首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
中国岩溶碳汇通量估算与人工干预增汇途径   总被引:1,自引:0,他引:1  
中国是岩溶大国,岩溶作用吸收土壤或大气CO2形成溶解无机碳,并随河流排向海洋,这是陆地碳循环的重要组成部分。中国地质调查局从2009年开始对岩溶碳汇进行探索性调查,基本查明了岩溶碳汇的作用机理、影响因素和计量方法。研究表明: 碳酸盐岩溶蚀试片、径流-水化学和回归模型等方法均揭示了中国岩溶碳汇潜力巨大; 植被恢复、土壤改良、外源水灌溉和水生植物培育等是人工干预增加岩溶碳汇的重要途径; 流域尺度岩溶碳循环及碳汇效应调查技术的应用,助力取得了岩溶碳循环地质调查和碳汇效应评价方面的理论、技术和平台建设等系列成果。值得注意的是,岩溶碳汇计量、核查和人工干预固碳增汇试验示范等方面还面临巨大挑战,这需要在“十四五”期间及以后的研究中不断攻关、完善,从而满足地质碳汇服务碳中和目标的需求。  相似文献   

2.
About two hydrological years of continuous data of discharge, temperature, electrical conductivity and pH have been recorded at the Glarey spring in the Tsanfleuron glaciated karst area in the Swiss Alps, to understand how glaciated karst aquifer systems respond hydrochemically to diurnal and seasonal recharge variations, and how calcite dissolution by glacial meltwater contributes to the atmospheric CO2 sink. A thermodynamic model was used to link the continuous data to monthly water quality data allowing the calculation of CO2 partial pressures and calcite saturation indexes. The results show diurnal and seasonal hydrochemical variations controlled chiefly by air temperature, the latter influencing karst aquifer recharge by ice and snowmelt. Karst process-related atmospheric CO2 sinks were more than four times higher in the melting season than those in the freezing season. This finding has implication for understanding the atmospheric CO2 sink in glaciated carbonate rock terrains: the carbon sink will increase with increasing runoff caused by global warming, i.e., carbonate weathering provides a negative feedback for anthropogenic CO2 release. However, this is a transient regulation effect that is most efficient when glacial meltwater production is highest, which in turn depends on the future climatic evolution.  相似文献   

3.
《China Geology》2018,1(1):17-27
On the basis of proposing the existence of a karst carbon cycle and carbon sink at a watershed scale, this paper provides four pieces of evidence for the integration of geology and ecology during the carbon cycle processes in the karst dynamic system, and estimated the karst carbon sink effect using the methods of comparative monitoring of paired watersheds and the carbon stable isotope tracer technique. The results of the soil carbon cycle in Maocun, Guilin, showed that the soil carbon cycle in the karst area, the weathering and dissolution of carbonate rocks under the soil, resulted in a lower soil respiration of 25% in the karst area than in a non-karst area (sandstone and shale), and the carbon isotope results indicated that 13.46% of the heavy carbon of the limestone is involved in the soil carbon cycle. The comparative monitoring results in paired watersheds, suggesting that the HCO3- concentration in a karst spring is 10 times that of a rivulet in a non-karst area, while the concentration of inorganic carbon flux is 23.8 times. With both chemical stoichiometry and carbon stable isotopes, the proportion of carbon in karst springs derived from carbonate rocks was found to be 58.52% and 37.65% respectively. The comparison on carbon exchange and isotopes at the water-gas interface between the granite and carbonate rock basins in the Li River showed that the CO2 emission of the karst water is 10.92 times that of the allogenic water from the non-karst area, while the carbon isotope of HCO3- in karst water is lighter by 8.62‰. However, this does not mean that the karst water body has a larger carbon source effect. On the contrary, it means the karst water body has a greater karst carbon sink effect. When the karst subterranean stream in Zhaidi, Guilin, is exposed at the surface, carbon-rich karst water stimulated the growth of aquatic plants. The values of carbon stable isotopes in the same species of submerged plants gradually becomes heavier and heavier, and the 512 m flow process has a maximum range of 15.46‰. The calculation results showed that 12.52% of inorganic carbon is converted into organic carbon. According to the data that has been published, the global karst carbon sink flux was estimated to be 0.53-0.58 PgC/a, equivalent to 31.18%-34.41% of the global forest carbon sink flux. In the meanwhile, the karst carbon sink flux in China was calculated to be 0.051 PgC/a, accounting for 68% of its forest carbon sink flux.  相似文献   

4.
全球气候变化问题使岩溶系统碳循环的研究倍受关注,有关微型生物及其碳酸酐酶在岩溶系统碳循环中的作用的认识也在不断深入。文章回顾了微型生物及其碳酸酐酶在碳酸盐岩风化以及碳酸盐岩沉积过程中的作用过程及作用机制,指出未来的研究需结合不同岩溶生态环境,量化微型生物及其碳酸酐酶对岩溶生态系统碳增汇的影响,为深入研究微型生物及其碳酸酐酶对岩溶碳汇的贡献、增加岩溶生态系统碳汇的能力、助力实现碳中和提供参考。   相似文献   

5.
张莹  李强 《中国岩溶》2015,34(6):539-542
大气碳收支不平衡问题是全球碳循环研究的核心问题之一,决定了人类活动导致的气候变化速度和程度。在过去50年,陆地和海洋作为全球碳循环的主要汇呈增加趋势,而岩溶作用(CaMg(CO_3)_2+2CO_2+2H_2O  Ca~(2+)+Mg~(2+)+4 HCO_3~-)则通过与岩石圈、水圈、大气圈(层)的密切联系成为联系陆地和海洋碳库的纽带。尽管岩溶作用在水循环和生物圈的作用下,每年可产生约8亿t的碳通量,使岩溶作用过程成为全球碳循环的一个重要环节。但在目前研究技术手段和认识水平的条件下,将岩溶作用这一可逆过程直接认定为岩溶碳汇有不妥之处。因此,在没有涉及生物固碳效应的前提下,应当将岩溶作用参与的碳循环表述为岩溶碳通量。  相似文献   

6.
典型岩溶水系统碳汇通量估算   总被引:6,自引:1,他引:5  
裴建国  章程  张强  朱琴 《岩矿测试》2012,31(5):884-888
现代岩溶学研究成果表明,碳酸盐岩在全球碳循环中响应极其迅速,水循环过程中的碳汇效应显著。本研究选取广西桂林寨底地下河系统、广西环江大安地下河系统、重庆北碚青木关地下河系统三个典型岩溶地下水系统,利用各系统地下河的流量和HCO3-浓度的监测资料,采用简单化学平衡模式法估算碳汇通量(CO2)。结果显示,寨底地下河系统的单位面积年碳汇通量为68.82 t/(km2.a),大安地下河系统的单位面积年碳汇通量为81.18 t/(km2.a),青木关地下河系统的单位面积年碳汇通量为100.07 t/(km2.a)。分析认为同一个岩溶水系统的结构特征和环境条件基本上是稳定的;地下河的流量和HCO3-浓度是影响岩溶碳汇强度的关键因素,尤其是地下河流量的变化对碳汇强度的影响显著;不同岩溶水系统的碳汇通量不但受水化学条件和地下水动力条件的控制,同时受土地利用变化的影响。该研究对于改进碳循环模型和评价岩溶地质碳汇有重要意义。  相似文献   

7.
目前,全球碳循环研究主要集中在海洋碳汇以及陆地土壤和植被碳汇,而对岩石风化碳汇仅考虑地质长时间尺度的硅酸盐风化作用,而认为碳酸盐风化在长时间尺度上对碳汇无贡献。然而,碳酸盐相对于硅酸盐有快得多的溶解速度,且对全球变化(特别是气候和CO2变化)的响应迅速,同时由于生物作用和人为活动的影响,使得碳酸盐风化碳汇的能力需要重新评价。最新的研究发现,由碳酸盐溶解、全球水循环及水生生物光合利用溶解无机碳共同作用,即水-岩-气-生相互作用形成的大气碳汇,远远大于之前只估计了河流输运的无机碳汇,其量级与森林碳汇量相当,因此有必要对传统的碳汇研究思路和方法进行某些变革,这有可能为解决所谓的全球“碳失汇”问题找到一条出路。   相似文献   

8.
He  Haibo  Liu  Zaihua  Chen  Chongying  Wei  Yu  Bao  Qian  Sun  Hailong  Hu  Yundi  Yan  Hao 《中国地球化学学报》2019,38(5):613-626

Biological carbon pumping (BCP) is a key process in which dissolved inorganic carbon in terrestrial aquatic ecosystems is utilized by aquatic autotrophs for photosynthesis and transformed into autochthonous organic matter (AOC). However, the mechanisms underlying BCP and the amount of generated AOC deposited effectively, are still poorly understood. Therefore, we conducted a systematic study combining modern hydrochemical monitoring and a sediment trap experiment in Fuxian Lake (Yunnan, SW China), the second-deepest plateau, oligotrophic freshwater lake in China. Temperature, pH, EC (electrical conductivity), DO (dissolved O2), [HCO3], [Ca2+], SIc, partial CO2 (pCO2) pressure, and carbon isotopic compositions of HCO313CDIC) in water from Fuxian Lake all displayed distinct seasonal and vertical variations. This was especially apparent in an inverse correlation between pCO2 and DO, indicating that variations of hydrochemistry in the lake water were mainly controlled by the metabolism of the aquatic phototrophs. Furthermore, the lowest C/N ratios and highest δ13Corg were recorded in the trap sediments. Analyses of the C/N ratio demonstrated that the proportions of AOC ranged from 30% to 100% of all OC, indicating that AOC was an important contributor to sedimentary organic matter (OC). It was calculated that the AOC flux in Fuxian Lake was 20.43 t C km−2 in 2017. Therefore, AOC produced by carbonate weathering and aquatic photosynthesis could potentially be a significant carbon sink and may have an important contribution to solving the lack of carbon sinks in the global carbon cycle.

  相似文献   

9.
岩溶作用时间尺度与碳汇稳定性   总被引:7,自引:3,他引:4  
章程 《中国岩溶》2011,30(4):368-371
从碳酸盐溶蚀快速动力学过程、岩溶动力系统的开放性、环境敏感性和生物参与性等方面分析了岩溶作用过程的时间尺度及其碳汇稳定性,指出岩溶碳循环是一种兼具不同时间尺度的特殊地质作用过程,因水生植物和土地利用变化的影响,碳汇效应显著且相对稳定,仍对现今大气CO2减排有重要意义。为更好地估算岩溶碳汇潜力,在加强高精度自动化监测的同时,需要考虑外源水、水生植物及土地利用变化等因素。   相似文献   

10.
Carbonate rock outcrops cover 9%–16% of the continental area and are the principal source of the dissolved inorganic carbon (DIC) transferred by rivers to the oceans, a consequence their dissolution. Current estimations suggest that the flux falls between 0.1–0.6 PgC/a. Taking the intermediate value (0.3 PgC/a), it is equal to 18% of current estimates of the terrestrial vegetation net carbon sink and 38% of the soil carbon sink. In China, the carbon flux from carbonate rock dissolution is estimated to be 0.016 PgC/a, which accounts for 21%, 87.5%–150% and 2.3 times of the forest, shrub and grassland net carbon sinks respectively, as well as 23%–40% of the soil carbon sink flux. Carbonate dissolution is sensitive to environmental and climatic changes, the rate being closely correlated with precipitation, temperature, also with soil and vegetation cover. HCO3- in the water is affected by hydrophyte photosynthesis, resulting in part of the HCO3? being converted into DOC and POC, which may enhance the potential of carbon sequestration by carbonate rock dissolution. The possible turnover time of this carbon is roughly equal to that of the sea water cycle (2000a). The uptake of atmospheric/soil CO2 by carbonate rock dissolution thus plays an important role in the global carbon cycle, being one of the most important sinks. A major research need is to better evaluate the net effect of this sink in comparison to an oceanic source from carbonate mineral precipitation.  相似文献   

11.
岩溶系统中土壤氮肥施用对岩溶碳汇的影响   总被引:2,自引:2,他引:0  
有资料显示陆地碳酸盐岩风化消耗大气CO2的碳通量与世界森林碳汇通量量级相当。但农业地区过量施用氮肥形成的硝酸对碳酸盐岩的溶解会减弱岩溶碳汇效应,其量可达到7%~38%,而适量施用氮肥在增加农作物产量的同时,能降低土壤C/N比,增加土壤微生物活性,促进有机物料分解,从而提高土壤CO2浓度,提高土下碳酸盐岩的溶解速率。因此,要从两方面分析岩溶系统中土壤氮肥施用对岩溶碳汇效应的影响。同时,岩溶区碳酸盐岩风化形成的土壤具有较高的pH值及盐基饱和度,对H+有较强的缓冲作用,可能是导致自然条件下,河流中溶解无机碳(DIC)与水体中钙、镁等离子并不守恒的原因之一,因此,运用端元法可能过高估算了硝酸对碳酸盐岩的溶解量。岩溶区土壤环境中硝化作用产生的硝酸到底多少能对碳酸盐岩产生溶蚀,并影响到岩溶碳汇效应还有待研究。应结合土壤本身的特性及河流生物地球化学过程,综合研究不同施氮水平、土壤硝化产酸及其影响下的土下碳酸盐岩溶解及碳汇效应过程,客观评价岩溶区土壤氮肥施用对岩溶碳汇的影响,并寻求适宜氮肥施用量及促进岩溶碳循环,提高岩溶碳汇效应的技术方法。   相似文献   

12.
岩溶作用促进大气二氧化碳汇过程不仅局限于碳酸盐岩地区,而是涉及全球陆地地质岩石地区,因此以前仅考虑岩溶面积计算的岩溶碳汇量偏低,需要以河流流域为单元全面计算全球岩溶碳汇效应。除了产生河流溶解无机碳被带入海洋外,岩溶作用还可通过水体生物吸收形成颗粒有机碳以及在岩溶土壤中固定有机碳等方式形成碳汇,因此,岩溶地质过程固碳形式多样。其中,仅全球水生生物固定岩溶水重碳酸根产生的有机碳近0.5Gt,生态恢复可促进岩溶土壤有机碳固定及岩溶流域碳汇,我国西南石漠化治理工程至少可增加岩溶碳汇2~3亿t,如果重视岩溶增汇技术的应用,全球岩溶碳汇效应将非常显著。所以,岩溶碳汇研究意义重大,岩溶碳汇效应更不可忽略。   相似文献   

13.
中国南方表层岩溶系统的碳循环及其生态效应   总被引:65,自引:8,他引:57       下载免费PDF全文
蒋忠诚 《第四纪研究》2000,20(4):325-334
表层岩溶系统因碳酸盐岩-水-CO2(气)三相的化学动态不平衡过程而产生特殊的碳循环环节,参加循环的碳包括碳酸盐岩中的碳、大气和土壤空气CO2部分。中国南方表层岩溶系统的碳循环非常活跃,并敏感地响应岩溶动力因素的变化,从而促进了地球化学过程和生物化学过程的结合,成为大气CO2汇的重要项。中国南方表层岩溶系统的碳循环通过驱动环境的元素迁移,促进土壤有机质的积累,并影响植物所需要的矿物质营养元素的全量和有效态,进而影响岩溶区的植物物种、特有性和作物的发育。  相似文献   

14.
A model is presented here, which attempts to determine interactions between change in land use and concentration of atmospheric CO2 over the 1700–2100 period. The main impact of the conversion of forests to agricultural areas is the increase of atmospheric CO2 because of the losses of biomass and soil carbon in favour of the atmosphere. This raise will probably increase in the next years, correlated with the proportion of cultivated areas. We show here that this first-order effect is amplified by the correlative decrease of terrestrial sinks of CO2; in fact, as forests are replaced by cultivated parcels, carbon residence time in biosphere decreases, as well as sequestration ability of these ecosystems. This amplification effect leads to an additional increase in atmospheric CO2, which could reach 100 ppm in 2100. The uncertainties on the range of such an increase are important since they cumulate both uncertainties on the behaviour (sink or source) of terrestrial ecosystems in the future and inherent uncertainties of the modeling of carbon fluxes linked to changing land uses… Such an additional increase in CO2 is partially limited by the ocean reservoir and by the existing CO2 sinks in primary non-anthropologically disturbed ecosystems. The results imply that conservation of primary forests, for which primary productivity and carbon time of residence are high, is an efficient strategy for greenhouse-effect mitigation. To cite this article: V. Gitz, P. Ciais, C. R. Geoscience 335 (2003).  相似文献   

15.
《Atmósfera》2014,27(2):165-172
In Mexico, approximately 7650 wildfires occur annually, affecting 263 115 hectares of land. In addition to their impact on land degradation, wildfires cause deforestation, damage to ecosystems and promote land use change; apart from being the source of emissions of toxic substances to the environment (i.e., hydrogen cyanide, black carbon and organic carbon). Black carbon is a short-lived greenhouse pollutant that also promotes snow and ice melting and decreased rainfall; it has an estimated global warming potential close to 5000.1 We present an estimate of the black carbon and organic carbon emissions from wildfires in Mexico from 2000 to 2012 using selected emission factors from the literature and activity data from local agencies. The results show average emissions of 5955 Mg/yr for black carbon and 62 085 Mg/yr for organic carbon. Black carbon emissions are estimated to be 14 888 Gg CO2 equivalent (CO2 eq) per year on average. With proper management of wildfires, such emissions can be mitigated. Moreover, improved air quality, conservation of ecosystems, improvement of visibility and maintenance of land use are a subset of the related co-benefits. Mitigating forest organic carbon emissions, which are ten times higher than black carbon emissions, would also prevent the morbidity and mortality impacts of toxic organic compounds in the environment.  相似文献   

16.
20世纪90年代,我国率先开展了岩溶作用与碳循环研究。文章在系统总结相关研究进展的基础上,阐明岩溶碳汇的原理,提出基于地球系统科学理念的岩溶流域6种碳循环过程模式,揭示了岩溶碳汇的稳定性并回答有关学者对岩溶碳汇的质疑,从四大圈层的碳循环角度提出发掘岩溶地区碳汇潜力的新理念。在综述岩溶地区碳汇人工干预研究进展的基础上,分析了石漠化综合治理、岩溶土壤改良、水生生物固碳、加速岩溶过程等人工干预措施的碳汇潜力及研究应用方面的不足。提出了下一步岩溶流域碳汇调查研究监测和技术创新发展方向,以及固碳增汇试验示范工作思路。   相似文献   

17.
Advance of Karst Critical Zone and Its Carbon Cycle   总被引:1,自引:0,他引:1  
The category of karst critical zone includes surface karst zones with strong carbon-water-calcium cycle composed of atmosphere-precipitation-vegetation-soil-fissure-bedrock-water and huge karst underground space composed of karst pipeline/fissure-cave-underground river-aquifer, which is the frontier direction of karst earth system science research. This paper summarized the research results of carbon cycle and its effect on atmospheric CO2 source and sink from the scientific development of karst earth system up to now, including the early carbon migration model,the calculation methods and results of current mainstream regional carbon sink and the new discovery of bio-carbon pump, etc. It discussed the problems that the current research frameworks of karst carbon cycle are too single or inconsistent and time scales of carbon turnover are not the same. It was proposed that systematic monitoring of carbon input, storage and output in karst critical zone should be carried out. The importance of karst carbon sinks in the global carbon cycle model should be more convincing through the construction of online high-resolution monitoring sites and the "3S" technology to achieve point-to-area research.  相似文献   

18.
Over geological timescales, CO2 levels are determined by the operation of the long term carbon cycle, and it is generally thought that changes in atmospheric CO2 concentration have controlled variations in Earth's surface temperature over the Phanerozoic Eon. Here we compile independent estimates for global average surface temperature and atmospheric CO2 concentration, and compare these to the predictions of box models of the long term carbon cycle COPSE and GEOCARBSULF.We find a strong relationship between CO2 forcing and temperature from the proxy data, for times where data is available, and we find that current published models reproduce many aspects of CO2 change, but compare poorly to temperature estimates. Models are then modified in line with recent advances in understanding the tectonic controls on carbon cycle source and sink processes, with these changes constrained by modelling 87Sr/86Sr ratios. We estimate CO2 degassing rates from the lengths of subduction zones and rifts, add differential effects of erosion rates on the weathering of silicates and carbonates, and revise the relationship between global average temperature changes and the temperature change in key weathering zones.Under these modifications, models produce combined records of CO2 and temperature change that are reasonably in line with geological and geochemical proxies (e.g. central model predictions are within the proxy windows for >~75% of the time covered by data). However, whilst broad long-term changes are reconstructed, the models still do not adequately predict the timing of glacial periods. We show that the 87Sr/86Sr record is largely influenced by the weathering contributions of different lithologies, and is strongly controlled by erosion rates, rather than being a good indicator of overall silicate chemical weathering rates. We also confirm that a combination of increasing erosion rates and decreasing degassing rates over the Neogene can cause the observed cooling and Sr isotope changes without requiring an overall increase in silicate weathering rates.On the question of a source or sink dominated carbon cycle, we find that neither alone can adequately reconstruct the combination of CO2, temperature and strontium isotope dynamics over Phanerozoic time, necessitating a combination of changes to sources and sinks. Further progress in this field relies on >108 year dynamic spatial reconstructions of ancient tectonics, paleogeography and hydrology. Whilst this is a significant challenge, the latest reconstruction techniques, proxy records and modelling advances make this an achievable target.  相似文献   

19.
李栋  赵敏  刘再华  陈波 《地学前缘》2022,29(3):155-166
河流输送到海洋的溶解无机碳(DIC)和有机碳(OC)受自然和人为双重因素的影响。了解DIC和OC的年龄、来源和转化,有助于掌握全球碳收支和提高现在以及未来自然和人类对河流碳循环影响的估算精度。本研究以普定岩溶水-碳循环试验场泉(地下水)-池(地表水)耦联系统为研究对象,利用双碳同位素(13C- 14C)方法,结合水生植物生长和传统水文地球化学特征,揭示了地下水-地表水系统中DIC和颗粒有机碳(POC)的来源及其转化机制。研究发现:(1)泉-池系统中DIC和POC的Δ14C具有相同的变化趋势,泉水中Δ14C值低于池水中Δ14C值,反映后者可能有“较年轻”的CO2的加入;(2)池水水化学和碳同位素变化由土地利用类型和池中水生植物共同控制;(3)池水中颗粒有机碳(POC)浓度明显高于泉水,且其Δ14C值表现出与沉水植物和DIC的一致性(表观年龄均为3 200900 a),说明池水POC主要源于池中水生植物光合作用利用了碳酸盐风化产生的老碳(DIC),使新形成的有机质在表观年龄上“偏老”;(4)池水水体内源有机碳对水体POC的贡献在75%以上,内源有机碳通量(以C计)在250 t·km-2·a-1至660 t·km-2·a-1之间,相对于其他土地利用类型,草地对应的地表水系统具有最大的内源有机碳占比和通量,指示了沉水植物控制型浅水水体初级生产对有机碳循环的重要作用。综上,我们认为在岩溶区通过土地利用调整来调控水生植物群落对于增加碳汇具有重要潜力。  相似文献   

20.
 Based on the analyses and comparisons of water chemistry, stable carbon isotopes and deposition rates of speleothems, the authors found that there are two kinds of speleothems in the tunnels at the Wujiangdu Dam site, Guizhou, China, namely the CO2-outgassing type and the CO2-absorbing type. The former is natural, as observed in general karst caves, and the product of karst processes under natural conditions. The latter, however, is special, resulting from the carbonation of a cement-grouting curtain and concrete. Due to the quick absorption of CO2 from the surrounding atmosphere, evidenced by the low CO2 content in the air and the high deposition rate of speleothems (as high as 10 cm/a) in the tunnels, the contribution of the carbonation process to the sink of CO2 in the atmosphere is important (in the order of magnitude of 108 tons c/a) and should be taken into consideration in the study of the global carbon cycle because of the use of cement on a worldwide scale. Received: 21 July 1997 · Accepted: 13 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号