首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
岩溶区地基极限承载力上限有限元数值模拟分析   总被引:2,自引:2,他引:0       下载免费PDF全文
岩溶区基础下伏空洞时,其地基承载力计算变得十分复杂。为考虑多种因素对地基承载力的影响,基于上限分析有限元法对岩溶区地基极限承载力进行数值模拟分析。首先,提出合理的计算假定简化,建立可考虑多因素影响的地基计算模型;其次,利用Matlab平台编制上限分析有限元程序,对地基承载力作数值计算,得到各种工况的地基极限承载力上限解,并绘制相应的分析图表;再次,分析地下空洞埋置深度、洞径和岩土体内摩擦角对地基极限承载力的影响规律;最后,通过算例分析验证本文方法的合理性。研究结果表明:地基极限承载力随D/B(径宽比)增大而减小,随H/B(深宽比)和φ增大而增大,且φ值越大H/B和D/B对地基极限承载力影响越显著;岩溶区地层中空洞存在一个影响地基极限承载力的临界埋置深度,该临界埋置深度受D/B和φ影响。  相似文献   

2.
荷载位置偏移量对下伏空洞岩石地基的极限承载力有较大影响。当荷载位置偏移量较小时,基于双对数螺旋曲线模型,采用极限分析上限法建立了下伏空洞岩石地基破坏体的功能方程,推导得到了荷载位置偏移下空洞岩石地基极限承载力计算表达式。当荷载位置偏移量较大时,空洞地基发展成为Prandtl破坏模式。并进一步分析了岩石地基厚度h、荷载位置偏移量e及内摩擦角φ对空洞岩石地基极限承载力的影响。最后进行了不同荷载位置偏移量和厚度下的空洞地基极限承载力模型试验研究,并与理论进行了对比验证分析。结果表明:当荷载位置偏移量e一定时,随着岩石地基厚度h的增加,空洞岩石地基极限承载力大致呈线性增长,并逐渐趋向于完整基岩承载力;当岩石地基厚度h一定时,随着荷载位置偏移量e的增大,岩石地基极限承载力呈非线性增长,增大到一定值时接近完整基岩承载力;当岩石地基厚度h和荷载位置偏移量e一定时,随着内摩擦角φ的增大,岩石地基极限承载力增长的幅度逐渐变大。  相似文献   

3.
荷载位置偏移量对下伏空洞岩石地基的极限承载力有较大影响。当荷载位置偏移量较小时,基于双对数螺旋曲线模型,采用极限分析上限法建立了下伏空洞岩石地基破坏体的功能方程,推导得到荷载位置偏移下空洞岩石地基极限承载力计算表达式。当荷载位置偏移量较大时,空洞地基发展成为Prandtl破坏模式。并进一步分析了岩石地基厚度h、荷载位置偏移量e及内摩擦角φ 对空洞岩石地基极限承载力的影响。最后进行了不同荷载位置偏移量和厚度下的空洞地基极限承载力模型试验研究,并与理论进行了对比验证分析,结果表明:(1) 当荷载位置偏移量e一定时,随着岩石地基厚度h的增加,岩石地基极限承载力大致呈线性增长,并逐渐趋向于完整基岩承载力;(2) 当岩石地基厚度h一定时,随着荷载位置偏移量e的增大,岩石地基极限承载力呈非线性增长,增大到一定值时接近完整基岩承载力;(3) 当岩石地基厚度h和荷载位置偏移量e一定时,随着内摩擦角φ 的增大,岩石地基极限承载力增长的幅度逐渐变大。  相似文献   

4.
赵明华  胡啸  张锐 《岩土力学》2016,(4):1137-1143,1152
与水平地面地基土体的对称破坏模式不同,临坡地基土体随不同工况呈现较明显的多种破坏模式。基于上限分析有限元技术,通过对临坡地基土建模,得到非线性上限规划模型,采用可行弧内点算法对其进行求解。将计算结果转换成相应的速度场和能量耗散图,并与文献结果进行对比分析。分析结果表明,上限有限元法能够较清楚地模拟出临坡地基破坏的几种模式,并得到合理解。通过把临坡地基承载力转为Terzaghi建议的分项系数叠加形式,对分项系数N_c、N_γ、N_q的变化规律进行讨论,发现N_c和N_q变化趋势基本符合现有的单调变化规律,但对于N_γ而言,由于破坏模式改变造成了破坏体体积变化,得到N_γ发生非单调改变的变化规律。以临坡基础完全不受斜坡影响的距离α_0/B作为绝对安全距离,并给出部分计算图表,为斜坡地基设计提供参考。  相似文献   

5.
刘辉  杨峰  阳军生 《岩土力学》2010,31(11):3373-3378
利用极限分析上限法求解地基极限承载力问题的关键在于构造合适的破坏模式。当地基下方存在空洞时,地基的破坏模式变得相当复杂。通过分析空洞存在时地基的受力特点及破坏形态,将地基破坏范围划分成为不同的刚性区和过渡区,构造了空洞上方条形基础地基的破坏模式。利用上限法,建立与破坏模式对应的速度场,推导了破坏模式不同区域内的耗散功率和外力功率,得到地基极限承载力的目标函数,并采用数学优化方法进行求解,获得了极限承载力的上限解。通过算例分析,讨论了空洞顶板厚度、空洞大小与地基极限承载力的关系,并与无空洞条件下地基极限承载力进行对比分析。结果表明,随着空洞顶板厚度增加,地基极限承载力增加,破坏模式也由地基与空洞之间扩散到地基两侧;空洞顶板厚度存在临界值,当超过此临界值时,空洞对地基极限承载力的影响可忽略。  相似文献   

6.
为探究下伏空洞桥梁群桩桩端岩层的承载机制和破坏模式,进行了单桩及不同桩数群桩的室内模型试验研究,得到了不同桩数群桩桩端岩层的极限承载力和破坏模式。根据下伏空洞桥梁群桩桩端岩层破坏模式的特点将破坏面分为两个部分,结合极限分析法提出了下伏空洞桥梁群桩桩端岩层极限承载力计算方法,理论计算值与室内试验值吻合良好,验证了计算方法的合理性。同时分析了桩端岩层极限承载力随桩数增加的变化规律,可为岩溶区桥梁桩基工程建设提供参考。试验及理论计算结果表明:(1)下伏空洞群桩桩端岩层发生整体冲切破坏时,破坏体整体可视为与单桩破坏体等效的大型墩基;(2)当桩间距较小时,群桩桩端岩层极限承载力随外围基桩外包络线长度增大而增加,当外包络线长度相同时,内部基桩布置方式对群桩桩端岩层极限承载力无影响;(3)群桩效应系数随桩间距的增大而增加,临界桩间距为5d~6d(d为桩径)。  相似文献   

7.
在实际工程中,常见天然的或通过人工换填形成的上部砂土、下部黏土的层状地基,目前关于这种双层地基极限承载力和破坏机制研究还不够深入。通过有限差分法建立双层地基数值模型,分析基底粗糙程度、砂土剪胀角和超载对地基破坏模式及极限承载力的影响,并根据有限差分法计算结果对强度加权平均法、应力扩散法和冲剪破坏法等现有实用计算方法的估算正确性进行评价。研究结果表明,基底粗糙程度对极限承载力的影响随着砂土内摩擦角的增大而减小;当剪胀角较小时,剪胀角变化对承载力的影响更为明显;当下层黏土强度较小时,超载的作用更明显。强度加权平均法由于低估破坏面影响深度导致砂土层权重较大,计算结果偏大;应力扩散法忽略了砂土剪切强度,在砂土层较厚时出现低估;冲剪破坏法由于可较为精确地计算砂土破坏面上抗剪强度和被动土压力,是3种实用方法中计算最准确的,当砂土厚度和黏土强度较大时,建议按太沙基经验公式对下卧黏土进行局部剪切破坏修正后确定极限承载力。  相似文献   

8.
针对冲切破坏模式下溶洞顶板极限承载力问题,进行了不同顶板厚度以及不同荷载偏心距下溶洞顶板极限承载力室内试验研究,依据试验结果将偏心荷载作用下的溶洞冲切破坏假定为轴对称问题,引入Griffith强度准则,基于极限分析上限法,提出了一种适用于轴对称和偏心荷载作用下溶洞顶底板极限承载力的计算方法,并给出了能发生冲切破坏范围的估算方法。试验结果表明:在同一偏心距下,随着顶板厚度的增加,在达到基岩极限承载力之前,顶板极限承载力呈线性增长;当顶板厚度一定时,顶板极限承载力随着偏心距的增加呈非线性增长,偏心距e在能发生冲切破坏的范围之外时趋于平缓,并逐渐达到基岩极限承载力;理论计算结果与试验结果吻合较好。  相似文献   

9.
为计算岩溶区桥梁双桩基础的极限承载力,根据极限分析的基本原理,结合有限元方法,基于MATLAB平台编制了相关计算程序。为描述岩体的非线性特点,采用修正的Hoek-Brown准则,并在优化计算过程中对其进行"双曲线近似"处理,解决了奇异点不可导的问题。在此基础上,分析了各参数对极限承载力系数Nσ的影响。结果表明:(1)Nσ随岩层上覆荷载、嵌岩深度增大而增大,但增长幅度不明显;(2)Nσ随溶洞半径增大而减小,随桩洞水平距离先增大后减小;(3)Nσ随GSI增大而非线性增大,与桩洞垂直距离、mi大致呈线性关系;(4)当桩洞位置较近时,岩石重度对Nσ的影响可忽略不计;(5)破坏模式主要有,整体剪切破坏、左桩控制的冲切破坏、冲切破坏和地基破坏模式并存的联合破坏。最后,将本文计算结果与已有成果进行对比,验证了所提方法的正确性。  相似文献   

10.
基于Hoek-Brown破坏准则的浅埋条形锚板抗拔力上限分析   总被引:2,自引:0,他引:2  
黄阜  杨小礼  赵炼恒  黄戡 《岩土力学》2012,33(1):179-184
现有的锚板极限承载力研究大多是采用线性或非线性Mohr-Coulomb破坏准则在砂质地基中进行的,然而Mohr-Coulomb破坏准则并不适合分析岩质地基中的抗拔结构。采用Hoek-Brown破坏准则构建了一个曲线型的破坏机制,根据极限分析上限定理求出了条形锚板抗拔力的表达式。通过变分计算,得到了极限状态下条形锚板的抗拔力和岩体破裂面的上限解。为了证明所采用方法的有效性,当材料参数B =1时,采用与Mohr-Coulomb破坏准则等效的土体参数,计算了曲线型破坏机制下条形锚板的极限抗拔力,并与已有计算结果进行了比较。结果表明,采用曲线型破坏机制得到的锚板极限抗拔力与直线型多块体破坏机制的结果基本一致,证明了所采用的曲线形破坏机制是正确的。参数研究表明:在其他参数不变的情况下,锚板极限抗拔力和破坏面都随岩体参数B的增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号