首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
431 oriented samples were collected from 27 dolerite dykes at 17 sites, belonging to 2.95, 2.65, and 1.90 Ga swarms, that trend SE, E and NE, respectively from the Bushveld Igneous Complex into the eastern Kaapvaal Craton (ages determined by Olsson et al., 2010; Olsson in Söderlund et al., 2010). Samples were analyzed for paleomagnetism and also anisotropy of magnetic susceptibility (AMS). For the 2.95 Ga SE-trending dykes high temperature/coercivity ‘P’ component has unblocking temperatures up to 590 °C and coercivity 40–90 mT and demonstrate SSW declination and intermediate positive inclination. Based on positive contact and conglomerate tests we argue for a primary origin of this component. The paleopole (BAD), calculated from ‘P’ component, does not correspond to any of the previously obtained Archean–Paleoproterozoic paleopoles for the Kaapvaal Craton, and represents a new key pole for 2.95 Ga. The high-coercivity ‘H’ component for the 2.65 Ga-old E-trending dykes has a SSW declination and steep positive inclination. Paleomagnetic pole (RYK), recalculated from this component, is close to the paleopoles, obtained by Wingate (1998) and Strik et al. (2007) for 2.78 Ga Ventersdorp volcanics. The third group, NE-trending dykes of the 1.90 Ga Black Hill swarm demonstrate an ‘M’ component with dual polarity high-coercivity component with SSE-declination and negative intermediate inclination. The paleopole (BHD), calculated from this component is close to the 1.87 Ga pole of the Kaapvaal Craton obtained by Hanson et al. (2004). Overprint directions include a very well developed thermo-chemical overprint (Dec = 329° Inc = −36°), which is believed to be associated with a ∼0.18 Ga regional ‘Karoo’ thermal event.  相似文献   

2.
The Archean basement in the northeastern part of the Kaapvaal craton is intruded by a large number of mafic dykes, defining three major dyke swarms, which collectively appear to fan out from the Bushveld Complex. Herein we present U–Pb baddeleyite ages for two of these dyke swarms, the northwest trending Badplaas Dyke Swarm and the east-west trending Rykoppies Dyke Swarm, and infer their correlation with tectonic events in the Kaapvaal craton. We also present a U–Pb baddeleyite age for a noritic phase of the Marginal Zone of the Rustenburg Layered Suite (Bushveld Complex).  相似文献   

3.
Two major swarms of early Proterozoic (ca. 2.1 Ga) basic dykes occur within the Archaean craton of southern West Greenland. One swarm comprises ophitic and sub-ophitic tholeiitic dolerites, while the other (the BN dyke swarm) constitutes mainly norites in which pyroxenes and olivine are enclosed by plagioclase oikocrysts. The close geochemical similarity between a quenched norite and the coarser-grained varieties indicates that the composition of the latter type has not been significantly modified by crystal accumulation. The BN dykes are geochemically distinctive, most having high MgO (ca. 16%), Cr and Ni contents in conjunction with relatively high SiO2, light rare-earth (REE) and large ion lithophile (LIL) element concentrations. The texture, mineral chemistry and petrochemistry of the quenched noritic dyke all bear strong resemblances to those features in modern boninitic lavas. The BN dykes also correspond to proposed parental liquids of the Bushveld Complex and other major layered basic igneous intrusions. The two dyke swarms are petrogenetically distinct. The tholeiitic dolerites were derived from a relatively undepleted, primordial mantle while the noritic dykes originated from a metasomatized harzburgitic source. The wide-spread distribution of similar Proterozoic intrusions suggests crustal underplating by harzburgitic mantle on a world-wide scale at this time.  相似文献   

4.
Several mafic dyke swarms of similar composition and age (tholeiite- ca.1.0 Ga) occur on both sides of the Atlantic Ocean in eastern South America and western Africa. When assembled to their pre-drift position in the Mesozoic, the Brazilian coastal dyke province of Bahia, and the African dykes in Cameroun (Ebolowa suite) and Congo (Comba and Sembe-Ouesso provinces) define a giant radiating pattern (1200 km × 800 km) similar to other dyke swarms elsewhere associated with large-scale continental rifting. Magma flow indicators of the Brazilian dykes and branching propagation styles of their African counterparts indicate that the dyke conduits were fed with magmas diverging from a source beneath the long axis of the Meso-Neoproterozoic West-Congolian Basin in Africa. There, MORB-like metabasalts have been described in the La Bikossi Group of the Mayombian Supergroup. Whether the rifting event and intrusion of dyke swarms were triggered or not by a mantle plume beneath part of the Rodinia subcontinental lithosphere remain to be confirmed.  相似文献   

5.
We present baddeleyite U–Pb ages of Neoarchaean to Palaeoproterozoic dyke swarms and the Mashonaland sill province in Zimbabwe. The 2575.0 ± 1.5 Ma age of the Umvimeela dyke is indistinguishable from the 2575.4 ± 0.7 Ma result (Oberthür et al., 2002) for a pyroxenite layer of the Great Dyke and testifies to synchronous emplacement of the Great Dyke and its satellites. Three samples of WNW- to NNW-trending dykes of the Sebanga swarm yielded ages of 2512.3 ± 1.8 Ma, 2470.0 ± 1.2 Ma and 2408.3 ± 2.0 Ma, the latter of which dates the Sebanga Poort Dyke of this swarm. These results suggest that emplacement took place over a protracted period which involved at least three generations of dykes within the swarm and, more importantly, invalidate previous inferences of a genetic link between the Sebanga swarm and the Mashonaland sills. Crystallisation ages of 1877 ± 2.2 Ma, 1885.9 ± 2.4 Ma and 1875.6 ± 1.6 Ma for three dolerite samples of the extensive Mashonaland sills from different parts of the Zimbabwe craton were also obtained. This is the oldest common igneous event that is recorded in the Zimbabwe and Kaapvaal cratons. Collectively with previous published geochronological and petrological evidence in favour of a major 2.0 Ga event within the Limpopo Belt, these results suggest that the Zimbabwe and Kaapvaal cratons did not form a coherent unit (Kalahari) until ca. 2.0 Ga.  相似文献   

6.
S.H. Richardson  S.B. Shirey  J.W. Harris   《Lithos》2004,77(1-4):143-154
Major element and Re–Os isotope analysis of single sulfide inclusions in diamonds from the 240 Ma Jwaneng kimberlite has revealed the presence of at least two generations of eclogitic diamonds at this locality, one Proterozoic (ca. 1.5 Ga) and the other late Archean (ca. 2.9 Ga). The former generation is considered to be the same as that of eclogitic garnet and clinopyroxene inclusion bearing diamonds from Jwaneng with a Sm–Nd isochron age of 1.54 Ga. The latter is coeval with the 2.89 Ga subduction-related generation of eclogitic sulfide inclusion bearing diamonds from Kimberley formed during amalgamation of the western and eastern Kaapvaal craton near the Colesberg magnetic lineament.

The Kimberley, Jwaneng, and Premier kimberlites are key localities for characterizing the relationship between episodic diamond genesis and Kaapvaal craton evolution. Kimberley has 3.2 Ga harzburgitic diamonds associated with creation of the western Kaapvaal cratonic nucleus, and 2.9 Ga eclogitic diamonds resulting from its accretion to the eastern Kaapvaal. Jwaneng has two main eclogitic diamond generations (2.9 and 1.5 Ga) reflecting both stabilization and subsequent modification of the craton. Premier has 1.9 Ga lherzolitic diamonds that postdate Bushveld–Molopo magmatism (but whose precursors have Archean Sm–Nd model ages), as well as 1.2 Ga eclogitic diamonds. Thus, Jwaneng provides the overlap between the dominantly Archean vs. Proterozoic diamond formation evident in the Kimberley and Premier diamond suites, respectively. In addition, the 1.5 Ga Jwaneng eclogitic diamond generation is represented by both sulfide and silicate inclusions, allowing for characterization of secular trends in diamond type and composition. Results for Jwaneng and Kimberley eclogitic sulfides indicate that Ni- and Os-rich end members are more common in Archean diamonds compared to Proterozoic diamonds. Similarly, published data for Kimberley and Premier peridotitic silicates show that Ca-rich (lherzolitic) end members are more likely to be found in Proterozoic diamonds than Archean diamonds. Thus, the available diamond distribution, composition, and age data support a multistage process to create, stabilize, and modify Archean craton keels on a billion-year time scale and global basis.  相似文献   


7.
The mafic dyke swarms are important feature of the Proterozoic and in parts of some stabilised cratonic areas. The early Proterozoic Bundelkhand massif of Central India is extensively intruded by suites of NW-SE and NE-SW trending mafic and ultramafic dykes. These dykes are mostly dolerites with subordinate pyroxenite, or lamproites, moreover, geochemical signatures of the two compositional types are different for the NW-SE and NE-SW trending suites. 40Ar/39Ar age determinations of the dolerite dykes suggest two phases of dyke activity at c.2150Ma and c.2000 Ma in this region. The dolerites are typically tholeiites and quartz normative types represented by Group I and Group II, whilst the ultramafics are komatiite or basaltic komatiite in composition and show an olivine-normative character. Rare earth element (REE) patterns show some enrichment of LREE and exhibit both positive and negative Eu anomalies. Most of the tholeiites display incompatible elements patterns indicative of an enriched mantle source, whilst those of the ultramafics indicate a depleted source. The 2 Ga event is a global event and well documented in various parts of Singhbhum, Aravalli terrane, Tamilnadu, Andhra Pradesh and Kerala regions of Indian Peninsular Shield and many parts of globe. The genesis of these dyke swarms clearly constitutes a major thermal event affecting the Earth's mantle during that period.  相似文献   

8.
The structural organization of a giant mafic dyke swarm, the Okavango complex, in the northern Karoo Large Igneous Province (LIP) of NE Botswana is detailed. This N110°E-oriented dyke swarm extends for 1500 km with a maximum width of 100 km through Archaean basement terranes and Permo-Jurassic sedimentary sequences. The cornerstone of the study is the quantitative analysis of N>170 (exposed) and N>420 (detected by ground magnetics) dykes evidenced on a ca. 80-km-long section lying in crystalline host-rocks, at high-angle to the densest zone of the swarm (Shashe area). Individual dykes are generally sub-vertical and parallel to the entire swarm. Statistical analysis of width data indicates anomalous dyke frequency (few data <5.0 m) and mean dyke thickness (high value of 17 m) with respect to values classically obtained from other giant swarms. Variations of mean dyke thicknesses from 17 (N110°E swarm) to 27 m (adjoining and coeval N70°E giant swarm) are assigned to the conditions hosting fracture networks dilated as either shear or pure extensional structures, respectively, in response to an inferred NNW–SSE extension. Both fracture patterns are regarded as inherited brittle basement fabrics associated with a previous (Proterozoic) dyking event. The Okavango N110°E dyke swarm is thus a polyphase intrusive system in which total dilation caused by Karoo dykes (estimated frequency of 87%) is 12.2% (6315 m of cumulative dyke width) throughout the 52-km-long projected Shashe section. Assuming that Karoo mafic dyke swarms in NE Botswana follow inherited Proterozoic fractures, as similarly applied for most of the nearly synchronous giant dyke complexes converging towards the Nuanetsi area, leads us to consider that the resulting triple junction-like dyke/fracture pattern is not a definitive proof for a deep mantle plume in the Karoo LIP.  相似文献   

9.
The Rio de La Plata craton in Argentina (Azul and Tandil regions)is characterized by Early Proterozoic (2·0 Ga) calc-alkalineand Middle Proterozoic (1·6 Ga) tholeiitic dyke swarmsintruding the crystalline basement involved in the TransamazonianOrogeny (2·2–1·9 Ga). The calc-alkalinedykes have andesitic and rhyolitic compositions and trend east–west,whereas the tholeiitic dykes mainly trend N30°W and arerepresented by basalts with low (0·9–1·7wt %) and high TiO2 (up to 3·7 wt %). The calc-alkalinedykes have primitive mantle (PM)-normalized trace element patternsenriched in Rb, Ba, K, La, Ce and Nd, and significant negativeNb and Ti anomalies. These dykes are characterized by  相似文献   

10.
: Early Proterozoic (2.0–2.4 Ga), unmetamorphosed mafic dykes intrude Archean (3.1–2.7 Ga) terrains of the northern Sao Francisco craton (Uaua, NE-Brazil). The dykes are composed of evolved [atomic Mg/(Mg+Fe2)<0.6] two-pyroxene quartz tholeiites, the compositional variations of which are compatible with gabbro fractionation from different parental melts. The incompatible trace-element patterns indicate that the parental melts derived from partial melting of chemically heterogeneous garnet peridotite sources. Geochemistry and Sr-Nd isotopes imply some contamination of the Uaua dyke magma by continental crustal components during emplacement. Sr-isotopes suggest that the “uncontaminated” dykes may be related to time-integrated depleted mantle materials, while Nd-isotopes suggest mantle sources similar to the bulk Earth composition. The “uncontaminated” dykes have a positive Nb-anomaly and incompatible element contents which do not support appreciable enrichment of large ion lithophile and light rare earth elements in the source(s) throughmantle metasomatism and/or crustal components related to dehydration of a subducting slab, and an anorogenic ensialic emplacement is inferred. The Uaua dykes are chemically and isotopically distinct from the Early–Middle Proterozoic (1.9–1.7 Ga) unmetamorphosed dykes from W-Uruguay (Rio de La Plata craton) which are believed to have originated from different garnet peridotite sources. This suggests that Uaua–Uruguay compositional differences may reflect different Archean mantle differentiation and evolution of the cratonization processes. If this possibility proves to be correct, then magma genesis from various South American cratons would be by independent cratonic processes and their imprints on the subcratonic mantle. Received: 22 November 1994/Accepted: 24 July 1995  相似文献   

11.
Rare felsic volcanic rocks of dacitic to rhyolitic composition occur in the central part of the Jack Hills metasedimentary belt in the Narryer Terrane of Western Australia, interleaved with clastic sedimentary rocks and amphibolite. Representative samples of the four identified felsic volcanic units reveal a similar complex pattern of zircon age distribution, with all samples containing zircon populations at ∼3.3–3.4, ∼3.0–3.1, ∼2.6 and ∼1.8–1.9 Ga. The ∼3.3–3.4 Ga zircons show well-developed oscillatory zoning in cathodoluminescence (CL) images and are interpreted as inherited igneous zircon derived from granitic precursors, similar to the ∼3.3 Ga trondhjemitic granitoids currently exposed along the northern and southern margins of the belt. The ∼3.0–3.1 Ga zircons also reveal well-developed oscillatory zoning in CL and are most likely derived from granitoid and/or volcanic rocks of this age, as recorded in the Murchison domain to the south and possibly also present in the Narryer Terrane. The ∼2.6 Ga population matches the age of nearby late Archean granitoids intruding the Jack Hills belt and their oscillatory zoning and U–Th chemistry is consistent with their origin from such a source. The youngest discrete group of zircon grains, with ages ranging from ∼1970 to ∼1775 Ma, show strong oscillatory zoning and average Th/U ratios of 0.76, features consistent with an igneous origin. These younger zircons are therefore interpreted as defining the age of crystallisation of the volcanic rocks. These results establish that the Jack Hills metasedimentary belt contains significant post-Archean components. Taken together with similar results obtained from zircon occurring as detrital grains in clastic sedimentary rocks at Jack Hills, these results overturn the generally-accepted view that the belt is entirely Archean in age and that sedimentation was completed around 3.0 Ga ago. Instead, there is a distinct possibility that much of the material currently exposed in the Jack Hills belt formed in the Proterozoic. A further implication of this study is that the metamorphism affecting these rocks also occurred in the Proterozoic and consequently the rocks should not be considered as forming an Archean greenstone or metasedimentary belt. The paucity of zircons >4 Ga in the known Proterozoic sedimentary rocks and their total absence in the felsic volcanic rocks suggests that such ancient source rocks were no longer present in the area.  相似文献   

12.
The Archaean block of southern Greenland constitutes the core of the North Atlantic craton (NAC) and is host to a large number of Precambrian mafic intrusions and dyke swarms, many of which are regionally extensive but poorly dated. For southern West Greenland, we present a U–Pb zircon age of 2990 ± 13 Ma for the Amikoq mafic–ultramafic layered intrusion (Fiskefjord area) and four baddeleyite U–Pb ages of Precambrian dolerite dykes. Specifically, a dyke located SE of Ameralik Fjord is dated at 2499 ± 2 Ma, similar to a previously reported 40Ar/39Ar age of a dyke in the Kangâmiut area. For these and related intrusions of ca. 2.5 Ga age in southern West Greenland, we propose the name Kilaarsarfik dykes. Three WNW-trending dykes of the MD3 swarm yield ages of 2050 ± 2 Ma, 2041 ± 3 Ma and 2029 ± 3 Ma. A similar U–Pb baddeleyite age of 2045 ± 2 Ma is also presented for a SE-trending dolerite (Iglusuataliksuak dyke) in the Nain Province, the rifted western block of the NAC in Labrador. We speculate that the MD3 dykes and age-equivalent NNE-trending Kangâmiut dykes of southern West Greenland, together with the Iglusuataliksuak dyke (after closure of the Labrador Sea) represent components of a single, areally extensive, radiating swarm that signaled the arrival of a mantle plume centred on what is presently the western margin of the North Atlantic craton. Comparison of the magmatic ‘barcodes’ from the Nain and Greenland portions of the North Atlantic craton with the established record from the north-eastern Superior craton shows matches at 2500 Ma, 2214 Ma, 2050–2030 Ma and 1960–1950 Ma. We use these new age constraints, together with orientations of the dyke swarms, to offer a preliminary reconstruction of the North Atlantic craton near the north-eastern margin of the Superior craton during the latest Archaean and early Palaeoproterozoic, possibly with the Core Zone craton of eastern Canada intervening.  相似文献   

13.
Approximately 1650-Ma-old NW/SE and NE/SW-trending dolerite dykes in the Tiruvannamalai (TNM) area and approximately 1800-Ma-old NW/SE-trending dolerite dykes in the Dharmapuri (DP) area constitute major Proterozoic dyke swarms in the high-grade granulite region of Tamil nadu, southern India. The NW- and NE-trending TNM dykes are compositionally very similar and can be regarded as having been formed during a single magmatic episode. The DP dykes may relate to an earlier similar magmatic episode. The dolerites are Fe-rich tholeiites and most of the elemental variations can be explained in terms of fractional crystallisation. Clinopyroxene and olivine are the inferred ferromagnesian fractionation phases followed by plagioclase during the late fractionation stages. All the studied dykes have, similar to many continental flood basalts (CFB), large-ion lithophile element (LILE) and light rare-earth element (LREE) enrichment and Nb and Ta depletion. The incompatible element abundance patterns are comparable to the patterns of many other Proterozoic dykes in India and Antarctica, to the late Archaean (~2.72 Ga) Dominion volcanics in South Africa and to the early Proterozoic (~2.0 Ga) Scourie dykes of Scotland. The geochemical characteristics of the TNM and DP dykes cannot be explained by crustal contamination alone. Instead, they are consistent with derivation from an enriched lithospheric mantle source which appears to have been developed much earlier than the dyke intrusions during a major crustal building event in the Archaean. The dyke magmas may have been formed by dehydration melting induced by decompression and lithospheric attenuation or plume impingement at the base of the lithosphere. These magmas, compared with CFB, appear to be the minor partial melts from plume heads of smaller diameter and of shallow origin (650 km). Therefore, the Proterozoic thermal events could induce crustal attenuation and dyke intrusions in contrast to the extensive CFB volcanism and continental rifting generally associated with the Phanerozoic plumes of larger head diameter (>1000 km) and of deeper origin (at crust mantle boundary).  相似文献   

14.
The Singhbhum craton has a chequred history of mafic magmatism spanning from early Archaean to Proterozoic. However, lack of adequate isotopic age data put constraints on accurately establishing the history of spatial growth of the craton in which mafic magmatism played a very significant role. Mafic magmatism in the craton spreads from ca.3.3 Ga (oldest “enclaves” of orthoamphibolites) to about 0.1 Ga (‘Newer dolerite’ dyke swarms). Nearly contemporaneous amphibolite and intimately associated tonalitic orthogneiss may represent Archaean bimodal magmatism. The metabasic enclaves are appreciably enriched and do not fulfill the geochemical characteristics of worldwide known early Archaean (>3.0 Ga) mafic magmatism. The enclaves reveal compositional spectrum from siliceous high-magnesian basalt (SHMB) to andesite. However, the occurrence of minor depleted boninitic type within the assemblage has so far been overlooked. High magnesian basalt with boninitic character of Mesoarchaean age is also reported in association with supracrustals from southern fringe of the granitoid cratonic nucleus. The subcontinental lithospheric mantle (SCLM) below the craton is conjectured to have initiated during the early Archaean. Significantly, recurrence of depleted magma types in the craton is observed during the whole span of mafic igneous activity which has been vaguely related to “mantle heterogeneity”, although the alternative model of sequential mantle melting is also being explored. The Singhbhum craton includes the Banded Iron Formation (BIF) associated mafic lavas, MORB-like basic and komatiitic ultrabasic bimodal volcanism — documented as Dalma volcanics, Dhanjori lavas, and the Proterozoic Newer dolerite dykes. Three different types of REE fractionation patterns are observed in the BIF-associated mafic lavas. These are the REE unfractionated type is more depleted than N-MORB and some lavas with boninitic type of REE distribution. MORB-like basic and komatiitic ultrabasic (Dalma volcanics) are emplaced within the Proterozoic Singhbhum Basin (PSB). The vista of magmatism in the basin was controlled by a miniature spreading centre represented by the mid-basinal Dalma volcanic ridge. The volcano-sedimentary basinal domain of Dhanjori emerged at the interface of two subprovinces (viz. the mobile volcano-sedimentary belt of PSB and rigid granite platform) under unique stress environment related to extensional tectonic regime. Trace element distribution in Dhanjori lavas is remarkably similar to that in PSB minor intrusions and lavas (except a Ta spike in the latter). The Proterozoic Newer dolerite dykes within Singhbhum nucleus manifest an unusually wide spam of intrusive activity (ca 2100 Ma to 1100 Ma) and unexpectedly uniform mantle melting behaviour.  相似文献   

15.
大陆克拉通广泛发育元古代镁铁质岩墙群,其形成时限短,侵位机制复杂,可以侵位于不同的地壳层次,岩墙群的岩浆可能有多种来源,但主要来自陆下软流圈或地幔岩石圈,很少经历结晶分异与地壳混染,岩墙群的总体化学成分量富集型的,从古元古代到新元古代,其碱性组分逐渐增多,反映地幔演化特征,板块构造理论可应用于晚太古代-古元古代的构造研究,元古代以超级大陆的聚合及裂解为特征,岩墙群的形成普遍与伸展体制相联系,是超级大陆开始裂解或地幔柱活动的重要标志。华北克拉通区广泛发育中元古代镁铁质岩墙群,对其进行多学科的研究,将为确定华北克拉通在中元古代超级大陆中的构造位置及其古板块再造提供重要依据。  相似文献   

16.
中基性岩墙群的形成及产出对研究区域大地构造背景和岩浆演化过程具有重要的地质意义.对西准噶尔地区的夏尔蒲中基性岩墙群和小西湖中基性岩墙群中样品(共18件)进行了岩石学、锆石U-Pb年代学、岩石地球化学和同位素地球化学等方面的研究.结果显示,夏尔蒲和小西湖岩墙群岩石类型以闪长玢岩为主,含少量辉绿岩.LA-ICP-MS锆石U-Pb年代学表明夏尔蒲岩墙群的侵位年龄为308.6±5.5 Ma.岩石均具有高Mg#(>40)、MgO(>3%)、Al2O3(>16%);全岩A/CNK值多在0.9左右,A/NK>2,属准铝质岩石;岩石整体属钙碱性玄武岩/安山岩系列.岩石具有较低的稀土总量(多在40×10-6~60×10-6),具轻稀土富集、重稀土亏损及Eu正异常等特征((La/Yb)N为3.03~11.32,δEu=1.00~1.20);明显富集大离子亲石元素K、Rb、Ba、Sr,亏损高场强元素Nb、Ta、Ti、Th,呈现了俯冲消减带岩石的地球化学特征.同时,岩石具有较高的Sr(均大于500 ×10-6)、较低的Y(大多小于10×10-6)和Yb(多在1×10-6左右)含量,较高的Sr/Y比值(36~95),大多数样品具有富镁埃达克质岩石的组成特征.岩石具有亏损的Sr-Nd同位素组成((87Sr/86Sr)i=0.703 58~0.703 80,εNd(t)=5.76~6.34).元素及同位素地球化学资料表明岩浆源区中既有亏损地幔组分的参与,又有俯冲消减作用的印迹.结合区域地质特征及前人研究成果,结果表明晚石炭世时西准噶尔地区已进入后碰撞阶段.由于俯冲残留大洋板片部分熔融,产生的熔体在与亏损地幔一定程度相互作用后,经单斜辉石的分离结晶而形成了夏尔蒲和小西湖岩墙群中富镁埃达克质岩石;而来源于亏损地幔的岩浆同样经单斜辉石的分离结晶后,形成了夏尔蒲岩墙群中的辉绿岩和小西湖岩墙群中的角闪闪长玢岩.大规模中基性岩墙群的产出则进一步表明晚石炭世时西准噶尔地区处于后碰撞的伸展拉张构造背景之下.   相似文献   

17.
《Precambrian Research》2006,144(3-4):239-260
We present here new palaeomagnetic, isotopic age and geochemical data from Archean and Early Palaeoproterozoic rocks in the eastern Fennoscandian Shield. We have studied NE–SW trending gabbronorite dyke sets and their host Archean basement rocks in the Vodlozero block near the 2449 Ma Burakovka layered intrusion in southern Russian Karelia. Both dyke sets are genetically related to the Burakovka intrusion. The other, ca. 25 km long Avdeev dyke, locating a few kilometers south from the Burakovka intrusion, yields a stable single component remanence direction that is in agreement with the direction previously obtained from the Burakovka intrusion. Another NE–SW trending dyke, 0.8 m wide Shalskiy diabase dyke, about 30 km south of the Burakovka intrusion yields a similar remanence direction as the Avdeev dyke. The overall mean remanence direction has a palaeopole at Plat = −12.3°N, Plong = 243.5°E (A95 = 15.4°, 4 sites, 28 samples). The thin Shalskiy diabase dyke transects a similarly NE–SW trending 500 m wide coarse grained gabbronorite dyke which has now been dated by Sm–Nd method as 2608 ± 56 Ma. Geochemically all the dykes are quite similar showing slight calc-alkaline affinity and low TiO2 and high SiO2 with moderate MgO and low Cr and Ni. Furthermore, the dykes are geochemically identical to the 2.45 Ga dyke swarm in the northern Karelian Province.The remanence direction of the thin Shalskiy diabase dyke differs significantly from the high temperature and high coercivity remanence component of the unbaked Archean gabbronorite dyke which yields a palaeopole at Plat = 22.7°N, Plong = 222.1°E (dp = 8.2°, dm = 16.2°, five samples). On the basis of different remanence directions of the diabase dyke and the unbaked Archean gabbronorite dyke, the baked contact test for the diabase dyke is positive. In addition to the high temperature and high coercivity component of the baked and unbaked Archean gabbronorite dyke, in low temperatures and coercivities we isolated a similar component as in the diabase dyke. A comparable remanence component was also obtained from the Archean basement at ca. 8 km from the dykes. We propose that in the studied area, the Archean basement and the Archaean dyke were partly remagnetized due to emplacement and subsequent uplift and cooling of the large Burakovka layered intrusion and related dykes at about 2.40 Ga ago.This interpretation lends support from a new 40Ar/39Ar dating of hornblende from another area, Lake Paajarvi area, in northern Karelia. There, a negative baked contact test was previously obtained for the remanence of the dated ca. 2.45 Ga dyke rocks related to the ca. 2.45 Ga Oulanka layered intrusion. The 40Ar/39Ar dating of the unbaked Archean basement which yields the same remanence component as the dykes, shows a plateau age of ca. 2.6 Ga, but in addition, it also shows resetting of the basement at ca. 2.4 Ga ago. The dating thus supports reactivation and partial remagnetization of the Archean basement at ca. 2.4 Ga ago.Our new palaeomagnetic results from the Burakovka dykes and the new 40Ar/39Ar dating from the Lake Paajarvi area give support to our previous interpretation that at Lake Paajarvi area the remanence component suggested to be 2.4 Ga, despite to negative baked contact test, is indeed of this age. Therefore, it is implied that the results can be used for continental reconstructions.  相似文献   

18.
The Archean eastern Dharwar craton is transacted by at least four major Proterozoic mafic dyke swarms. We present geochemical data for the ~2.21–2.22 Ga N-S to NNW-SSE trending Kunigal mafic dyke swarm of the eastern Dharwar craton to address its petrogenesis and formation of large igneous province as well as spatial link to supercontinent history. It has a strike span of about 200 km; one dyke of this swarm runs ~300 km along the western margin of the Closepet granite. Texture and mineral compositions classify them as dolerite and olivine dolerite. They show compositions of high-iron tholeiites, high-magnesian tholeiites or picrites. Geochemical characteristics of the sampled dykes suggest their co-genetic nature and show variation from primitive (Mg#; as high as ~76) to evolved (differentiated) nature. Although geochemical characteristics indicate possibility of minor crustal contamination, they show their derivation from an uncontaminated mantle melt. These mafic dykes are probably evolved from a sub-alkaline basaltic magma generated by ~20 % batch melting of a depleted lherzolite mantle source and about 15–30 % olivine fractionation. Paleoproterozoic (~2.21–2.22 Ga) mafic magmatism is recognized globally as dyke swarms or gabbroic sill complexes in the Superior, Slave, North Atlantic, Fennoscandian and Pilbara cratons. Possible Paleoproterozoic Dharwar–Superior–North-Atlantic–Slave correlations are constrained with implications for the configuration of supercraton Superia.  相似文献   

19.
Ca. 2.5–2.4 Ga Sumian magmatism is widespread in the Karelia and Kola cratons of Fennoscandia and probably represents at least two intermixed large igneous provinces (LIPs). It is distinct from other Paleoproterozoic LIPs (Jatulian 2.22–2.1 Ga and Ludicovian 2.06–1.96 Ga) elsewhere in the Fennoscandian Shield. A poorly understood portion of Sumian magmatism is the Vetreny Poyas (Windy Belt) subprovince, which covers ∼75,000 km2 in southeastern Fennoscandia. This subprovince consists of four genetically related complexes which developed at different levels in the crust: a volcanic complex (komatiitic basaltic lava flows on Golets, Levgora and Myandukha hills, and Victoria lava lake on Levgora hill), a subvolcanic complex (mafic–ultramafic sills and lopoliths including Ruiga, Kirichgora, Kozhozero and Undozero), plutonic complexes (Burakovsky and Vyzhiga) and a dyke complex (gabbronoritic Avdeyevo and Shala dykes and peridotitic Vinela and Koppalozero dykes). Similar patterns are present in other Sumian belts elsewhere in Karelia, for instance in southern Lapland and the Kola Peninsula.  相似文献   

20.
A vast tract of ENE–WSW to NE–SW trending mafic dyke swarm transects Archaean basement rocks within the eastern Dharwar craton. Petrographic data reveal their dolerite/olivine dolerite or gabbro/olivine gabbro composition. Geochemical characteristics, particularly HFSEs, indicate that not all these dykes are co-genetic but are probably derived from more than one magma batch and different crystallization trends. In most samples the LaN/LuN ratio is at ∼2, whereas others have a LaN/LuN ratio >2 and show higher concentrations of high-field strength elements (HFSEs) than the former group. As a consequence, we assume that the ENE–WSW to NE–SE trending mafic dykes of the eastern Dharwar craton do not represent one single magmatic event but were emplaced in two different episodes; one of them dated at about 2.37 Ga and another probably at about 1.89 Ga. Trace element modelling also supports this inference: older mafic dykes are derived from a melt generated through ∼25% melting of a depleted mantle, whereas the younger set of dykes shows its derivation through a lower degree of melting (∼15%) of a comparatively enriched mantle source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号