (from dune migration) and planar strata (from migration of bedload sheets). The upstream and medial parts of compound braid bar deposits show very little vertical variation in grain size, but downstream and lateral margins tend to fine upwards. The deposits are mostly poorly sorted sands and gravels, although sands tend to be deposited at the top of the braid bar, and open‐framework gravels preferentially occur near the top and base of the braid bar. The patterns of braid bar growth and migration, and the nature of the deposits, described from the Sagavanirktok River are generally similar to other sandy and gravelly braided rivers, and consistent with the theoretical braid bar model of Bridge (1993).  相似文献   

2.
《Sedimentology》2018,65(2):492-516
Pre‐vegetation fluvial channels have long been considered predominantly sheet‐like in geometry, owing to hydraulic sections that rapidly widened rather than incise during floods. This motif has been paralleled to that of modern dryland rivers subject to sharp discharge fluctuations during ephemeral floods. However, a number of Precambrian fluvial successions have been recently appraised as the product of deep‐channelled systems characterized by relatively stable – probably perennial – discharge regimes. One such example is the ca 1·0 Ga Applecross Formation, part of the well‐studied Torridon Group of Scotland. To contribute to this debate and to provide refined morphodynamic models for the Applecross Formation, this article presents an integration of three‐dimensional photogrammetry and outcrop sedimentology applied to key exposures at Stoer Peninsula, north‐western Scottish Highlands. Analysis of selected sandbodies reveals that high‐relief fluvial sand bars, both mid‐channel and bank‐attached, evolved within deep, braided‐channel belts. These bars grew through complex mechanisms of accretion and reactivation related to different flood stages: upstream and downstream accretion probably occurred during waning‐flood stages characterized by high hydrograph levels and abundant sediment availability; lateral accretion took place during later waning‐flood stages, and it was associated in some cases with helical recirculation and increase in bend sinuosity. Overall, the depicted morphodynamics are consistent with prolonged flood events that cannot be reconciled with sharply fluctuating discharge regimes. Critical comparisons between the internal geometry of the studied bars and modern counterparts corroborate the findings herein. Thus, this study recommends stricter comparisons between the products of modern braided channels and Precambrian fluvial rock records featuring thick and well‐developed bar forms.  相似文献   

3.
Existing facies models of tide‐dominated deltas largely omit fine‐grained, mud‐rich successions. Sedimentary facies and sequence stratigraphic analysis of the exceptionally well‐preserved Late Eocene Dir Abu Lifa Member (Western Desert, Egypt) aims to bridge this gap. The succession was deposited in a structurally controlled, shallow, macrotidal embayment and deposition was supplemented by fluvial processes but lacked wave influence. The succession contains two stacked, progradational parasequence sets bounded by regionally extensive flooding surfaces. Within this succession two main genetic elements are identified: non‐channelized tidal bars and tidal channels. Non‐channelized tidal bars comprise coarsening‐upward sandbodies, including large, downcurrent‐dipping accretion surfaces, sometimes capped by palaeosols indicating emergence. Tidal channels are preserved as single‐storey and multilateral bodies filled by: (i) laterally migrating, elongate tidal bars (inclined heterolithic strata, 5 to 25 m thick); (ii) forward‐facing lobate bars (sigmoidal heterolithic strata, up to 10 m thick); (iii) side bars displaying oblique to vertical accretion (4 to 7 m thick); or (iv) vertically‐accreting mud (1 to 4 m thick). Palaeocurrent data show that channels were swept by bidirectional tidal currents and typically were mutually evasive. Along‐strike variability defines a similar large‐scale architecture in both parasequence sets: a deeply scoured channel belt characterized by widespread inclined heterolithic strata is eroded from the parasequence‐set top, and flanked by stacked, non‐channelized tidal bars and smaller channelized bodies. The tide‐dominated delta is characterized by: (i) the regressive stratigraphic context; (ii) net‐progradational stratigraphic architecture within the succession; (iii) the absence of upward deepening trends and tidal ravinement surfaces; and (iv) architectural relations that demonstrate contemporaneous tidal distributary channel infill and tidal bar accretion at the delta front. The detailed facies analysis of this fine‐grained, tide‐dominated deltaic succession expands the range of depositional models available for the evaluation of ancient tidal successions, which are currently biased towards transgressive, valley‐confined estuarine and coarser grained deltaic depositional systems.  相似文献   

4.
Fluvial ribbon sandstone bodies are ubiquitous in the Ebro Basin in North‐eastern Spain; their internal organization and the mechanics of deposition are as yet insufficiently known. A quarrying operation in an Oligocene fluvial ribbon sandstone body in the southern Ebro Basin allowed for a three‐dimensional reconstruction of the sedimentary architecture of the deposit. The sandstone is largely a medium‐grained to coarse‐grained, moderately sorted lithic arenite. In cross‐section, the sandstone body is 7 m thick, occupies a 5 m deep incision and wedges out laterally, forming a ‘wing’ that intercalates with horizontal floodplain deposits in the overbank region. Three architectural units were distinguished. The lowest and highest units (Units A and C) mostly consist of medium‐grained to coarse‐grained sandstone with medium‐scale trough cross‐bedding and large‐scale inclined stratasets. Each of Units A and C comprises a fining‐up stratal sequence reflecting deposition during one flood event. The middle unit (Unit B) consists of thinly bedded, fine‐grained sandstone/mudstone couplets and represents a time period when the channel was occupied by low‐discharge flows. The adjoining ‘wing’ consists of fine‐grained sandstone beds, with mudstone interlayers, correlative to strata in Units A and C in the main body of the ribbon sandstone. In plan view, the ribbon sandstone comprises an upstream bend and a downstream straight reach. In the upstream bend, large‐scale inclined stratasets up to 3 m in thickness represent four bank‐attached lateral channel bars, two in each of Units A and C. The lateral bars migrated downflow and did not develop into point bars. In the straight downstream reach, a tabular cross‐set in Unit A represents a mid‐channel transverse bar. In Unit C, a very coarse‐grained, unstratified interval is interpreted as deposited in a riffle zone, and gives way downstream to a large mid‐channel bar. The relatively simple architecture of these bars suggests that they developed as unit bars. Channel margin‐derived slump blocks cover the upper bar. The youngest deposit is fine‐grained sandstone and mudstone that accumulated immediately before avulsion and channel abandonment. Deposition of the studied sandstone body reflects transport‐limited sediment discharges, possibly attaining transient hyperconcentrated conditions.  相似文献   

5.
Unit bars are relatively large bedforms that develop in rivers over a wide range of climatic regimes. Unit bars formed within the highly-variable discharge Burdekin River in Queensland, Australia, were examined over three field campaigns between 2015 and 2017. These bars had complex internal structures, dominated by co-sets of cross-stratified and planar-stratified sets. The cross-stratified sets tended to down-climb. The development of complex internal structures was primarily a result of three processes: (i) superimposed bedforms reworking the unit bar avalanche face; (ii) variable discharge triggering reactivation surfaces; and (iii) changes in bar growth direction induced by stage change. Internal structures varied along the length and across the width of unit bars. For the former, down-climbing cross-stratified sets tended to pass into single planar cross-stratified deposits at the downstream end of emergent bars; such variation related to changes in fluvial conditions whilst bars were active. A hierarchy of six categories of fluvial unsteadiness is proposed, with these discussed in relation to their effects on unit bar (and dune) internal structure. Across-deposit variation was caused by changes in superimposed bedform and bar character along bar crests; such changes related to the three-dimensionality of the channel and bar geometry when bars were active. Variation in internal structure is likely to be more pronounced in unit bar deposits than in smaller bedform (for example, dune) deposits formed in the same river. This is because smaller bedforms are more easily washed out or modified by changing discharge conditions and their smaller dimensions restrict the variation in flow conditions that occur over their width. In regimes where unit bar deposits are well-preserved, their architectural variability is a potential aid to their identification. This complex architecture also allows greater resolution in interpreting the conditions before and during bar initiation and development.  相似文献   

6.
Ground penetrating radar (GPR) surveys of unit and compound braid bars in the sandy South Saskatchewan River, Canada, are used to test the influential facies model for sandy braided alluvium presented by Cant & Walker (1978) . Four main radar facies are identified: (1) high‐angle (up to angle‐of‐repose) inclined reflections, interpreted as having formed at the margins of migrating bars; (2) discontinuous undular and/or trough‐shaped reflections, interpreted as cross‐strata associated with the migration of sinuous‐crested dunes; (3) low‐angle (< 6°) reflections, interpreted as formed by low‐amplitude dunes or unit bars as they migrate onto bar surfaces; and (4) reflections of variable dip bounded by a concave reflection, interpreted as being formed by the filling of channel scours, cross‐bar channels or depressions on the bar surface. The predominant vertical arrangement of facies is discontinuous trough‐shaped reflections at the channel base overlain by discontinuous undular reflections, overlain by low‐angle reflections that dominate the deposits near the bar surface. High‐angle inclined reflections are only found near the surface of unit bars, and are of relatively small‐scale (< 0·5 m), but can be found at a greater range of depths within compound bars. The GPR data show that a high spatial variability exists in the distribution of facies between different compound bars, with facies variability within a single bar being as pronounced as that between bars. Compound bars evolve as an amalgamation of unit bars and other compound bars, and comprise a facies distribution that is representative of the main bar types in the South Saskatchewan River. The GPR data are compared with the original model of Cant & Walker (1978) and reveal a much greater variability in the scale, proportion and distribution of facies than that presented by Cant & Walker (1978) . Most notably, high‐angle inclined strata are over‐represented in the model of Cant and Walker, with many bars being dominated by the deposits of low‐ and high‐amplitude dunes. It is suggested that further GPR studies from a range of braided river types are required to properly quantify the full range of deposits. Only by moving away from traditional, highly generalized facies models can a greater understanding of braided river deposits and their controls be established.  相似文献   

7.
The Bashkirian Lower Brimham Grit of North Yorkshire, England, is a fluvio‐deltaic sandstone succession that crops out as a complex series of pinnacles, the three‐dimensional arrangement of which allows high‐resolution architectural analysis of genetically‐related lithofacies assemblages. Combined analysis of sedimentary graphic log profiles, architectural panels and palaeocurrent data have enabled three‐dimensional geometrical relationships to be established for a suite of architectural elements so as to develop a comprehensive depositional model. Small‐scale observations of facies have been related to larger‐scale architectural elements to facilitate interpretation of the palaeoenvironment of deposition to a level of detail that has rarely been attempted previously, thereby allowing interpretation of formative processes. Detailed architectural panels form the basis of a semi‐quantitative technique for recording the variety and complexity of the sedimentary lithofacies present, their association within recognizable architectural elements and, thus, the inferred spatio‐temporal relationship of neighbouring elements. Fluvial channel‐fill elements bounded by erosional surfaces are characterized internally by a hierarchy of sets and cosets with subtly varying compositions, textures and structures. Simple, cross‐bedded sets represent in‐channel migration of isolated mesoforms (dunes); cosets of both trough and planar‐tabular cross‐bedded facies represent lateral‐accreting and downstream‐accreting macroforms (bars) characterized by highly variable, yet predictable, patterns of palaeocurrent indicators. Relationships between sandstone‐dominated strata bounded by third‐order and fifth‐order surfaces, which represent in‐channel bar deposits and incised channel bases, respectively, chronicle the origin of the preserved succession in response to autocyclic barform development and abandonment, major episodes of incision probably influenced by episodic tectonic subsidence, differential tilting and fluvial incision associated with slip on the nearby North Craven Fault system. Overall, the succession represents the preserved product of an upper‐delta plain system that was traversed by a migratory fluvial braid‐belt system comprising a poorly‐confined network of fluvial channels developed between major sandy barforms that evolved via combined lateral‐accretion and downstream‐accretion.  相似文献   

8.
This study uses digital elevation models and ground‐penetrating radar to quantify the relation between the surface morphodynamics and subsurface sedimentology in the sandy braided South Saskatchewan River, Canada. A unique aspect of the methodology is that both digital elevation model and ground‐penetrating radar data were collected from the same locations in 2004, 2005, 2006 and 2007, thus enabling the surface morphodynamics to be tied explicitly to the associated evolving depositional product. The occurrence of a large flood in 2005 also allowed the influence of discharge to be assessed with respect to the process–product relationship. The data demonstrate that the morphology of the study reach evolved even during modest discharges, but more extensive erosion was caused by the large flood. In addition, the study reach was dominated by compound bars before the flood, but switched to being dominated by unit bars during and after the flood. The extent to which the subsurface deposits (the ‘product’) were modified by the surface morphodynamics (the ‘process’) was quantified using the changes in radar‐facies recorded in sequential ground‐penetrating radar surveys. These surveys reveal that during the large flood there was an increase in the proportion of facies associated with bar margin accretion and larger dunes. In subsequent years, these facies became truncated and replaced with facies associated with smaller dune sets. This analysis shows that unit bars generally become truncated more laterally than vertically and, thus, they lose the high‐angle bar margin deposits and smaller scale bar‐top deposits. In general, the only fragments that remain of the unit bars are dune sets, thus making identification of the original unit barform problematic. This novel data set has implications for what may ultimately become preserved in the rock record.  相似文献   

9.
Architectural element analysis and detailed mapping of a 300 m along-strike exposure of the middle member Wood Canyon Formation, southern Marble Mountains, California, USA, provides new evidence for extensive braided–fluvial channel-belt deposits with adjacent overbank environments. Three-dimensional models constructed using ‘Structure from Motion’ techniques, combined with field-based observations, allowed interpretation of outcrop-scale trends, barforms, channel fills and fine-scale features. The ca 80 m thick member is divisible into five distinct units, including units M1 to M3 that form the bulk of the stratigraphy. Units are defined by stacking patterns of three facies associations (Facies Association 1 to Facies Association 3), each representing the product of a subenvironment within the fluvial system. In Facies Association 1, stacked cosets, interpreted as low-relief fluvial bars and channel fills, preserve vertical-accretion and downstream-accretion elements under unimodal north-north-west palaeoflow, with minor lateral accretion near bar edges. Deposits of Facies Association 2 to Facies Association 3, linked to overbank environments, are found only in unit M2, in the middle 27 m of the middle member. Floodplains, represented by Facies Association 2, include crumbly red-orange intervals of fine to medium-grained sandstone and thinner sets of cross-bedding than Facies Association 1, interbedded with thicker cross-stratification indicative of overbank splay or overland flow aggradation from adjacent channel belts during flood stage. Possible aeolian beds of Facies Association 3 preserve broad festooned trough cross-strata that average 23 cm in thickness; their small size, medium-grained sandstone and iron oxide cement suggest a high water table. The diverse assemblage of interpreted subenvironments, paired with bedform and facies patterns, implies a perennial fluvial system that gradually built large sand bars as the channel belt migrated and avulsed across an unconfined braided–fluvial reach, leaving the overbank area on its flanks subject to weathering and aeolian transport. Despite the occurrence of strata deposited in low-energy and ponded settings, and a marine influence proposed for nearby sections of middle member, no ichnofossils were encountered.  相似文献   

10.
Mid-Cretaceous strata within the Tintina Trench.3 km west of the community of Ross River, contain evidence of deposition in two distinct,alternating,fluvial settings.Coal-bearing,mud-dominated strata are commonly associated with high-constructive sandy channel systems,with extensive overbank. levee and splay deposits.Channels are between 3 and 30 m wide and 0.4-7 m thick.They show repetitive development of side and in-channel bar-forms,as well as up-channel widening of the rivers by selective erosion of associated overbank and levee deposits.Levees extended for several hundred metres away from the channels.In this setting low-angle inclined stratification and epsilon cross stratification may reflect lateral migration of crevasse channels or small streams.The paucity of exposure prevents recognition of the channels as products of multiple channel anastomosed systems or single channel high-constructive systems. Gravel-dominated strata,inter-bedded with,and overlying coal-bearing units,are interpreted as deposits of wandering gravel-bed rivers,with sinuosity approaching 1.4.In most exposures they appear to be dominated by massive and thin planar-bedded granule to small pebble conglomerates,which would traditionally be interpreted as sheet-flood or longitudinal bar deposits of a high-gradient braided stream or alluvial fan.Architectural analysis of exposures in an open-pit shows that the predominance of flat bedding is an artefact of the geometry of the roadside exposures.In the pit the conglomerates are dominated by large scale cross stratification on a scale of 1-5.5 m.These appear to have developed as downstream and lateral accretion elements on side-bars and on in-channel bars in water depths of 2-12 m.Stacking of strata on domed 3rd order surfaces suggests development of longitudinal in-channel bar complexes similar to those observed in parts of the modern Rhone River system.Mudstone preserved in some of the channels reflects intervals of channel abandonment or avulsion.Minimum channel width is from 70 to 450 m.  相似文献   

11.
As an important reservoir type in the Bohai Bay Basin, China, lacustrine beach and bar sands which refer to the shallow water complex deposited mainly by nearshore, delta‐rim and buried hill‐related beaches as well as longshore bars were developed in a particular stage in the evolution of those faulted Cenozoic continental depressions. In the Chezhen Depression, for example, the Second Member of the Oligocene Shehejie Formation (abbr. as Es2 hereafter) formed during the rifting‐to‐thermal subsidence transitional stage. Although well developed in Es2, beach and bar sands are difficult to recognize owing to their relative thinness. The paper summarizes sedimentary characteristics of lacustrine beach and bar sands on cores and logs. Low‐angle cross‐stratification, swash stratification, as well as occasional small‐scale hummocky cross‐stratification resulted from storms can be observed in beach and bar sands. The paper distinguishes bars and beaches from each other in Es2 mainly based on the grain‐size, bed thickness, facies succession and log responses. In order to predict the distribution of beach and bars, a chrono‐stratigraphic correlation framework of Es2 in the study strata is established using a high‐resolution sequence stratigraphic approach. Es2 strata are sub‐divided into six medium‐scale cycles and the mapping of the high‐frequency cycles allows the geographic and stratigraphic distribution of both beach and bar sands to be predicted. The study shows that beach and bars are better developed in times of base‐level fall than in base‐level rise. Factors such as lake‐level fluctuation, sediment supply, palaeogeomorphology and palaeowind direction have exerted control on the formation and distribution of beach and bar sands. Finally, the genetic pattern of beach and bar sands in the Es2 unit has been constructed, which provides a foundation for the prediction of beach and bars reservoir in continental basins in general. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A hierarchical typology for the channels and bars within aggradational wandering gravel-bed rivers is developed from an examination of a 50 km reach of lower Fraser River, British Columbia, Canada. Unit bars, built by stacking of gravelly bedload sheets, are the key dynamic element of the sediment transfer system, linking sediment transport during individual freshets to the creation, development and remoulding of compound bar platforms that have either a lateral or medial style. Primary and secondary unit bars are identified, respectively, as those that deliver sediment to compound bars from the principal channel and those that redistribute sediment across the compound bar via seasonal anabranches and smaller channels. The record of bar accretion evident in ground-penetrating radar sequences is consistent with the long-term development of bar complexes derived from historical aerial photographs. For two compound bars, inter-annual changes associated with individual sediment transport episodes are measured using detailed topographic surveys and longer-term changes are quantified using sediment budgets derived for individual bars from periodic channel surveys. Annual sediment turnover on the bars is comparable with the bed material transfer rate along the channel, indicating that relatively little bed material bypasses the bars. Bar construction and change are accomplished mainly by lateral accretion as the river has limited capacity to raise bed load onto higher surfaces. Styles of accretion and erosion and, therefore, the major bar form morphologies on Fraser River are familiar and consistent with those in gravelly braided channels but the wandering style does exhibit some distinctive features. For example, 65-year histories reveal the potential for long sequences of uninterrupted accretion in relatively stable wandering rivers that are unlikely in braided rivers.  相似文献   

13.
Sedimentological outcrop analysis and sub‐surface ground‐penetrating radar (GPR) surveys are combined to characterize the three‐dimensional sedimentary architecture of Quaternary coarse‐grained fluvial deposits in the Neckar Valley (SW Germany). Two units characterized by different architectural styles are distinguished within the upper part of the gravel body, separated by an erosional unconformity: (i) a lower unit dominated by trough‐shaped depositional elements with erosional, concave‐up bounding surfaces that are filled by cross‐bedded sets of mainly openwork and filled framework gravel; and (ii) an upper unit characterized by gently inclined sheets of massive and openwork gravels with thin, sandy interlayers that show lateral accretion on a lower erosional unconformity. The former is interpreted as confluence scour pool elements formed in a multi‐channel, possibly braided river system, the latter as extensive point bar deposits formed by the lateral migration of a meandering river channel. The lateral accretion elements are locally cut by chute channels mainly filled by gravels rich in fines, and by fine‐grained abandoned channel fills. The lateral accretion elements are associated with gravel dune deposits characterized by steeply inclined cross‐beds of alternating open and filled framework gravel. Floodplain fines with a cutbank and point bar morphology cover the gravel deposits. The GPR images, revealing the three‐dimensional geometries of the depositional elements and their stacking patterns, confirm a change in sedimentary style between the two stratigraphic units. The change occurred at the onset of the Holocene, as indicated by 14C‐dating of wood fragments, and is related to a re‐organization of the fluvial system that probably was driven by climatic changes. The integration of sedimentological and GPR results highlights the heterogeneity of the fluvial deposits, a factor that is important for modelling groundwater flow in valley‐fill aquifers.  相似文献   

14.
The first sandstone unit of the Esdolomada Member of the Roda Formation (hereafter referred to as ‘Esdolomada 1’) was formed by a laterally‐migrating, shelf tidal bar. This interpretation is based on detailed mapping of the bedding surfaces on the digital terrain model of the outcrop built from light detection and ranging data and outcrop photomosaics combined with vertical measured sections. The Esdolomada 1 sandbody migrated laterally (i.e. transverse to the tidal currents) towards the south‐west along slightly inclined (1.6° to 4.6°) master bedding surfaces. The locally dominant tidal current flowed to the north‐west. This current direction is indicated by the presence of stacked sets of high‐angle (average 21°) cross‐stratification formed by dunes that migrated in this direction, apparently in an approximately coast‐parallel direction. The tidal bar contains sets and cosets of medium‐grained cross‐stratified sandstone that stack to reach a thickness of about 5·5 m. Individual cross‐bed sets average about 50 cm thick (with a range of 10 to 70 cm) and have lengths of ca 130 to 250 m in a direction perpendicular to the palaeocurrent. Set thickness decreases in the direction of migration, towards the south‐west, and the degree of bioturbation increases, so that the cross‐bedded sandstones gradually change into highly bioturbated finer‐grained and thinner‐bedded sandstones lacking any cross‐stratification. The rate of thinning of individual dune sets as they are traced down any obliquely‐accreting master surface is some 40 cm per 100 m (0·004) for the older, thicker sandstones, whereas the younger, thinner beds thin at a rate of 15 cm over 100 m (0·0015). The tidal bar has a sharp base and top and is encased in finer‐grained bioturbated, marine sandstones. The Esdolomada bar crest was oriented north‐west to south‐east, parallel to the tidal palaeocurrents and to the nearby palaeoshoreline, but built by lateral accretion towards the south‐west. Lateral outbuilding generated a flat‐topped bar with a measured width of about 1700 m, and a preserved height of 5·5 m. The bar, disconnected from a genetically related south‐westward prograding delta some 2 km to the north‐east, developed during the transgressive phase of a sedimentary cycle. The tidal bar was most probably initiated as a delta‐attached bar at the toesets of the delta front and during transgression evolved into a detached tidal bar.  相似文献   

15.
Counter point bar deposits in the meandering Peace River, North‐central Alberta, Wood Buffalo National Park, are distinct from point bar deposits in terms of morphology, lithofacies and reservoir potential for fluids. Previously referred to as the distal‐most parts of point bars, point bar tails and concave bank‐bench deposits, counter point bar deposits have concave morphological scroll patterns rather than convex as with point bars. The Peace is a large river (bankfull discharge 11 700 m3 sec?1, width 375 to 700 m, depth 15 m, gradient 0·00004 or 4 cm km?1) in which counter point bar deposits are dominated by silt (80% to 90%), which contrasts with sand‐dominant (90% to 100%) point bar deposits. Beginning at the meander inflection (transition from convex to concave), counter point bar deposit stratigraphy thickens as a wedge‐like architecture in the distal direction until the deposit is nearly as thick as the point bar deposits. The low permeability silt‐dominant lithofacies in counter point bar deposits will limit reservoir extent and movement of fluids in both modern and ancient subsurface fluvial deposits. In the exploration and extraction of bitumen and heavy oil in subsurface fluvial rocks, identification and mapping of reservoir potential of point bar deposits and counter point bar deposits is now possible in the fluvial‐dominated tidal estuarine Lower Cretaceous Middle McMurray Formation, North‐east Alberta. Recent geophysical advances have facilitated imaging of some ancient buried point bar deposits and counter point bar deposits which, on the basis of morphological shape of sedimentary bodies observed from seismic amplitude, can be interpreted and mapped as depositional elements or blocks that contain associated sandstone or siltstone dominant lithofacies, respectively. As counter point bar deposits exhibit poor permeability and thus limit reservoir potential for water, natural gas, light crude, heavy oil and bitumen, counter point bar deposits should be avoided in resource developments. Geophysical imaging, interpretation and mapping of point bar deposit and counter point bar deposit elements provide new opportunities to improve recovery of bitumen and heavy oil and reduce development costs in subsurface cyclic steam stimulation and steam‐assisted gravity drainage projects by not drilling into counter point bar deposits.  相似文献   

16.
Flow processes and sediment transport in a channel bend and associated point bar have been studied in modern rivers, theoretical models and physical experiments: however, the relationship between flow process and point‐bar morphology has rarely been explained due to the complex nature of open channel flow. Plan‐view exposures of an ancient point‐bar complex, exposed at the top of the Cretaceous Ferron Sandstone Member of the Mancos Shale Formation, south‐central Utah, allowed reconstruction of bar morphology, sediment transport and bed shear stress, which were used to extrapolate flow processes. Studies of these outcrops show that compound point bars and scroll bars were probably formed during falling and rising flood stages, respectively. A simulation model of plan‐view channel form shows that channel dimensions, such as radius of curvature and sinuosity of the point‐bar complex, range between 205 m and 351 m and 1·04 and 1·22, respectively, throughout the evolution of the channel bend. Variations in strength of the helical flow were interpreted as the main control on facies architecture and bar morphology. Strong helical flow was related to the deposition of the scroll bars, while strength of helical flow is decreased for compound bars. The use of cross‐beds as a common palaeocurrent indicator was found to be inconsistent with mean flow directions and channel margin orientation.  相似文献   

17.
库车坳陷中生界三种类型三角洲的比较研究   总被引:34,自引:3,他引:31  
库车坳陷中生代呈北陡南缓的箕状,其内连续沉积了一套厚度巨大的冲积-湖泊碎屑沉积体。湖缘扇三角洲、辫状河三角洲及曲流河三角洲非常发育,它们的特征清楚、区别明显:(1) 扇三角洲为突发的、瞬时的灾变事件产生的重力流沉积与间灾变期正常牵引流沉积交替进行,并以重力流沉积占主导地位:其平原亚相类似于冲积扇沉积,河道砂体呈透镜状,厚度小、变化大。(2) 辫状河三角洲为正常的河流牵引流沉积,通常受到湍急洪水控制,为季节性沉积作用产物;平原亚相类似于辫状河沉积;河道沉积发育,砂体总体呈层状,内部由若干个下粗上细的河道砂岩透镜体相互叠置而成,交错层发育,尤以侧积交错层异常发育为特征,岩性以颗粒支撑的砂砾岩为主。(3) 曲流河三角洲为正常的河流牵引流沉积,沉积物输入量为相对连续的终年河流的产物,平原亚相类似于曲流河沉积:河道砂体呈层状,交错层发育,类型丰富。当然,这三种类型三角洲之间亦存在着密不可分的内在联系,不仅同一时期内可以并存,而且随着地质历史的演化可相互转化。  相似文献   

18.
Sandstone bodies in the Sunnyside Delta Interval of the Eocene Green River Formation, Uinta Basin, previously considered as point bars formed in meandering rivers and other types of fluvial bars, are herein interpreted as delta mouth‐bar deposits. The sandstone bodies have been examined in a 2300 m long cliff section along the Argyle and Nine Mile Canyons at the southern margin of the Uinta lake basin. The sandstone bodies occur in three stratigraphic intervals, separated by lacustrine mudstone and limestone. Together these stratigraphic intervals form a regressive‐transgressive sequence. Individual sandstone bodies are texturally sharp‐based towards mudstone substratum. In proximal parts, the mouth‐bar deposits only contain sandstone, whereas in frontal and lateral positions mudstone drapes separate mouth‐bar clinothems. The clinothems pass gradually into greenish‐grey lacustrine mudstone at their toes. Horizontally bedded or laminated lacustrine mudstone onlaps the convex‐upward sandstone bars. The mouth‐bar deposits are connected to terminal distributary channel deposits. Together, these mouth‐bar/channel sandstone bodies accumulated from unidirectional jet flow during three stages of delta advance, separated by lacustrine flooding intervals. Key criteria to distinguish the mouth‐bar deposits from fluvial point bar deposits are: (i) geometry; (ii) bounding contacts; (iii) internal structure; (iv) palaeocurrent orientations; and (v) the genetic association of the deposits with lacustrine mudstone and limestone.  相似文献   

19.
复合点坝储集层内部非均质性分析是曲流河研究的难点,仅靠地震和测井资料难以解释清楚。关于复合点坝储层构型表征也较缺乏定量化指导标准。本研究选取了13条曲流河河段的260个复合点坝作为数据样本,进行参数分类统计,形成曲流河复合点坝地质知识库。将复合点坝分为4大类、25个亚类;将侧积体分为8大类、22个亚类。统计不同类型复合点坝和侧积体构型样式的分布概率关系。以此为基础,充分利用定量分布概率关系,达到在资料较少情况下分析复合点坝储集层平面非均质性的目的。  相似文献   

20.
Open‐framework gravel (OFG) in river deposits is important because of its exceptionally high permeability, resulting from the lack of sediment in the pore spaces between the gravel grains. Fluvial OFG occurs as planar strata and cross strata of varying scale, and is interbedded with sand and sandy gravel. The origin of OFG has been related to: (1) proportion of sand available relative to gravel; (2) separation of sand from gravel during a specific flow stage and sediment transport rate (either high, falling or low); (3) separation of sand from gravel in bedforms superimposed on the backs of larger bedforms; (4) flow separation in the lee of dunes or unit bars. Laboratory flume experiments were undertaken to test and develop these theories for the origin of OFG. Bed sediment size distribution (sandy gravel with a mean diameter of 1·5 mm) was kept constant, but flow depth, flow velocity and aggradation rate were varied. Bedforms produced under these flow conditions were bedload sheets, dunes and unit bars. The fundamental cause of OFG is the sorting of sand from gravel associated with flow separation at the crest of bedforms, and further segregation of grain sizes during avalanching on the steep lee side. Sand in transport near the bed is deposited in the trough of the bedform, whereas bed‐load gravel avalanches down the leeside and overruns the sand in the trough. The effectiveness of this sorting mechanism increases as the height of the bedform increases. Infiltration of sand into the gravel framework is of minor importance in these experiments, and occurs mainly in bedform troughs. The geometry and proportion of OFG in fluvial deposits are influenced by variation in height of bedforms as they migrate, superposition of small bedforms on the backs of larger bedforms, aggradation rate, and changes in sediment supply. If the height of a bedform increases as it migrates downstream, so does the amount of OFG. Changes in the character of OFG on the lee‐side of unit bars depend on grain‐size sorting in the superimposed bedforms (dunes and bedload sheets). Thick deposits of cross‐stratified OFG require high bedforms (dunes, unit bars) and large amounts of aggradation. These conditions might be expected to occur during high falling stages in the deeper parts of river channels adjacent to compound‐bar tails and downstream of confluence scours. Increase in the amount of sand supplied relative to gravel reduces the development of OFG. Such increases in sand supply may be related to falling flow stage and/or upstream erosion of sandy deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号