首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
倪怀玮 《矿物岩石地球化学通报》2020,39(3):前插1-前插2,443-447
在地球深部(特别是俯冲带)的高温高压条件下,硅酸盐和水的相互溶解能力增强,可以形成成分介于常规硅酸盐熔体和富水流体之间的超临界地质流体。超临界流体的形成条件主要取决于岩石-H_2O体系的临界曲线、湿固相线和第二临界端点的位置。超临界地质流体具有特殊的物理化学性质,能够在促成俯冲带物质循环、迁移和富集元素成矿、引发中深源地震、影响地表宜居性演化等方面发挥关键作用。通过高温高压实验、分子模拟计算、天然岩石和矿床样品等手段研究超临界地质流体的性质和效应仍存在巨大挑战,亟需变革性实验和计算技术突破。  相似文献   

2.
超临界流体是有别于富水流体和含水熔体的一种低粘度、高迁移性和高元素携带能力的一类流体,在变质岩体系中,其形成的温压条件一般高于对应的H_2O-岩体系的第二临界端点。俯冲带岩石是自然界最有可能保存超临界流体活动记录的地方,而超临界流体的活动对于地球内部物质循环、俯冲带岩浆作用和俯冲带成矿等方面可以发挥巨大作用。目前对于天然岩石和矿床样品中超临界流体的识别仍处于经验推测阶段,缺乏定量的岩相学和地球化学指标。本文主要基于目前已有研究结果,介绍自然体系中超临界流体的地质特征,包括俯冲带超高压变质岩、高压-超高压脉体以及地幔楔岩石中的超临界流体记录,主要是一些多相包裹体及元素迁移变化的记录,最后讨论超临界流体的相分离与岛弧岩浆作用之间的关系。  相似文献   

3.
甘肃天祝干沙鄂博稀土矿床产于霓辉正长岩和霓辉正长斑岩中,矿体形态呈不规则脉状、透镜状和板状。成矿过程可分为岩浆期、岩浆-热液期、热液期和表生期,其中岩浆-热液期为主要成矿期。本矿床中的包裹体有熔体包裹体、流体-熔体包裹体、H_2O包裹体、CO_2包裹体、CO_2-H_2O包裹体、含子矿物H_2O包裹体和含子矿物CO_2-H_2O包裹体7类,并以富含流体-熔体包裹体、CO_2-H_2O包裹体为显著特征。包裹体组合从熔体包裹体→流体-熔体包裹体、H_2O包裹体、CO_2包裹体和CO_2-H_2O包裹体→H_2O包裹体的变化,反映本矿床的形成经历了从岩浆→岩浆+热液→热液的演化过程。岩浆期熔体包裹体均一温度为780℃;岩浆-热液期均一温度为191~700℃,盐度为5.26%~22.24%,属中低盐度,成矿压力为68~95 MPa,相应的成矿深度为2.6~3.6 km;热液期均一温度为129~225℃,盐度为0.35%~7.73%,为低盐度。从岩浆期到岩浆-热液期再到热液期,温度逐渐降低,矿化作用主要发生在岩浆-热液期,属中高温、中深成岩浆-热液过渡型矿床。  相似文献   

4.
为探讨丫他金矿床成矿流体的特征和矿床成因,对热液成矿阶段中石英中的流体包裹体进行了岩相学、显微测温、激光拉曼分析以及H、O同位素研究。结果表明,丫他金矿床中存在H_2O包裹体、CO_2-H_2O包裹体和CO_2包裹体三类流体包裹体;其中同一阶段同一视域中富H_2O相CO_2-H_2O包裹体在加热中完全均一到H_2O相,以及富CO_2相CO_2-H_2O包裹体完全均一到CO_2相,它们的均一温度和形成压力基本一致,说明同时捕获了富CO_2和富H_2O两种流体;流体包裹体的H、O同位素组成特征显示,成矿流体主要来源为大气降水或与大气降水有关的盆地流体;热液成矿阶段流体发生相分离,CO_2-H_2O不混溶作用导致热液中Au的溶解度迅速降低并沉淀形成矿床。  相似文献   

5.
超临界地质流体对金属成矿元素具有超强的萃取和搬运能力,目前已引起地学界的极大兴趣和重视。在地壳环境中,NaCl-H2O体系是最重要的二组分流体,许多热液成矿作用和变质作用均发生在该体系中。为了研究超临界地质流体对热液成矿过程的重要作用。就必须要首先查明NaCl-H2O体系的临界参数。本文在总结前人研究结果的基础上提出了关于NaCl-H2O体系临界参数的一组计算方程。  相似文献   

6.
4.0%NaCl水溶液临界区域内白钨矿溶解度实验测定   总被引:1,自引:0,他引:1  
龚庆杰  韩东昱  王玉荣 《岩石学报》2006,22(12):3052-3058
溶解度的临界异常现象是超临界流体萃取技术的理论基础,目前在食品、化工等领域已得到广泛应用,但在地质领域的应用相对较少。在地质流体临界区域内金属矿物溶解度的变化行为尚需实验查明。本文在34MPa 恒压、250℃~470℃条件下和420℃恒温、压力为20~50MP 条件下分别在快速淬火高压釜中实验测定了化学试剂白钨矿在4.0%NaCl 水溶液中的溶解度。4.0%NaCl 水溶液的临界温度和临界压力分别约为411℃和31.4MPa。在34MPa 恒压条件下,白钨矿的溶解度随体系温度的升高而缓慢增大,但在体系临界温度附近突然出现极大值现象。在34MPa 恒压和温度在250℃~400℃区间内白钨矿与 WO_3在4.0%NaCl 水溶液中的溶解度(单位为 mmol/L)基本相同,这表明溶解态钨在热液流体中的存在形式可能相同。在420℃恒温条件下,白钨矿的溶解度随体系压力的升高而增大,在体系临界压力附近可能出现涨落现象,有待进一步实验查证。在4.0%NaCl 水溶液临界区域内,白钨矿的溶解度对体系温度和压力的变化反应敏感,表明白钨矿的溶解度在热液流体临界区域内具有临界异常现象。结合前人研究结果发现,白钨矿、石英、WO_3、MoO_3等物质在热液流体中的溶解度变化行为基本相似,即溶解度随体系温度和压力的升高而增大,在临界区域内出现临界异常现象。矿物溶解度的临界异常现象对揭示热液型钨矿床成矿物质的萃取、迁移和沉淀富集机制具有重要意义。  相似文献   

7.
贵州水银洞金矿床成矿流体不混溶的包裹体证据   总被引:10,自引:2,他引:8       下载免费PDF全文
通过对水银洞金矿床中流体包裹体的观测和热力学参数计算,探讨了成矿流体不混溶的热力学条件。研究结果表明,该矿床石英中的流体包裹体分为H_2O包裹体、CO_2包裹体和CO_2-H_2O包裹体三大类,并以富含CO_2-H_2O包裹体为特征,CO_2-H_2O包裹体可进一步划分为富H_2O相CO_2-H_2O包裹体和富CO_2相CO_2-H_2O包裹体。加热时富H_2O相CO_2-H_2O包裹体完全均一成H_2O相;而富CO_2相CO_2-H_2O包裹体完全均一成CO_2相,而且二者的完全均一温度和完全均一压力一致,说明它们是同时期捕获的CO_2-低盐水不混溶流体包裹体组合。它们形成时的热力学条件是:形成温度236℃,形成压力324 bar(1bar=10~5Pa);共存两相流体密度:低盐水相0.900 g/cm~3,CO_2相0.314 g/cm~3;共存两相中CO_2的摩尔分数:低盐水相0.0376,CO_2相0.7337;水溶液含盐度w(NaCl)约为1.3%。  相似文献   

8.
俯冲带变质过程中的含碳流体   总被引:1,自引:1,他引:0  
刘景波 《岩石学报》2019,35(1):89-98
俯冲带含碳岩石通过俯冲过程的变质反应生成了含碳水流体、富硅酸盐的超临界流体和含碳熔体。不同类型流体的形成与岩石成分和岩石经历的温压条件相关。岩石中碳酸盐矿物脱碳反应的温压条件取决于岩石起初的流体成分:有水存在时,反应发生在低温条件下。在高压条件下,碳酸盐矿物在水或含盐水流体的溶解是生成含碳流体重要的机制,其导致的碳迁移作用可能超过脱碳变质反应的作用。高温条件下,含碳岩石的部分熔融可以生成含碳的熔体,这在热俯冲环境和俯冲带岩石底辟到上覆地幔的情况下是碳迁移重要载体。富硅酸盐的超临界流体可能是在第二临界端点上形成的超临界流体,目前在超高压岩石中观察到的非花岗质成分的多相固体包裹体被认为是这种流体结晶的产物,然而对其理解尚存在很多问题,需要进一步的实验研究。地表含碳岩石在俯冲带被带到深部,俯冲带地温特征的不同导致了不同类型含碳流体的形成,这些流体运移至上覆地幔引起岩石部分熔融产生含碳的岛弧岩浆,岩浆喷出到地表释放了其中的碳,这构成了俯冲带-岛弧系统的碳循环。  相似文献   

9.
以熔体相、晶体相和流体相三相平衡共存为主要特征的阶段通常被称为岩浆一热液过渡阶段[1,2].对于含有较高H2O(5%~6%以上)的过铝质岩浆体系来说,随着分离结晶的进行,大量无水矿物的结晶,导致残余熔体相中H2O和其他挥发分达到过饱和而发生流体相出溶,从而进入岩浆-热液过渡阶段体系.但目前对这一体系的性质不甚清楚,只是定性认为介于岩浆与热液体系之间的就是岩浆-热液过渡阶段.  相似文献   

10.
五台山区太古宙铁建造型金矿成矿流体性质和成因   总被引:1,自引:0,他引:1  
五台山区铁建造金矿经历初生成矿作用和叠加成矿作用。初生成矿作用形成于变质峰期之后 ,与区域变质作用有关。矿石富含水溶液包裹体。包裹体均一温度 171~ 2 55℃ ,压力 0 .12~ 0 .31GPa。流体成分模式Au -H2 S NaCl-CO2 -H2 O。氢氧同位素具变质水和雨水双重性 ,流体主要来源于变质热液 ,受雨水混合。叠加成矿作用可能受岩浆活动影响 ,矿石富含CO2 包裹体 ,均一温度 30 6~ 385℃ ,压力 0 .6~ 1.0 5GPa ,流体盐度较高 ,成矿流体可能与岩浆热液有关。  相似文献   

11.
超临界流体的地质意义   总被引:3,自引:0,他引:3  
超临界流体具有一系列特殊性质,如,临界发散性、“临界乳光”、强氧化性、可变的介电常数、较强的溶解性等。地球深部超临界流体的存在不仅影响岩石的性质,而且对地质构造演化有重要的意义,超临界流体为油气的形成提供物质和能量,同时又是热液成矿过程中元素迁移、聚集和矿石矿物赋存空间形成的重要因素,地质构造演化与超临界流体密不可分;超临界流体对地震孕育及岩浆的产生和喷发有重要影响,超临界流体技术(超临界萃取、超临界水氧化等)不但能最大限度地回收有价值的矿物,而且能有效处理“三废”。  相似文献   

12.
临界包裹体及其在金矿地质研究中的应用   总被引:1,自引:0,他引:1  
临界包裹体具有在热动力过程中气液相比不变直至均一成一个流体相的特征.它在超临界流体中,当临界体积为一定值时才能形成.它可以在各类岩浆岩、火山岩、深变质岩以及铁、铜、金等多金属矿床中出现.利用临界包裹体的临界均一温度结合该流体体系的相图,可以获得如成矿流体体系的热力学状态、流体基本组分特征、临界压力、盐度、密度等成矿物理化学信息.通过多年研究发现,临界包裹体在中国北方深变质岩区的很多金矿床都有出现,它的临界均一温度都小于纯水的临界温度(374.2℃),表明成矿早期的超临界流体是由一种低盐度CO2-H2O体系组成,它可能来自古老的深变质岩.另一种较高盐度的成矿热液来自与矿床毗邻的中生代中酸性小岩体.它们通过超临界流体成矿地质作用,形成了具有中国特色的多源多期多成因金矿床.这在包裹体冷冻法及其成分分析和包裹体水的氢氧同位素分析的结果中也得到证实.  相似文献   

13.
张荣华  胡书敏 《矿床地质》1998,17(Z6):1029-1034
NaC1-H2O二元系是与矿石共生的溶液主要成分。使用水热金刚石窗口反应腔观察饱和溶液NaC1-H2O是一种研究含矿流体新方法。实验观测的NaC1-H2O溶液盐度S为32%~55%, 观察温度范围为25~850℃ ,压力为0.1~1000 MPa。这个温度-压力范围内可以看到超临界单一相,接近临界态的两相(L、V),和两相(L+V)不混溶区。L+V二相不混溶区的高温部分内,相性质极不稳定。可观察到一种“临界现象”。并且,NaCl-H2O溶液分离成为气相和液相两相时能看到一种特殊的溶液结构。实验观察不同盐度的NaC1-H2O临界态的目的在于认识与矿石共存的流体性质,含矿流体来源和超临界流体的成矿意义。把矿床内的矿物流体包体均一温度和盐度数据与用金刚石窗口观察的高温压下NaC1-H2O二元系相变化结果相对照,再进行矿石形成条件的热力学分析,可以深入认识矿石形成条件。还可以按热液的盐浓度和温度对热液矿床进行分类,可以进一步剖析矿石成因。  相似文献   

14.
岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约   总被引:29,自引:1,他引:29  
岩浆热液过渡阶段对于与岩浆热液有关矿床的形成非常重要。以往的研究多侧重于岩浆结晶阶段和低于固相线的热液阶段过程和演化 ,但对于流体从熔体出溶到熔体最后固结过程的理解却很有限。基于流体包裹体冷热台研究、单个流体和熔体包裹体原位无损成分分析技术 ,并结合挥发份和成矿元素在共存相间分配的实验和质量平衡计算模拟 ,岩浆热液出溶和演化对金属成矿制约的研究取得了很大进展。文中从岩浆中挥发份的出溶和演化、成矿元素在岩浆热液过渡体系各相之间的分配、斑岩矿床成矿流体及与金属成矿的关系、浅成热液矿床成矿流体及与金属成矿的关系几个方面进行了阐述。研究表明 :( 1)岩浆熔体不仅含有足够的挥发性组分 ,而且出溶的挥发份能够被圈闭在流体包裹体中而成为岩浆出溶热液的实物证据。 ( 2 )挥发份和成矿元素不仅在岩浆熔体和出溶的溶液间分配 ,还将在熔体与盐水溶液、熔体与气相以及盐水溶液与气相间进行分配。Cu在岩浆蒸气中比在共存的熔体中要富集数百倍 ,而Cu ,As,Au(可能作为HS配合物 )则偏向于分配进入与液体相共存的蒸气相中。 ( 3 )成矿元素在熔体 /溶液间的分配系数受控于熔体中初始水含量与饱和水含量之比值和岩浆熔体与共存出溶水溶液的w(Cl) /w(H2 O)和w(F) /w(Cl)比值。 ( 4 )斑岩  相似文献   

15.
硅酸盐熔体和流体中金的性质及行为研究进展   总被引:1,自引:0,他引:1  
岩浆演化过程中岩浆—流体阶段发生的相转变过程控制了元素在两相之间的分配行为。作为与岩浆热液活动有密切成因联系的金矿床,其在硅酸盐熔体和流体中的性状及两相间的分配行为是控制该类矿床成矿的重要物理化学因素。介绍了金在流体、熔体中的性状,论述了其在流体/硅酸盐熔体间的分配行为不仅受温度、压力、氧逸度等物理化学条件的影响,还受流体组分(阴离子、阳离子)、熔体组成(Na2O+K2O/Al2O3,Na/K,SiO2,NBO/T)的制约;最后对目前实验研究存在的问题、改进方法以及今后的研究方向进行了探讨。  相似文献   

16.
超临界流体中MoO3与WO3溶解度实验探讨   总被引:1,自引:1,他引:1  
超临界地质流体以其独特的性质对金属成矿元素具有超强的萃取、层析和搬运能力,在热液矿床成矿机制研究中对揭示成矿物质的源、流和汇起着特殊和重要作用。本文利用分析纯H2MoO4在高温下脱水制备了MoO3(白色斜方晶系),在冷封式高压釜中实验测定了417℃超临界条件下,MoO3在纯水中的溶解度分别为7.3(29MPa)、14.2(45MPa)、21.6(55MPa)、27.7(78MPa)、32.5(100MPa)、和34.2(150MPa)mmol/l,热液中钼的存在形式为H2MoO4。依据前人的实验方案,补充测定了WO3在4.0%NaCl水溶液中于450%条件下的溶解度,其值分别为27.51(50MPa)和30.52(100MPa)mmol/l。结合前人研究结果发现,MoO3、WO3的溶解度在临界区域内具有超临界现象,在超临界条件下其溶解度与石英的超临界溶解度行为基本相似,表现为溶解度随体系温度和压力的升高而增大,这对揭示岩浆热液型和石英脉型钨、钼矿床的形成机制具有重要指导作用。  相似文献   

17.
采用电子探针显微分析(EMPA)和粉末X射线衍射(XRD)分析了采自乌拉山金矿床含金钾长石石英脉、石英脉以及其他类型岩石中的10 0多个钾长石样品的化学成分和结果状态,并采用R和Q模式聚类分析、Spearman等级相关分析方法对实验数据进行了统计分析。结果表明,含金矿脉、岩浆热液脉和蚀变花岗岩中的钾长石为中等到最大微斜长石,其特征为K2 O含量高,但相对而言,Na2 O、CaO和BaO的含量低。其他岩石类型中的钾长石的化学成分和结果状态变化很大,可以从透长石、正长石到微斜长石,其特征为K2 O的含量相对较低,但Na2 O、CaO和BaO的含量相对较高。含金样品中的钾长石通常更富K2 O ,表明金的成矿作用与富钾的热液流体和碱质交代作用有关。乌拉山金矿床的成矿作用分为两个阶段,主要的含金钾长石石英脉中的钾长石富K2 O ,形成温度为30 7~379℃,平均为35 3℃;第二阶段含金石英脉中的钾长石含K2 O较低,形成温度为2 6 0~318℃,平均为2 81℃。这些结果表明成矿流体与岩浆热液作用有关,流体朝温度降低、K2 O含量降低的方向演化,K2 O含量高的热液流体和2 6 0~380℃的形成温度有利于金的成矿作用。  相似文献   

18.
哈西金矿床位于哈萨克斯坦―准噶尔板块(Ⅰ级)唐巴勒―卡拉麦里沟弧带(Ⅱ级)西准南部扎依尔推覆体(Ⅲ级)玛依勒―哈图构造块体(Ⅳ)。通过矿床流体包裹体岩相学、显微测温学和包裹体激光拉曼光谱分析研究成矿流体性质,探讨矿床成因类型。研究结果表明,流体包裹体有气液两相、含纯液相和纯气相包裹体3种类型。气相成分以CO_2为主,其次是H_2O,总体属于CH_4-H_2O-CO_2体系;结合氢氧同位素地球化学特征(δD值为-60‰~-67.4‰;δ~(18)O值为14.3‰~16.8‰),以及稀土配分和同位素定年证据,确定本区成矿物质来于深部,成矿流体主要来源于火山-次火山岩浆热液,矿床形成于海西期具两阶段成矿特点,属中低温热液矿床。  相似文献   

19.
李腊梅 《地质与勘探》2009,45(5):502-508
马攸木金矿床是产于西藏雅鲁藏布江缝合带西段重要的独立岩金矿床。本文通过显微测温分析首次发现该矿床的富CO2流体包裹体具有临界均一的特征,成矿流体属于超临界流体。研究结果表明:成矿流体主要为低盐度的CO2-H2O超临界流体。超临界流体可能是从岩浆出溶的,这种流体萃取了围岩中的金等成矿元素。流体经历了相分离-不均一捕获-跨越临界点-大气降水加入的过程,正是由于成矿流体在跨越临界点时析出部分成矿物质,形成早期矿化体;成矿后期流体与大气降水混合最终导致矿质大量沉淀。  相似文献   

20.
胡书敏  张荣华  张雪彤 《地质学报》2006,80(10):1588-1597
地球深部流体主要是NaCl-H2O溶液,越到地球深部,它赋存的温度、压力越高,性质状态也不断变化,反之,亦然。当NaCl-H2O流体进入和脱离(上升过程)超临界状态时,其性质会发生截然不同的变化,影响着各种地质过程。使用金刚石压砧在高温高压下原位观测流体的实验,用谱学方法,结合同步辐射光源技术,成为定量化研究地球深部高温超高压流体的有效方法。作者使用同步辐射光源的红外谱研究了10GPa下的NaCl-H2O溶液;在地球化学动力学实验室研究了3GPa,650℃下的NaCl-H2O溶液红外谱,此测量方法可以提供温度压力和体积等数据,能研究其状态。NaCl-H2O溶液红外谱表明水分子主要振动谱受压力和温度影响是不同的。压力增加促使水分子主要振动谱向低波数变化。但是温度增加的效应相反。常温高压下水被压缩,结晶向紧密堆积变化。高温高压下的水有气、液、固和超临界流体各相。水分子间的氢键在近临界态开始减弱,氢键网络被破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号