首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
青藏铁路多年冻土工程地质特征及其评价   总被引:1,自引:0,他引:1  
青藏高原多年冻土是地质历史时期高海拔寒冷气候条件下的产物,也是青藏铁路建设的三大难题之一;而多年冻土工程地质特征及其评价工作是作出合理、可靠的工程设计的基础。结合青藏铁路沿线多年冻土区的15个地形地貌分区,在青藏铁路多年冻土区选择了70个典型断面进行了地质勘查,采用地质钻探和室内试验相结合的方法,研究了各区的工程地质特征并对其工程地质类型进行了评价。研究表明:青藏铁路多年冻土区冻土类型多样,高含冰量冻土、厚层地下冰广泛分布,不同区段地温差异性较大,工程地质条件复杂多变,良好、一般、不良和极差的工程地质区段交错分布。  相似文献   

2.
多年冻土是气候条件控制的特殊地质体,气温升高和降水条件变化将对青藏铁路沿线的多年冻土产生深刻影响.从全球气温变化背景和青藏高原气候变化的实际情况出发,分析和论述了气候变化对青藏铁路沿线多年冻土地温特征及冻土区工程建筑物的可靠性产生缓慢而持续影响的气温变化指标.通过对冻土区工程设计原则和工程结构、工程措施可靠性产生重大影响的气温变化特征的分析,提出对目前冻土工程可靠性的看法,并提出应对工程措施.  相似文献   

3.
青藏铁路多年冻土区工程复杂性分析   总被引:1,自引:1,他引:1  
青藏铁路穿越550km多年冻土区,多年冻土地温、冻土类型以及沿线生态环境等存在较大的差异,使多年冻土区工程较为复杂。因此本文提出了冻土工程复杂性概念,建立冻土工程复杂性评价模型,并利用GIS平台对青藏铁路沿线唐古拉山越岭地段工程复杂性进行了分析和研究。研究结果表明,青藏铁路穿越的唐古拉山越岭地段工程复杂性相对较小,而青藏公路的工程复杂性相对较大。这表明了青藏公路沿线冻土工程比青藏铁路沿线更为复杂,在各种因素的影响下,青藏公路路基稳定性变化比青藏铁路更加复杂。  相似文献   

4.
工程作用和气候转暖影响加剧了工程下部多年冻土的退化,导致冻土工程稳定性发生显著变化。本文从气候转暖和工程活动下多年冻土变化和冻融灾害的视角探讨了气候转暖与工程稳定性的关系,给出了青藏高原气候转暖下活动层厚度、冻土温度等变化和青藏公路和青藏铁路工程下部多年冻土上限、冻土温度和路基变形等特征。同时,系统梳理了青藏高原冻土工程防治冻土融化的工程技术措施,讨论了未来气候变暖下青藏高原多年冻土的变化特征及其对冻土工程服役性的影响。青藏高原多年冻土在过去数十年来发生了不同程度的退化,工程作用加速了工程下部多年冻土退化,严重影响工程稳定性。青藏铁路采取了冷却路基、降低多年冻土温度的技术措施,但冻土工程仅能适应气候变暖1 ℃的情况。未来气候变暖1.5 ℃,青藏铁路冻土工程的补强措施需尽早谋划。  相似文献   

5.
青藏公路沿线多年冻土对气候变化和工程影响的响应分析   总被引:10,自引:5,他引:5  
青藏公路沿线工程和气候变化影响下多年冻土变化监测表明,多年冻土对工程活动和气候变化的响应过程存在着较大差异,不同年平均地温的多年冻土使这种差异变得更为明显.分析结果表明:气候变化下低温多年冻土变化要大于高温多年冻土,工程状态下低温多年冻土变化要小于高温多年冻土;气候变化引起的低温多年冻土变化要大于工程对其的影响,而高温多年冻土正好相反.造成这一结果原因主要是由于在工程建设完成初期,相对于气候影响,工程作用对多年冻土的影响具有放大作用,这使得工程状态下多年冻土对气候变化基本没有响应.按照气候影响下多年冻土温度年变化速率来推测,低温多年冻土表面温度升温到工程状态需要50a左右时间,高温多年冻土需要20a左右.6m深的低温多年冻土温度升温到工程状态需要20a,高温多年冻土仅需要5~8a.  相似文献   

6.
格尔木拉萨成品油管线穿越青藏高原腹地多年冻土区,沿线气候严寒、冻土工程地质条件复杂.几十年来,气候变暖和人类活动已经对管道沿线的冻土环境产生了显著影响.总结了自运营以来格拉管道出现的冻土工程问题及管道沿线的生态环境问题,并就各种问题给出了相关措施和建议.同时,提出了该区管道建设和寒区环境研究的方向应包括加强管道内外检测、对管道进行风险评价、提高管道自动化管理水平、建立冻土长期监测体系以及保护沿线的生态环境等.  相似文献   

7.
1976—2010年青藏铁路沿线多年冻土区降水变化特征   总被引:8,自引:5,他引:3  
针对青藏铁路穿越的多年冻土区段,利用沿线多年冻土区的五道梁、风火山、沱沱河、安多气象站1976—2010年35a的降水量观测资料,并结合同时期地面温度和气温资料,对多年冻土区区域气候变化进行分析,揭示了多年冻土区近35a来降水、地面温度、气温都在波动中上升的变化特征.结果表明:近10a多年冻土区处在丰水期,多年冻土区气...  相似文献   

8.
黄双林  苏新民 《冰川冻土》2003,25(Z1):104-107
结合青藏铁路多年冻土隧道的设计, 通过对多年冻土特殊性、寒区隧道病害及冻胀机理的分析, 提出了多年冻土隧道设计中应用隔热保温技术的思路.  相似文献   

9.
路基施工对青藏高原多年冻土的影响   总被引:2,自引:2,他引:0  
青藏高原上施工会扰动其下多年冻土的存在状态. 近些年来, 高原上相继修建的大量的线性工程, 这些大型工程的建设必将进行多年冻土区的开挖和夯填, 从而会引起下伏多年冻土的结构发生很大变化. 研究了路基施工对青藏高原多年冻土的影响, 并以青藏铁路、青藏公路沿线典型实例进行分析. 结果表明: 开挖施工扰动最大, 可引起斜坡失稳滑塌、地表积水和热融湖塘等;填土路堤会引起其下伏多年冻土升温, 路基两侧形成的小气候往往起着提高地面温度的作用;挡水、排水设施施工也会导致多年冻土上限下降, 地表沉陷. 可见, 填土路基、开挖、地表工程扰动都会导致多年冻土发生变化, 这些冻土变化对路基稳定必将构成威胁.  相似文献   

10.
青藏铁路多年冻土区含融化夹层路基的热状态   总被引:1,自引:1,他引:0  
基于青藏铁路K1496+750监测断面含融化夹层路基长达10 a的地温监测数据,分析了在气候转暖及工程活动下天然场地及路基左右路肩下多年冻土热状态年变化过程、融化夹层的年变化过程及其对多年冻土热状态的影响。结果表明:监测断面天然场地、左右路肩下多年冻土上限逐年下降,热稳定性逐年降低;观测期内,左路肩下发育有融化夹层,融化夹层厚度在波动中呈增厚趋势,且其增厚主要是由多年冻土人为上限下降所致,而天然场地及右路肩下未发育融化夹层;多年冻土上限附近土体热积累显著,进而导致多年冻土上限逐年下降及其附近土体温度逐年升高,弱化了多年冻土的热稳定性;后期增加的块石护坡和热管两种具有“主动冷却”效能的工程补强措施很好的改善了路基的热稳定性,右路肩经工程补强措施后,多年冻土人为上限得到显著抬升,热稳定性得到显著改善,而左路肩由于融化夹层的存在,工程补强措施仅仅维持了当前多年冻土热状态,融化夹层的存在一定程度上弱化了工程补强措施所产生的冷却效能。  相似文献   

11.
青藏铁路多年冻土区桩基础施工中的混凝土温度控制问题   总被引:2,自引:1,他引:1  
马辉  廖小平  赖远明 《冰川冻土》2005,27(2):176-181
简要介绍了青藏铁路沿线多年冻土的工程特性和分布情况及其与桩基础工程间的相互影响,论述了在青藏铁路高原多年冻土区施工环境下, 被广泛应用的钻孔灌注桩在施工过程中的混凝土温度控制问题. 讨论了影响桩基回冻时间的各种因素以及混凝土入模温度控制在其中所占的地位, 提出了对青藏铁路相关施工规范中桩基混凝土部份温度指标进行适当调整的建议.  相似文献   

12.
大兴安岭北部多年冻土监测进展   总被引:13,自引:10,他引:3  
大兴安岭北部是我国多年冻土最为发育的地区之一, 多年冻土的存在和分布受植被、积雪等局地因素的影响十分显著, 形成了独特的兴安-贝加尔型多年冻土. 随着该区社会经济的发展, 多年冻土对寒区环境以及工程生产活动的影响越来越大. 近几年来逐步在大兴安岭北部建立了以多年冻土为主要研究对象的监测网络, 包括多年冻土地温监测网络、自动气象站、雪特性观测系统、活动层温度-水分观测系统以及地面融沉监测断面, 获得了一系列有意义的数据和成果. 做好大兴安岭北部多年冻土及其周围植被、气候及冻土灾害的监测具有重要的基础性和前瞻性科学价值.  相似文献   

13.
青藏铁路多年冻土区工程长期监测系统   总被引:9,自引:4,他引:5  
于晖  吴青柏  刘永智 《冰川冻土》2008,30(3):475-481
青藏铁路穿越了大片连续多年冻土地区, 建设中采取了冷却路基的设计思路, 采用了大量特殊的工程技术措施. 为了解工程和气候作用下冻土变化过程以及路基稳定性与冻土变化关系, 在青藏铁路沿线布设了44个路基监测断面进行地温监测和路基表面的变形监测, 同时开发了青藏铁路长期监测系统软件, 负责数据的存储、分析工作, 其中地温监测数据通过青藏铁路专用网络GSM-R实现了远程传输. 该系统的建立为进一步开展冻土相关研究工作提供了基础数据, 也为路基稳定性预警提供了科学依据.  相似文献   

14.
在2005-2007年期间,先后3次对中国-俄罗斯原油管道漠河-大庆段沿线的冻土工程地质条件等进行科学考察,开展了冻土工程地质条件及其在气候变化和人类活动作用下的评价和预测研究.考察研究结果表明:管道沿线多年冻土在各类融区、季节冻土和水系等分隔作用下呈片状或岛状分布,沿线岛状、稀疏岛状及零星岛状占多年冻土区段的40%左右;管道沿线多年冻土随着气候的转暖和人类活动的影响不断退化.地形地貌单元、植被分布、地表水分条件的变化等局部因素对多年冻土的分布和地下冰的赋存产生重要的影响,管道沿线大约分布有50 km左右的沼泽湿地,其表层为腐殖质土及泥炭层,泥炭层下面分布着含土冰层或地下冰,是管道沿线最差的冻土工程地质地段;由于中俄原油管道沿线水系发育多,冻胀丘、冰椎和冰幔等不良冻土现象广泛分布.科学考察的成果为管道沿线冻土工程地质条件评价和预测、管道的稳定性影响分析以及后期的长期检测系统设置等研究奠定坚实的基础,进一步为即将开工的中俄原油管道漠河-大庆段工程的设计、施工提供科学依据.  相似文献   

15.
青藏铁路多年冻土工程的研究与实践   总被引:29,自引:11,他引:18  
孙永福 《冰川冻土》2005,27(2):153-162
青藏铁路建设需穿越高原多年冻土区, 在探明沿线多年冻土分布特征的基础上, 合理确定了青藏铁路线路的走向方案.在多年的冻土研究和工程实践的指导下, 有针对性地开展了 5 个不同类型冻土工程试验研究, 取得重要科研成果, 指导设计和施工.全面总结4 a来青藏铁路多年冻土工程的研究与实践, 提出了“主动降温, 冷却地基, 保护冻土”的设计思想, 制定了路基、桥涵、隧道成套工程技术措施和先进施工工艺, 对确保多年冻土工程质量发挥了重要作用.  相似文献   

16.
青藏铁路普通路基下部冻土变化分析   总被引:5,自引:2,他引:3  
吴青柏  刘永智  于晖 《冰川冻土》2007,29(6):960-968
高温高含冰量冻土地区,青藏铁路采取了冷却路基、降低多年冻土温度的工程措施.然而青藏铁路仍有大量路段未采用任何工程措施,因此修筑普通路基后冻土变化也是普遍关心的问题.根据青藏铁路普通路基下部土体温度监测的近期结果,分析了季节冻土区、已退化多年冻土区和多年冻土区路基下部冻土变化特征.结果表明,不同区域修筑普通路基,其下部土体温度、最大季节冻结深度、多年冻土上限等存在较大的差异.在季节冻土和已退化多年冻土区,右路肩下部(阴坡)已形成冻土隔年层;在多年冻土强烈退化区,其路基下部形成融化夹层;在高温多年冻土区,其路基下部上限存在抬升和下降,上限附近土体温度有升高的趋势.在低温多年冻土区,其路基下部上限全部抬升,上限附近土体存在"冷量"积累,有利于路基下部多年冻土热稳定性.因此,低温多年冻土区修筑普通路基后,冻土变化基本是向着有利于路基稳定性的方向发展,在其它地段修筑普通路基,冻土变化是向着不利于路基稳定性的方向发展的.特别是阴阳坡太阳辐射差异,导致了土体热状态和多年冻土上限形态产生较大的差异,这种差异将会对路基稳定性产生一定的影响.  相似文献   

17.
隔热保温技术在多年冻土隧道中的应用   总被引:1,自引:0,他引:1  
苏新民 《冰川冻土》2003,25(8):104-107
结合青藏铁路多年冻土隧道的设计,通过对多年冻土特殊性、寒区隧道病害及冻胀机理的分析,提出了多年冻土隧道设计中应用隔热保温技术的思路。  相似文献   

18.
首届亚洲冻土大会于2006年8月5~16日在兰州、青藏线和拉萨顺利召开.大会讨论主要包括以下5个议题:1)冻土工程;2)山区和高原冻融灾害及冰缘环境;3)冰冻圈的气候与环境条件;4)冻土水文、寒区水资源及土地利用,和;5)冻土监测、制图及模拟.国内论文大多集中于青藏铁路各种科技创新和工程(示范)建设方面.中亚冻土分类、制图和监测研讨会明确了制定统一的中亚地区冻土图的计划和实施方案.会议期间,国内主要新闻媒体对全球15位著名冻土学家进行了联合采访.大约80位中外代表参加了青藏(公)铁路沿线考察,并于8月15日在拉萨举行青藏铁路工程和环境问题讨论会.专家一致认为,青藏铁路所采取的冻土工程措施基本上是恰当、有效的,能够保证青藏铁路路基的长期稳定性.但是,沿线寒区环境保护问题还任重道远,需要尽快进行综合管(治)理,以达到青藏地区社会经济和谐、持续发展的目标.  相似文献   

19.
牛富俊 《冰川冻土》2002,24(2):205-205
中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室第三届学术委员会第二次会议于2002年4月17—18日在兰州召开.来自全国各地的14名委员就实验室科研、管理、人才培养工作进行了认真地研究讨论,并于会间听取了程国栋院士等做的关于青藏铁路工程与多年冻土相互作用及其环境效应的学术报告.  相似文献   

20.
青藏铁路沿线多年冻土区地温场变化规律   总被引:19,自引:6,他引:13  
青藏铁路通过约550km的多年冻土区,统计和分析青藏高原多年冻土分布区主要气象台站的资料可以看出,近30a来高原多年冻土区的气候变化总的趋势是向着气温升高的方向发展的,气温的变化对多年冻土热状态的扰动主要表现在地温场的变化上.30多年来高原气温升高0.45℃左右,并引起冻土地温平均升高了0.2~0.3℃.分析青藏铁路通过的多年冻土地区典型地段测温孔资料,发现多年来气候转暖已经使冻土上部(20m以上)地温明显升高,影响深度已经波及到了40m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号