首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
新疆阿尔泰南缘东段哈腊苏斑岩铜(钼金)矿床地质   总被引:1,自引:0,他引:1  
近几年阿尔泰南缘斑岩型铜矿勘查进展明显,哈腊苏铜(钼金)矿床倍受关注。该矿床以中泥盆世阿尔泰南缘特殊的裂谷为背景形成。矿化发生在侵入于中泥盆统玄武岩内的花岗闪长斑岩、花岗斑岩内及其附近围岩中。从岩体到玄武岩依次出现钾长石化、黑云母化、青磐岩化以及叠加于其上的团块/脉状钾化、硅化等蚀变。矿石中可同时见到细脉浸染状斑岩型和团块/脉状热液型两种组构,且后者叠加到前者之上。斑岩型矿化存在海西(381±8.7 Ma,375±8.7 Ma)和印支(213±4.2 Ma)两期,印支期(230±5 Ma)还发育构造-流体叠加矿化。矿石中硫化物的硫、铅同位素(δ34S=-6.5‰~-1.6‰,206Pb/204Pb=18.052~19.362,207Pb/204Pb=15.501~15.606,208Pb/204Pb=37.813~39.355)表明S和Pb来自岩浆或地幔/下地壳,成矿流体中水(δ18OSMOW=7.4‰~9.2‰,δDSMOW= -89‰~-80‰)为岩浆水。斑岩期成矿温度420~560℃。不同时期小斑岩体、玄武岩围岩及后期矿化叠加是成矿重要条件。  相似文献   

2.
申萍  沈远超 《岩石学报》2010,26(8):2299-2316
西准噶尔与环巴尔喀什地处中亚成矿域腹地,发育着许多大型和超大型斑岩铜矿床,构成了中亚成矿域最重要的斑岩铜矿床集中区。二者的成矿动力学背景略有差异,成矿岩浆条件和成矿物源有一定的差异,所形成的斑岩铜矿床有所不同。西准噶尔斑岩铜矿床以新发现的包古图斑岩铜矿床为代表,该矿床位于达拉布特不成熟岛弧南部;含矿岩浆为中钾钙碱性中性岩浆,侵位较深(5~10km);S(δ34S=-2.4‰~0.4‰)和Pb(206Pb/204Pb=17.92~18.89,207Pb/204Pb=15.45~15.62,208Pb/204Pb=37.68~38.36)同位素指示成矿物质来自地幔。含矿中性杂岩体由早期闪长岩体和晚期闪长玢岩岩株组成,含矿岩体发育碱性(黑云母化、硅化、绿泥石化、绿帘石化)和酸性(绢云母化和硅化)蚀变;以浸染状矿化为主,有少量的脉状矿化。环巴尔喀什斑岩铜矿床以科翁腊德和阿克都卡等超大型斑岩铜矿床为代表,这些矿床位于巴尔喀什-伊犁岩浆弧北部,含矿岩浆为中高钾(科翁腊德)和高钾(阿克都卡)钙碱性中酸性岩浆,侵位很浅(科翁腊德)和较浅(阿克都卡);S(δ34S=0.7‰~6.0‰)和Pb同位素分析表明,成矿物质来自地幔和地壳。含矿岩体为连续分异的中酸性杂岩体,包括辉长岩-闪长岩-石英闪长岩-花岗闪长岩-斜长花岗岩等;科翁腊德含矿岩体发育酸性蚀变(高级泥化、绢云母化和硅化)和少量的碱性蚀变(钾长石化、黑云母化和硅化),阿克都卡含矿岩体发育碱性蚀变(钾长石化、黑云母化和硅化)和酸性蚀变(绢云母化和硅化);矿化均为浸染状和脉状矿化。  相似文献   

3.
土屋和延东铜矿床位于东天山大南湖-头苏泉岛弧带南部,是中亚成矿带的重要组成部分。文章根据脉次穿插关系、蚀变矿物组合及矿物共生关系,将土屋和延东铜矿床均划分为斑岩成矿期、叠加改造期和表生期3个期次。土屋铜矿床的铜矿化形成于斑岩成矿期和叠加改造期,而延东铜矿床的铜矿化主要形成于叠加改造期;土屋和延东铜矿床伴生的钼矿化主要形成于叠加改造期。因此,笔者认为前人获得的辉钼矿Re-Os年龄(326.2~322.7 Ma)代表叠加改造期的成矿年龄,该期矿化与石英钠长斑岩((323.6±2.5)Ma)的侵入相关,而斑岩成矿期的矿化与斜长花岗斑岩(339~332 Ma)相关,成矿年龄为341.2~333.9 Ma。叠加改造期的存在,使得斑岩成矿期的蚀变分带可能受到了叠加和破坏。  相似文献   

4.
通过对卡拉先格尔铜矿带中的哈腊苏斑岩铜矿床详细的野外地质调查和系统的同位素地球化学示踪和测年研究,探讨了阿尔泰南缘铜矿的成矿时代及矿床成因。研究表明,卡拉先格尔铜矿带的铜矿化主要呈不均匀团块、细脉或细脉浸染状产于受断裂控制的钾长石_石英脉、绿帘石脉以及石英_方解石脉中,线型分布明显,空间分布极不均匀,缺乏典型斑岩铜矿的面型蚀变矿化分带。含矿钾长石脉40Ar_39Ar年龄为(230±5)Ma,大大晚于容矿斑岩脉的形成时代〔锆石SHRIMPU_Pb年龄(380.8±5.7)Ma〕。硫_铅同位素指示成矿物质主要源于火山岩地层和花岗闪长斑岩脉。氢_氧同位素显示成矿流体为岩浆水和大气降水的混合物。据此认为,卡拉先格尔铜矿带主成矿时代为印支期,成矿作用与后造山阶段沿NNW向老山口断裂发育的偏碱性岩浆活动有关,但不排除存在同造山期的斑岩型矿化。  相似文献   

5.
中非(赞比亚―刚果(金))沉积型铜矿以其拥有高品位的大型超大型铜、钴矿床和众多的世界级铜矿山而闻名于世。铜矿类型可分为沉积型铜矿、热液脉型铜矿、变质热液型铜矿三类。沉积型铜矿床形成后,受到深部含矿岩浆热液的侵入形成脉状铜矿,可能还有斑岩型铜钼矿的成矿作用,叠加富集原有的沉积型铜矿床。硫同位素结果显示,硫源主要为成岩硫化物和海水硫酸盐的混合硫,受到深源岩浆或岩浆热液叠加改造。沉积型铜矿成矿年龄880~735Ma,后期岩浆热液型铜钼矿成矿年龄为514~502Ma。这些发现对进一步认识总结中非铜矿带上的矿床成因及成矿规律具有重要意义。  相似文献   

6.
青河县哈腊苏铜矿床Ⅰ号矿化带位于准噶尔北缘卡拉先格尔斑岩铜矿带,铜矿化主要呈不均匀团块、细脉或细脉浸染状产于花岗闪长斑岩、石英闪长斑岩及玄武岩、辉斑玄武岩围岩中。矿石中石英和方解石流体包裹体划分为H_2O-NaCl型和H_2O-CO_2(±CH_4/N_2)-NaCl型。成矿温度主要集中在120~431℃,峰值在390、290和190℃。成矿流体盐度(w(NaCl_(eqv)))变化于0.53%~66.76%,峰值在19.5%、12.5%、9.5%和1.5%。密度为0.55~1.11 g/cm~3。矿脉中石英和方解石的δ~(18)O_(SMOW)值为2.9‰~12.3‰,δ~(18)O_(H_2O)值为—5.81‰~4.83‰,δD_(SMOW)为-129‰~-80‰,表明成矿流体主要为岩浆水和混合大气降水。方解石的δ~(13)C_(PDB)变化于-2.4‰~-1.4‰,δ~(18)O_(SMOW)为8.3‰~9.2‰,表明流体中的碳来自岩浆。对辉钼矿石英脉中辉钼矿进行了Re-Os同位素测年,获得等时线年龄为(378.3±5.6)Ma,与花岗闪长斑岩锆石SHRIMP U-Pb年龄(381~375 Ma)在误差范围内一致。早期成矿作用发生在中泥盆世,与斑岩有关,晚期叠加成矿作用发生在中、晚三叠世,与构造-岩浆-热液活动有关。  相似文献   

7.
西藏铁格隆南超大型铜(金、银)矿床地质、蚀变与矿化   总被引:5,自引:1,他引:4  
铁格隆南是班公湖-怒江成矿带西段重要的斑岩-浅成低温热液铜(金、银)矿床,也是西藏地区首个铜资源量超过1000万吨的超大型铜(金、银)矿床,其蚀变与矿化结构的精细解剖,对完善区域成矿理论和指导找矿实践有重要的指导意义。文章基于详细的野外地质调查、钻孔编录和镜下鉴定,识别出铁格隆南矿床具有斑岩和浅成低温热液叠加成矿作用特征。其中,斑岩成矿作用主要位于矿床深部及外围,以细脉状、脉状、浸染状黄铁矿、黄铜矿、斑铜矿及少量辉钼矿等为主,蚀变为钾硅化、青磐岩化、黄铁绢英岩化,发育A、B、D型脉体。浅成低温热液成矿作用主要产于矿床中-浅部,叠加于斑岩成矿作用之上,以浸染状-脉状黄铁矿、硫砷铜矿、斑铜矿、铜蓝、蓝辉铜矿、斯硫铜矿、雅硫铜矿、久辉铜矿等Cu-S体系矿物为特征,蚀变为高级泥化,广泛发育N脉(即高岭石或明矾石-硫化物脉)。蚀变、矿化特征及脉体穿切关系揭示,矿床成岩成矿作用可细分为岩浆期(Ⅰ)、岩浆-热液期(Ⅱ)和表生期(Ⅲ)。成岩成矿年代学结果揭示,矿区内闪长玢岩侵位时代较早(123 Ma),代表岩浆活动上限;花岗闪长斑岩(122~120 Ma)是主要的含矿斑岩,与成矿作用关系最为密切;火山岩覆盖于地表,喷发时代较晚(111 Ma),代表成矿后岩浆活动的产物。钾硅化的黑云母和黄铁绢英岩化的绢云母40Ar-39Ar年龄分别(121.1±0.5) Ma、(120.8±0.9)Ma与斑岩成矿作用的辉钼矿Re-Os年龄((121.2±1.2) Ma)一致,而高级泥化的明矾石40Ar-39Ar年龄为(117.9±1.6)Ma与浅成低温热液矿化的黄铁矿Rb-Sr年龄((117.5±1.8)Ma)一致。所以,依据时空关系,铁格隆南超大型矿床成矿作用可细分为岩浆热液成矿作用(123~119 Ma)、浅成低温热液成矿作用(118~117 Ma)和火山岩覆盖保存(111~110 Ma)3个阶段。  相似文献   

8.
铜厂沟斑岩型钼铜矿床位于云南中甸地区斑岩成矿带的南端,形成于燕山晚期陆-陆碰撞至造山后伸展构造的转换阶段。文章通过对铜厂沟钼铜矿床蚀变分带特征和脉体穿切关系的详细研究,系统厘定了矿床蚀变类型及空间分布规律,查明了蚀变和脉体系统与矿化的关系。根据矿物组合、蚀变类型等因素,将分为A脉、B脉和D脉3大类,共16种不同的脉体类型。其中,A脉和B脉与成矿关系密切,对钼铜资源量贡献最大。早期的A脉,主要以钾长石化为主,矿化较弱;晚期形成的A脉多发育有黑云母化且与钾长石化蚀变叠加,矿化增强,以石英+黄铁矿+辉钼矿+黄铜矿±钾长石脉为主;B脉主要贡献于辉钼矿矿体的形成,是区内矿化的主要表现形式,且叠加于钾硅酸盐化,形成于钾硅酸盐化向石英-绢云母化的转变阶段;D脉中铜钼矿化明显减弱,属于矿化体外围的脉体,对矿体影响较小。因此,铜厂沟钼铜矿床蚀变分带规律在空间上表现为钾硅酸盐化(石英-钾长石-黑云母化)发育于斑岩体核部,向外依次是石英-绢云母化(石英-绢云母±黄铁矿化),和青磐岩化(绿泥石-绿帘石-碳酸盐岩化),对应的矿化组合分别为辉钼矿-白钨矿-黄铁矿、辉钼矿-黄铜矿-黄铁矿±白钨矿,以及外带的黄铜矿-黄铁矿-辉钼矿,显示出成矿元素由高温向低温变化的规律。铜厂沟斑岩型钼铜矿床的形成与区内燕山晚期伸展作用相伴的大规模构造-岩浆事件相关,源自深部的含矿热液在花岗质斑岩体内形成了脉状、网脉状的辉钼矿化,同时沿断裂带运移并扩散,于碳酸盐岩的接触带部位形成了矽卡岩型的铜钼矿化。因此,有利的构造环境、强烈的蚀变作用、多样的脉体类型导致铜厂沟大型斑岩型钼铜矿床最终形成。  相似文献   

9.
与埃达克岩石有关,在环太平洋地区发现了大型、超大型斑岩型铜矿床.本文提供了一个产于中亚成矿域新疆西天山的莫斯早特铜矿床研究的实例.含矿岩体为石英钠长斑岩,岩体主量、微量元素地球化学特点与埃达克质岩石一致富Na、Al;高Sr,低Y;Sr/Y>40,亏损HREE;La/Yb>20;Eu为正异常(δEu/Eu*为~1.27).全岩40Ar/39Ar年龄268±5Ma,Rb-Sr年龄248±12Ma,K-Ar年龄254.5Ma,属中晚二叠世.矿体呈脉状、网脉状;围岩蚀变为绿帘石化、青盘岩化和黄铁矿化.铜品位1%~5%,主要工业矿物为辉铜矿、斑铜矿.矿石富含Ag(5.35~240μg/g)、Pb(0.01%~0.16%)、Zn(0.26%~2.40%)、Au(0.02~0.16μg/g).矿石矿物S同位素δ34S为-6.0‰~5.81‰,平均-0.28‰;辉铜矿、斑铜矿和孔雀石的207Pb/204Pb为15.46~15.77,206Pb/204Pb为18.01~18.42,属造山带与地幔Pb之间;矿石矿物包裹体的818O-2.54‰~-8.11‰,δDH2O-68.9‰~-98.8‰,属岩浆水与大气降水之混合.矿石矿物的(87Sr/86Sr)i为0.70596,(143Nd/146 Nd)i为0.512403,εNd(t)为+1.5,其Sr-Nd同位素组成及同位素年龄与合矿埃达克质石英钠长斑岩一致.含矿埃达克质石英钠长斑岩形成于后碰撞阶段,属由碰撞、挤压向伸展、拉张转变的构造动力学格架转折期.埃达克岩浆的较高温度、压力、富挥发分、较高氧逸度和岩浆快速上升,可能是其成矿的重要控制因素.  相似文献   

10.
应用高精度离子探针锆石U-Pb测年方法,获得普朗斑岩铜矿床中3件矿化石英二长斑岩的锆石年龄分别为228±3Ma、226.3±2.8Ma、226±3Ma。锆石形态和铀钍参数均属典型的岩浆锆石特征,年龄值在误差范围内近似一致,表明形成矿化斑岩的中酸性岩浆从岩浆房快速上升侵位。结合前人已发表的矿化斑岩的黑云母Ar-Ar坪年龄及辉钼矿Re-Os同位素年龄等数据,推测普朗斑岩铜矿的岩浆—热液系统从岩浆侵入至矿化阶段的持续时间可能长达10Ma以上,主成矿期约为216~214Ma。从岩浆房分异出的富含成矿物质和挥发份的岩浆流体在相对较晚阶段对普朗复式岩体发生了强烈的蚀变作用并可能进一步萃取了岩体中的成矿物质。  相似文献   

11.
The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cue Moe Au deposits have been discovered in recent years. Geological mapping and drilling indicate the presence of various mineralized porphyritic intrusions in the Halasu Cue Au deposit, which is currently under exploration. Ue Pb dating of zircon crystals from four different mineralized porphyries reveals three significantly different ages of magmatic intrusion, i.e., ca. 372e382 Ma granodioritic porphyry and porphyritic granite, ca. 266 Ma quartz monzonitic porphyry, and ca. 216 Ma quartz dioritic porphyry. Ree Os dating of molybdenite from veinletdissemination ores in the granodioritic porphyry yields an age of mineralization of ca. 377 Ma, and Ar e Ar dating of K-feldspar from K-feldsparequartzechalcopyrite veins produces ages of ca. 269 and ca.198 Ma. The mineralization(and alteration) ages correspond broadly to the three episodes of magmatic intrusion, suggesting three overprinting porphyry mineralization events that are significantly separated in time. The first episode of porphyry intrusion and mineralization may be related to the magmatic arc being above a plate subduction zone, and the second was formed in a late-collisional environment during the closing of the Junggar Ocean, whereas the third episode of mineralization took place in the postcollisional stage. This case study suggests that in orogens where major porphyry deposits have been found in magmatic arc environments, the potential of discovering late- to post-collisional porphyry deposits cannot be neglected; conversely, in orogens where most porphyry deposits have late- to postcollisional ages, more attention should be paid to porphyries that were formed earlier in magmatic arc environments.  相似文献   

12.
对粤北大宝山多金属矿床次英安斑岩(样品ZK5803)中锆石LA-ICP-MS U-Pb定年结果为(174.6±1.5)Ma(MSWD=0.7),与矿区花岗闪长斑岩的形成年龄基本一致;3个斑岩型和矽卡岩型钼钨矿石辉钼矿Re-Os模式年龄为(163.2±2.3)Ma(样品CD-30)、(165.2±2.4)Ma(样品DB-18)和(163.4±2.4)Ma(样品CD-38),与层状铜铅锌矿中辉钼矿Re-Os模式年龄(164.7±3.0)Ma基本一致;上述4个样品给出的加权平均年龄为(164.0±2.5)Ma(MSWD=0.16);该成矿年龄与南岭地区其他钼多金属矿床形成时间一致,同属于华南地区中生代第二阶段成矿作用。矿床地质特征、流体包裹体氢氧同位素(δ18O=-3.75‰~7.0‰,δD=-50.7‰~-56.1‰)和矿石硫化物硫同位素(δ34S=-2.00‰~3.00‰)资料表明,该矿床为与矿区次英安斑岩和花岗闪长斑岩有成因联系的岩浆期后热液矿床。矿区各类矿床应为同一期成矿事件的产物,不同于前人认为的存在加里东期海底喷流沉积和燕山期叠加成矿,或燕山期两期成岩成矿的观点。结合岩石微量元素图解和前人研究结果,推测其成矿动力学背景为南岭地区后造山伸展环境。  相似文献   

13.
江西武山和永平铜矿含矿花岗质岩体锆石SIMSU—Pb年代学   总被引:40,自引:2,他引:38  
江西武山和永平铜矿床是长江中下游金属成矿带中的两个重要矿床。对武山铜矿的花岗闪长斑岩和永平铜矿的花岗斑岩中锆石分别进行了,离子探针(SIMS)U—Pb定年研究,发现两个矿区的锆石年龄可分作两期,武山铜矿含矿岩体锆石^206Pb/^238U年龄分别为145±3.9Ma和121±2.5Ma,永平铜矿含矿岩体锆石^206Ph/^238U年龄分别为160±2.3Ma和135±7.4Ma。这两期不同的年龄可能反映了锆石在岩浆侵位时的结晶年龄和后期热液蚀变作用的年龄。因此确定武山铜矿花岗质岩体的侵位年龄为145Ma,永平铜矿花岗质岩体的侵位年龄为160Ma。该年龄可能也反映了这两个矿床中与燕山期岩浆侵入有关的矽卡岩型矿床和斑岩型矿床的形成时代。  相似文献   

14.
多不杂矿床是班公湖-怒江缝合带上发现的第一处大型斑岩铜矿床.该矿床位于班公湖-怒江缝合带的北侧,羌塘地块的南缘.含矿斑岩体属花岗闪长斑岩,其SiO2含量为61.3796-67.73%,平均为65.16%;稀土元素总量为(41.4-94)× 10~(-6),LREE>HREE,属轻稀土元素富集型;微量元素特征表现为富集大离子不相容元素Rb、K、Th、Ba、La、Ce、Sr,亏损高场强元素Nb、Ta、P、Ti.含矿斑岩的稀土元素和微量元素特点反映出岛弧带的岩浆作用特征.含矿斑岩中锆石的U-Pb SHRIMP测年获得(120.9±2.4)Ma(MSWD=4.3)谐和年龄,代表了含矿斑岩的形成时代.6个辉钼矿样品的Re-Os模式年龄范围非常一致,其变化范围为(117.6±1.3)~(118.5±1.4)Ma,等时线年龄为(118.0±1.5)Ma(MSwD=0.30),代表了该矿床的成矿年龄.该矿床的形成时代对应于班公湖.怒江早白垩世期间的多岛弧-盆系演化时期,其形成环境类似于东南亚的多岛弧-盆系统.  相似文献   

15.
The Lengshuikeng ore district in east-central China has an ore reserve of ~43 Mt with an average grade of 204.53 g/t Ag and 4.63 % Pb?+?Zn. Based on contrasting geological characteristics, the mineralization in the Lengshuikeng ore district can be divided into porphyry-hosted and stratabound types. The porphyry-hosted mineralization is distributed in and around the Lengshuikeng granite porphyry and shows a distinct alteration zoning including minor chloritization and sericitization in the proximal zone; sericitization, silicification, and carbonatization in the peripheral zone; and sericitization and carbonatization in the distal zone. The stratabound mineralization occurs in volcano-sedimentary rocks at ~100–400 m depth without obvious zoning of alterations and ore minerals. Porphyry-hosted and stratabound mineralization are both characterized by early-stage pyrite–chalcopyrite–sphalerite, middle-stage acanthite–native silver–galena–sphalerite, and late-stage pyrite–quartz–calcite. The δ34S values of pyrite, sphalerite, and galena in the ores range from ?3.8 to +6.9‰ with an average of +2.0‰. The C–O isotope values of siderite, calcite, and dolomite range from ?7.2 to ?1.5‰ with an average of ?4.4‰ (V-PDB) and from +10.9 to +19.5‰ with an average of +14.8‰ (V-SMOW), respectively. Hydrogen, oxygen, and carbon isotopes indicate that the hydrothermal fluids were derived mainly from meteoric water, with addition of minor amounts of magmatic water. Geochronology employing LA–ICP–MS analyses of zircons from a quartz syenite porphyry yielded a weighted mean 206Pb/238U age of 136.3?±?0.8 Ma considered as the emplacement age of the porphyry. Rb–Sr dating of sphalerite from the main ore stage yielded an age of 126.9?±?7.1 Ma, marking the time of mineralization. The Lengshuikeng mineralization classifies as an epithermal Ag–Pb–Zn deposit.  相似文献   

16.
吉林敦化大石河钼矿床成因与辉钼矿Re-Os 同位素测年   总被引:4,自引:0,他引:4  
大石河钼矿床是近年来在小兴安岭-张广才岭钼成矿带南缘新发现的一个大型钼矿床。深部矿体产于似斑状花岗闪长岩体顶部,呈细脉浸染型; 近地表矿体主要呈含辉钼矿石英脉,赋存于浅变质岩中。钼矿化受隐爆角砾岩筒及构造裂隙控制,矿化与蚀变具有明显的分带性,属斑岩型钼矿床。对采自矿区浅部矿体中的5 件辉钼矿样品进行了Re-Os 同位素测年,获得模式年龄( 182. 1 ± 2. 7) ~ ( 191. 9 ± 2. 6) Ma,加权平均年龄( 186. 7 ± 5. 0) Ma,MSWD 值为11. 8,表明大石河钼矿形成于燕山早期。结合近年来小兴安岭-张广才岭钼成矿带上所获得的成岩成矿年龄数据,认为160 ~ 190 Ma 是该钼成矿带的钼矿成矿作用的集中期。辉钼矿样品中Re 含量为3. 549 ~ 4. 362 μg·g - 1,指示成矿物质为壳源。综合分析认为,大石河钼矿床为该区燕山早期大规模成矿事件的产物,形成于古亚洲构造域和环太平洋构造域叠加和转换期的构造环境。  相似文献   

17.
The Tiegelongnan Cu (Au) deposit is the largest copper deposit newly discovered in the Bangong–Nujiang metallogenic belt. The deposit has a clear alteration zoning consisting of, from core to margin, potassic to propylitic, superimposed by phyllic and advanced argillic alteration. The shallow part of the deposit consists of a high sulphidation‐state overprint, mainly comprising disseminated pyrite and Cu–S minerals such as bornite, covellite, digenite, and enargite. At depth porphyry‐type mineralization mainly comprises disseminated chalcopyrite, bornite, pyrite, and a minor vein molybdenite. Mineralization is disseminated and associated with veins contained within the porphyry intrusions and their surrounding rocks. The zircon U–Pb ages of the mineralized diorite porphyry and granodiorite porphyry are 123.1 ± 1.7 Ma (2σ) and 121.5 ± 1.5 Ma (2σ), respectively. The molybdenite Re–Os age is 121.2 ± 1.2 Ma, suggesting that mineralization was closely associated with magmatism. Andesite lava (zircon U–Pb age of 111.7 ± 1.6 Ma, 2σ) overlies the ore‐bodies and is the product of post‐mineralization volcanic activity that played a critical role in preserving the ore‐bodies. Values of ?4.6 ‰ to + 0.8 ‰ δ34S for the metal sulfides (mean ? 1.55 ‰) suggest that S mainly has a deep magmatic source. The H and O isotopic composition is (δD = ?87 ‰ to ?64 ‰; δ18OH2O = 5.5 ‰ to 9.0 ‰), indicating that the ore‐forming fluids are mostly magmatic‐hydrothermal, possibly mixed with a small amount of meteoric water. The zircon εHf(t) of the diorite porphyry is 3.7 to 8.3, and the granodiorite porphyry is 1.8 to 7.5. Molybdenite has a high Re from 382.2 × 10?6 to 1600 × 10?6. Re and Hf isotope composition show that Tiegelongnan has some mantle source, maybe the juvenile lower crust from crust–mantle mixed source. Metallogenesis of the Tiegelongnan giant porphyry system was associated with intermediate to acidic magma in the Early Cretaceous (~120 Ma). The magma provenance of the Tiegelongnan deposit has some mantle‐derived composition, possibly mixed with the crust‐derived materials.  相似文献   

18.
查汗萨拉金矿是近年在新疆西天山新发现的一处金矿床,处于依连哈比尔尕构造带西端.矿体旱不规则脉状产于细品闪长岩构造破碎蚀变带及其接触带附近的上石炭统奇尔古斯套组蚀变围岩中,围岩蚀变较弱.矿石中硫化物主要为黄铁矿,并含少量磁黄铁矿、黄铜矿、方铅矿等.硫化物矿物呈自形粗晶或半自形结构,斑杂状分布在构造蚀变岩石中.金矿物以自然金和银金矿为主,还发现有硫(碲)银金矿和金铀化物等独特矿化线索,金矿物多赋存在黄铁矿中,以包体金、裂隙金和少量粒间金形式存在.金矿物形态以粒状和长角状为主,多为细、微细粒金(粒度<10 μm).矿石中矿物流体包裹体均一温度为220~340℃.热液脉三石矿物石英流体包裹体的δD为-92‰~-74‰,δ18Ov-SMOW为11.8‰~12.6‰,成矿流体显尔岩浆热液和变质建造水混合的特征.热液方解石脉的占δ13Cv-PDB为-8.92‰~-8.06‰,δ18Ov-SMOW为13.45‰~17.18‰,反映成矿流体中CO2主体米源于岩浆.硫化物206pb/204Pb为18.036~18.173,207pb/204pb为15.536~15.612,208pb/204pb为37.940~38.097,成矿金属具岩浆来源特征.矿石中硫化物δ34Sv-CDT为-9.8‰~-7.3‰,显示其可能与地层有关.查汗萨拉金矿为构造蚀变岩型中温岩浆热液矿床.小同于本区阿希金矿,是西天山金矿勘查中值得关注的新类型.  相似文献   

19.
岗讲铜-钼矿床位于冈底斯中段尼木矿田之中,是近年新发现的一个储量在大型以上的典型斑岩型铜-钼矿床。含矿岩体为复式岩体,其中铜、钼矿化主要产于黑云石英二长岩、石英二长斑岩和流纹-英安斑岩之中。热液蚀变类型有钾化、硅化、绢英岩化、绿泥石化和局部泥化,从岩体中心向外主要发育钾化带和绢英岩化带。矿体主要分布在钾化带与绢英岩化带叠加部位,矿区次生氧化富集带也比较发育。文中利用二次离子探针质谱(SIMS)对主要含矿岩体进行了锆石U-Pb定年研究,获得黑云石英二长岩和流纹-英安斑岩的结晶年龄分别为(14.73±0.13)Ma(MSWD=1.3,N=16)和(12.01±0.29)Ma(MSWD=2.3,N=8),与尼木矿田其他斑岩铜(钼)矿床含矿斑岩体的形成年龄基本一致,表明岗讲铜-钼矿床形成于印度-欧亚大陆板块碰撞后的伸展阶段。鉴于矿区缺失青磐岩化带,且钾化带主体已出露地表,因此该区的剥蚀深度至少应该在2~3 km,这与结合青藏高原的剥蚀速率(0.13~0.23mm/a)估算的剥蚀深度一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号