首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Continental flood basalts (CFB) are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources.Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100?bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100?bar.Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40?C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 - 100?C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt.  相似文献   

2.
A simple synthesis of various forms of calcium carbonate with spherical and 'floral' morphologies is reported. Vaterite formation occurs at approximately 25 degrees C, aragonite at approximately 70 degrees C and calcite at about approximately 80 degrees C. These are produced when CO2 is reacted with an aqueous solution of calcium chloride in the presence of ammonia. These conditions may have existed at the surface of Mars in the past, leading us to conclude that such mineral formations may be common there. Although the initial phases are modified over time with changing temperature and pressure conditions, they still influence the final morphology of the carbonates observed. A comparison of these structures with those found in the Martian meteorite ALH84001 suggests, but does not confirm, a non-biogenic origin for the ALH84001 carbonates.  相似文献   

3.
《地学前缘(英文版)》2018,9(6):1945-1955
CO2 mineral sequestration (in ultrabasic or basaltic rocks) has been considered as a promising long-term and stable approach to reduce CO2 in the atmosphere and would counteract the effect of global warming. Meanwhile, clays are widely found in ultrabasic reservoirs. In our study, clays were observed in natural olivine samples, which were used for laboratory experiments in a supercritical CO2 system at 140 °C and 15 MPa. Initial olivine samples were crushed into two sizes which were large grains of ∼850–1000 μm and powder particles of ∼75–150 μm, with the durations of 400 and 1000 h for the powder and grains, respectively. The results showed amorphous silica was newly formed and this passivating layer could mitigate the water-rock interaction to some extent, but it would not play a long-term prohibited effect on secondary mineral carbonate formation as it is a Fe(III) free silica coating. More interestingly, the secondary carbonates were observed to form near the surface sites where locates more clays. Our findings provide insights into the reaction mechanisms of olivine-scCO2-water interaction process in natural ultrabasic rocks.  相似文献   

4.
The impact of CO2 sequestration on the host formation is an issue occurring over geologic time. Laboratory tests can provide important results to investigate this matter but have limitations due to a relatively short timeline. Based on literature review and core sample observation, naturally occurred geological phenomena, stylolites are studied in this paper for understanding CO2 sequestration in deep carbonate formations. Stylolites are distinctive and pervasive structures in carbonates that are related to water-assisted pressure solution. Pressure solution involving stylolitization is thought to be the main mechanism of compaction and cementation for many carbonates. In parallel, CO2 sequestration in carbonate formation involves extensive chemical reactions among water, CO2 and rock matrix, favoring chemical compaction as a consequence. An analogue between stylolites and CO2 sequestration induced formation heterogeneity exists in the sense of chemical compaction, as both pressure solution in stylolites and CO2 enriched solution in CO2 sequestration in carbonate formations may all introduce abnormal porous regions. The shear and/or tension fractures associated with stylolites zones may develop vertically or sub-vertically; all these give us alert for long-term safety of CO2 sequestration. Thus a study of stylolites will help to understand the CO2 sequestration in deep carbonate formation in the long run.  相似文献   

5.
New petrologic and bulk geochemical data for the SNC-related (Martian) meteorite ALH84001 suggest a relatively simple igneous history overprinted by complex shock and hydrothermal processes. ALH84001 is an igneous orthopyroxene cumulate containing penetrative shock deformation textures and a few percent secondary extraterrestrial carbonates. Rare earth element (REE) patterns for several splits of the meteorite reveal substantial heterogeneity in REE abundances and significant fractionation of the REEs between crushed and uncrushed domains within the meteorite. Complex zoning in carbonates indicates nonequilibrium processes were involved in their formation, suggesting that CO2-rich fluids of variable composition infiltrated the rock while on Mars. We interpret petrographic textures to be consistent with an inorganic origin for the carbonate involving dissolution-replacement reactions between CO2-charged fluids and feldspathic glass in the meteorite. Carbonate formation clearly postdated processes that last redistributed the REE in the meteorite.  相似文献   

6.
增强型地热系统(EGS)是采用人工形成地热储层的方法,从低渗透性岩体中经济地采出深层热能的人工地热系统。以CO2为载热流体的增强地热能系统(CO2-EGS)是实现CO2减排和深部地热资源开发的有效手段,系统运行时的水-岩-气相互作用对热储层孔渗特征有着重要影响,最终会影响储层的产热能力。笔者利用高温高压反应釜模拟CO2-EGS高温下的热储层-盐水-CO2的相互作用,通过对实验中反应液离子成分变化和岩样扫描电镜进行分析,结果表明:实验后的钾长石和方解石出现溶解现象,且方解石溶蚀剧烈;岩样表面出现极少量次生方解石和钠长石,并有新矿物析出,其主要组成元素为C、O、Si、Fe,为菱铁矿的中间产物。通过TOUGHREACT建立反应性溶质运移模型,模拟上述实验的化学反应过程,模拟结果和实验数据拟合较好。该研究可为CO2-EGS的水-岩-气作用机制提供地球化学数据。  相似文献   

7.
杨慧心  李春先  于淼  张曙光  李轩  张颖  刘立 《世界地质》2016,35(4):1169-1177
利用TOUGHREACT软件,根据示范工程实验区大情字井的地层条件,针对含油及非含油储层哪一条件更适宜CO_2地质储存,设置了盐水组与含油组两组方案进行对比模拟。结果显示,含油组地层水中主要离子浓度及总矿化度低于盐水组,主要固碳矿物片钠铝石的生成量和CO_2的封存量明显小于盐水组。残余油的存在降低了矿物与水溶液进行离子交换的比表面积和储层的含水饱和度,并且占据矿物沉淀空间。尽管水岩作用受限,但油藏仍然可完成CO_2地质封存,且诸多优点表明油藏仍是CO_2地质封存的有利场所。  相似文献   

8.
The interaction between CO2-rich waters and basaltic glass was studied using reaction path modeling in order to get insight into the water-rock reaction process including secondary mineral composition, water chemistry and mass transfer as a function of CO2 concentration and reaction progress (ξ). The calculations were carried out at 25-90 °C and pCO2 to 30 bars and the results were compared to recent experimental observations and natural systems. A thermodynamic dataset was compiled from 25 to 300 °C in order to simulate mineral saturations relevant to basalt alteration in CO2-rich environment including revised key aqueous species for mineral dissolution reactions and apparent Gibbs energies for clay and carbonate solid solutions observed to form in nature. The dissolution of basaltic glass in CO2-rich waters was found to be incongruent with the overall water composition and secondary mineral formation depending on reaction progress and pH. Under mildly acid conditions in CO2 enriched waters (pH <6.5), SiO2 and simple Al-Si minerals, Ca-Mg-Fe smectites and Ca-Mg-Fe carbonates predominated. Iron, Al and Si were immobile whereas the Mg and Ca mobility depended on the mass of carbonate formed and water pH. Upon quantitative CO2 mineralization, the pH increased to >8 resulting in Ca-Mg-Fe smectite, zeolites and calcite formation, reducing the mobility of most dissolved elements. The dominant factor determining the reaction path of basalt alteration and the associated element mobility was the pH of the water. In turn, the pH value was determined by the concentration of CO2 and extent of reaction. The composition of the carbonates depended on the mobility of Ca, Mg and Fe. At pH <6.5, Fe was in the ferrous oxidation state resulting in the formation of Fe-rich carbonates with the incorporation of Ca and Mg. At pH >8, the mobility of Fe and Mg was limited due to the formation of clays whereas Ca was incorporated into calcite, zeolites and clays. Competing reactions between clays (Ca-Fe smectites) and carbonates at low pH, and zeolites and clays (Mg-Fe smectites) and carbonates at high pH, controlled the availability of Ca, Mg and Fe, playing a key role for low temperature CO2 mineralization and sequestration into basalts. Several problems of the present model point to the need of improvement in future work. The determinant factors linking time to low temperature reaction path modeling may not only be controlled by the primary dissolving phase, which presents challenges concerning non-stoichiometric dissolution, the leached layer model and reactive surface area, but may include secondary mineral precipitation kinetics as rate limiting step for specific reactions such as retrieved from the present reaction path study.  相似文献   

9.
This publication provides a literature review on experimental studies of dissolution kinetics of mainly carbonates and feldspar group minerals, i.e. most common minerals at potential CO2-injection and/or storage sites. Geochemical interaction processes between injected CO2 and coexisting phases, namely reservoir and cap rock minerals and formation fluids close to the CO2-injection site can be simulated by flow-through or mixed flow reactors, while processes far from the injection site and long-term processes after termination actual CO2-injection can be mimicked by batch reactors. At sufficient small stirring rates or fluid flow rates as well as low solute concentrations flow-through reactors are also able to simulate processes far from the injection site. The experimental parameter temperature not only intensifies the dissolution process, the dominant dissolution mechanisms are also influenced by temperature. The dissolution mechanisms change from incongruent and surface controlled mechanisms at lower temperatures to congruent and transport controlled mechanisms at higher temperatures. The CO2 partial pressure has only a second order influence on dissolution behavior compared to the influence of pH-value and ionic strength of the CO2-bearing brine. Minerals exposed to CO2-bearing brines at elevated temperatures and pressures are subject of alteration, leading to severe changes of reactive surfaces and potential precipitation of secondary minerals.Computational simulations of mineral reactions at potential CO2 storage sites have therefore to include not only the time-resolved changes of dissolution behavior and hence kinetics of mineral dissolution, but also the influence of secondary minerals on the interaction of the minerals with CO2-enriched brines.  相似文献   

10.
研究矿物的晶体结构与其光学性质之间的关系,这是结构光性矿物学重要的研究内容。如何把矿物晶体结构中原子的性质及相互之间的关系应用到晶体光学中,有效地定量地解释矿物的光学参数,从而又推动晶体光学进一步发展,这是矿物学家所共同关心的问题。早在1924年布拉格就注意到方解石与文石光性的差异,并用晶体内部电场的理论进行解释。帕伯斯特(A.Pabst,1973,1974)在研究两个碳酸盐矿物的折射率时,根据布拉格的方法,计算了它们的折射度,得到了满意的结果。叶大年(1974)在论述具有氖型结构离子的化合物的折射率时,指出矿物的折射率取决于电子层结构和核电荷,而不是取决于原子量。  相似文献   

11.
我国南方岩溶区和北方黄土区的大气CO2效应   总被引:10,自引:1,他引:9  
我国南方岩溶区与北方黄土区都是巨大的碳库。碳酸盐的溶蚀及再结晶是两个碳库与大气CO2交换的重要过程;碳的区域平衡是评价化学风化消耗或逸散CO2的基础,岩溶区与黄土区在地球化学风化的环境背景。溶蚀过程,产物运移和归宿等差异很大。黄土区化学风化消耗大气CO2通量较岩溶区小。目前评价两类地区土壤与大气CO2的源汇关系尚不成熟,需要定量认识土壤CO2与下伏碳酸盐岩溶蚀或与下伏黄土次生碳酸盐化作用。岩溶区湖  相似文献   

12.
We present integrated mineralogical, geochemical, and palynological data for Late Pleistocene-Holocene bottom sediments of Lake Arakhlei located in the Beklemishev tectonic basin in the southern Vitim Plateau (central Transbaikalia). The sediment samples were studied by X-ray diffractometry (XRD), Fourier-transform infrared (FTIR) spectroscopy, laser particle sizing, spore-pollen analysis, radiocarbon (14C AMS) dating, and XRF spectrometry. The cored 128 cm long section of lake sediments consists of two units: One is composed mainly of layered silicates (illite-smectite, illite, chlorite, chlorite-smectite, muscovite, and kaolinite) and organic matter (OM) but no carbonates from 0 to 80 cm and the other contains authigenic Ca-Mg carbonates (up to 30%) of Mg-calcite and excess-Ca dolomite from 80 to 128 cm. The sediments also contain a rare mineral weddellite CaC2O42H2O discovered for the first time in Transbaikalian lakes. The evolution of Lake Arakhlei and its drainage basin comprised four stages, with pollen zones that mark the Late Pleistocene and Holocene climate history of the Beklemishev basin. The reconstructed history of Lake Arakhlei for the past ~ 15,500 years followed general climatic changes in the Northern Hemisphere. Thus, integrated research, including detailed analysis of mineral components and spore-pollen assemblages in lake sediments, is a workable tool for studying climatic controls of continental sedimentation.  相似文献   

13.
Listwanite from the Luobusa ophiolite,Tibet,forms a narrow,discontinuous band along the eastern part of the southern boundary fault. We undertook a detailed petrographic and geochemical study to understand the mineral transformation processes and the behaviour of major and trace elements during listwanite formation. Three alteration zones characterized by distinct mineral components and texture are recognized and,in order of increasing degree of alteration,these are: zoneIII is rich in serpentine minerals; zoneII is rich in talc and carbonates; and zoneI is mainly composed of carbonates and quartz. Geochemical data for the three alteration zones show significant modification of some major and trace elements in the protolith,although some oxides show linear correlations with Mg O. Gold mineralization is recognized in the Luobusa listwanite and may signify an important target for future mineral exploration. Gold enrichment occurs in both zoneI and zoneIIand is up to 0.91 g/t in one sample from zoneI. We show that CO2-rich hydrothermal fluids can modify both the occurrence and composition of chromite grains,indicating some degree of chromite mobility. Low-Cr anhedral grains are more easily altered than high-Cr varieties. The compositions of chromite and olivine grains in the listwanite suggest a dunite protolith.  相似文献   

14.
形成于中低温条件下的绢云母不仅仅分布于火成岩,变质岩中,而且在盆地砂岩中也有赋存,大量前人文献证实砂岩中绢云母的形成与热流体有关。本文以海拉尔盆地乌尔逊凹陷乌19井南屯组和铜钵庙组砂岩中绢云母为例,选取26个有代表的薄片做岩石学分析,绢云母质量分数介于1%~17%之间,产状主要以充填孔隙为主。与绢云母共生的自生矿物间的共生序列为:菱铁矿、钠长石、方解石、绢云母、白云石。研究发现凹陷内燕山期花岗岩造成盆地内局部高地温梯度异常,为绢云母形成提供热源。结合近几年对绢云母矿及金矿的研究,得出绢云母的形成还与CO2注入有关,是含CO2的水作用于碱铝硅酸盐矿物,在中或中低温条件下形成。  相似文献   

15.
Qiongdongnan Basin has a tectonic geological background of high temperature and high pressure in a deep reservoir setting,with mantle-derived CO2.A water-rock reaction device was used under high temperature and high pressure conditions,in conjunction with scanning electron microscope(SEM)observations,to carry out an experimental study of the diagenetic reaction between sandstone at depth and CO2-rich fluid,which is of great significance for revealing the dissolution of deep clastic rock reservoirs and the developmental mechanism of secondary pores,promoting deep oil and gas exploration.In this study,the experimental scheme of the water-rock reaction system was designed according to the parameters of the diagenetic background of the deep sandstone reservoir in the Qiongdongnan Basin.Three groups of single mineral samples were prepared in this experiment,including K-feldspar samples,albite samples and calcite samples.Using CO2 as a reaction solution,a series of diagenetic reaction simulation experiments were carried out in a semi-closed high temperature and high pressure simulation system.A field emission scanning electron microscope(SEM)was used to observe the microscopic appearance of the mineral samples after the water-rock reaction,the characteristics of dissolution under high temperature and high pressure,as well as the development of secondary pores.The experimental results showed that the CO2-rich fluid has an obvious dissolution effect on K-feldspar,albite and calcite under high temperature and high pressure.For the three minerals,the main temperature and pressure window for dissolution ranged from 150℃to 300℃and 45 MPa to 60 MPa.Scanning electron microscope observations revealed that the dissolution effect of K-feldspar is most obvious under conditions of 150℃and 45 MPa,in contrast to conditions of200℃and 50 MPa for albite and calcite.Through the comparative analysis of experimental conditions and procedures,a coupling effect occurred between the temperature and pressure change and the dissolution strength and calcite.Under high temperature and high pressure,pressure changed the solubility of CO2,furthermore,the dissolution effect and strength of the sandstone components were also affected.The experiment revealed that high temperature and high pressure conditions with CO2-rich fluid has a significant dissolution effect on aluminosilicate minerals and is conducive to the formation of secondary pores and effective reservoirs.Going forward with the above understanding has important implications for the promotion of deep oil and gas exploration.  相似文献   

16.
CO_2流体与储层砂岩相互作用机理实验   总被引:1,自引:0,他引:1  
储存于地下岩层中的CO2与矿物发生化学反应导致次生碳酸盐矿物的沉淀,CO2将以碳酸盐矿物的形式长时间地固结在储层岩石中,从而有效减少CO2向大气中的排放。通过对不同温度下CO2-H2O-砂岩相互作用机理的研究,以及反应后样品的扫描电镜观察、质量损失量和剩余反应液中总矿化度变化的分析发现:砂岩样品的溶蚀程度随温度的升高而逐渐增强;100℃和175℃时样品表面分别有方解石和白云石生成,250℃时新生成的矿物因温度过高而溶解。这表明CO2能够以碳酸盐矿物的形式固定在矿物中,175℃为本实验所证明较适合的贮存温度。  相似文献   

17.
Continental flood basalts (CFB) are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources. Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100?bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100?bar. Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40?C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 ?C 100?C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt.  相似文献   

18.
伴生碳酸盐矿物在海底与天然气水合物伴生是一种普遍现象,但在陆上冻土区中报道较少。以近两年在祁连山冻土区发现天然气水合物伴生的碳酸盐矿物为研究对象,根据对含碳酸盐样品的显微镜观察及矿物分析,确定了伴生碳酸盐的矿物种属及赋存状态。按碳酸盐矿物组成及地质产状的不同,其赋存状态分成4种类型,即白色薄层状、烟灰色菱形晶簇状、深灰色薄壳状、微细浸染状。根据不同赋存形态碳酸盐的C、O同位素特征,认为烟灰色菱形晶簇状方解石或呈(云烟状)微晶方解石可能与天然气水合物分解有关。碳酸盐C、O同位素随深度变化特征表明在一定深度处可能存在着烃类物质的活动,即天然气水合物分解,导致碳酸盐的矿物生成。  相似文献   

19.
山东昌乐新生代玄武岩内的刚玉巨晶(蓝宝石)中含有多种类型熔融包裹体,其成分对了解华北深部地幔交代过程中的流/熔体性质和刚玉母岩浆特点具有重要意义.详细的岩相学和激光拉曼分析鉴定出一类富碳酸盐和硫酸盐成分的原生熔融包裹体以及一类含硫酸盐和氯化物等成分的次生熔融包裹体,二者同时还含有CO2和H2O.碳酸盐和硫酸盐成分在世界范围玄武岩内刚玉巨晶中是首次发现,结合已有的包裹体稀有气体同位素和测温资料,反映两种成分可能来源于交代地幔的碳酸岩熔体,预示着华北深部地幔不仅经历了硅酸盐成分的交代还经历了富碳酸盐和硫酸盐成分(碳酸岩)的交代,同时也显示刚玉母岩浆成分复杂,至少有富这两类成分物质的参与,刚玉很可能是硅酸盐岩浆/岩石和幔源碳酸岩岩浆相互作用的产物,后被玄武岩喷发携带至地表.  相似文献   

20.
Abstract: The physicochemical environment during the ore formation of the Mozumi skarn-type Pb–Zn–Ag deposit, Kamioka mine, Central Japan is discussed with silicate phase equilibria using calculated phase diagrams. The mineral assemblages, mineral chemistry, and fluid inclusion data are coupled with thermodynamic calculation to estimate the stability fO2–XCO2condition of the mineral assemblages at each ore formation stage. The skarn was approximated by the model system CaO–A12O3–FeO–SiO2–O2–CO2–H2O including grossular-andradite garnet and clinozoisite-epidote solid solutions. The solid solutions are combined into the calculation using "pseudocompound approximation", and real boundary of the mineral assemblages other than simple activity corrected diagram was provided. The diagrams also show isoplethal contour for garnet and epidote.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号