首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Studies of mantle xenolith and xenocryst studies have indicated that the subcontinental lithospheric mantle (SCLM) at the Karelian Craton margin (Fennoscandian Shield) is stratified into at least three distinct layers cited A, B, and C. The origin and age of this layering has, however, remained unconstrained. In order to address this question, we have determined Re–Os isotope composition and a comprehensive set of major and trace elements, from xenoliths representing all these three layers. These are the first Re–Os data from the SCLM of the vast East European Craton.

Xenoliths derived from the middle layer B (at  110–180 km depth), which is the main source of harzburgitic garnets and peridotitic diamonds in these kimberlites, are characterised by unradiogenic Os isotopic composition. 187Os/188Os shows a good correlation with indices of partial melting implying an age of  3.3. Ga for melt extraction. This age corresponds with the oldest formation ages of the overlying crust, suggesting that layer B represents the unmodified SCLM stabilised during the Paleoarchean. Underlying layer C (at 180–250 km depths) is the main source of Ti-rich pyropes of megacrystic composition but is lacking harzburgitic pyropes. The osmium isotopic composition of layer C xenoliths is more radiogenic compared to layer B, yielding only Proterozoic TRD ages. Layer C is interpreted to represent a melt metasomatised equivalent to layer B. This metasomatism most likely occurred at ca. 2.0 Ga when the present craton margin formed following continental break-up. Shallow layer A (at  60–110 km depth) has knife-sharp lower contact against layer B indicative of shear zone and episodic construction of SCLM. Layer A peridotites have “ultradepleted” arc mantle-type compositions, and have been metasomatised by radiogenic 187Os/188Os, presumably from slab-derived fluids. Since layer A is absent in the core of the craton, its origin can be related to Proterozoic processes at the craton margin. We interpret it to represent the lithosphere of a Proterozoic arc complex (subduction wedge mantle) that became underthrusted beneath the craton margin crust during continental collision  1.9 Ga ago.  相似文献   


2.
The compositional structure and thermal state of the subcontinental lithospheric mantle (SCLM) beneath the Kalahari Craton and the surrounding mobile belts have been mapped in space and time using >3400 garnet xenocrysts from >50 kimberlites intruded over the period 520–80 Ma. The trace-element patterns of many garnets reflect the metasomatic refertilisation of originally highly depleted harzburgites and lherzolites, and much of the lateral and vertical heterogeneity observed in the SCLM within the craton is the product of such metasomatism. The most depleted, and possibly least modified, SCLM was sampled beneath the Limpopo Belt by early Paleozoic kimberlites; the SCLM beneath other parts of the craton may represent similar material modified by metasomatism during Phanerozoic time. In the SW part of the craton, the SCLM sampled by “Group 2” kimberlites (>110 Ma) is thicker, cooler and less metasomatised than that sampled by “Group 1” kimberlites (mostly ≤95 Ma) in the same area. Therefore, the extensively studied xenolith suite from the Group 1 kimberlites probably is not representative of primary Archean SCLM compositions. The relatively fertile SCLM beneath the mobile belts surrounding the craton is interpreted as largely Archean SCLM, metasomatised and mixed with younger material during Paleoproterozoic to Mesoproterozoic rifting and compression. This implies that at least some of the observed secular evolution in SCLM composition worldwide may reflect the reworking of Archean SCLM. There are strong correlations between mantle composition and the lateral variations in seismic velocity shown by detailed tomographic studies. Areas of relatively low Vp within the craton largely reflect the progressive refertilisation of the Archean root during episodes of intraplate magmatism, including the Bushveld (2 Ga) and Karroo (ca. 180 Ma) events; areas of high Vp map out the distribution of relatively less metasomatised Archean SCLM. The relatively low Vp of the SCLM beneath the mobile belts around the craton is consistent with its fertile composition. The seismic data may be used to map the lateral extent of different types of SCLM, taking into account the small lateral variations in the geotherm identified using the techniques described here.  相似文献   

3.
The concentrations of platinum-group elements (PGE; Os, Ir, Ru, Pd and Pt) and Re, and the Os isotopic compositions were determined for 33 lithospheric mantle peridotite xenoliths from the Somerset Island kimberlite field. The Os isotopic compositions are exclusively less radiogenic than estimates of bulk-earth (187Os/188Os as low as 0.1084) and require a long-term evolution in a low Re–Os environment. Re depletion model ages (TRD) indicate that the cratonic lithosphere of Somerset Island stabilised by at least 2.8 Ga, i.e. in the Neoarchean and survived into the Mesozoic to be sampled by Cretaceous kimberlite magmatism. An Archean origin also is supported by thermobarometry (Archean lithospheric keels are characterised by >150 km thick lithosphere), modal mineralogy and mineral chemistry observations. The oldest ages recorded in the lithospheric mantle beneath Somerset Island are younger than the Mesoarchean (>3 Ga) ages recorded in the Slave craton lithospheric mantle to the southwest [Irvine, G.J., et al., 1999. Age of the lithospheric mantle beneath and around the Slave craton: a Rhenium–Osmium isotopic study of peridotite xenoliths from the Jericho and Somerset Island kimberlites. Ninth Annual V.M. Goldschmidt Conf., LPI Cont., 971: 134–135; Irvine, G.J., et al., 2001. The age of two cratons: a PGE and Os-Isotopic study of peridotite xenoliths from the Jericho kimberlite (Slave craton) and the Somerset Island kimberlite field (Churchill Province). The Slave–Kaapvaal Workshop, Merrickville, Ontario, Canada]. Younger, Paleoproterozoic, TRD model ages for Somerset Island samples are generally interpreted as the result of open system behaviour during metasomatic and/or magmatic processes, with possibly the addition of new lithospheric material during tectono-thermal events related to the Taltson–Thelon orogen. PGE patterns highly depleted in Pt and Pd generally correspond to older Archean TRD model ages indicating closed system behaviour since the time of initial melt extraction. Younger Proterozoic TRD model ages generally correspond to more complex PGE patterns, indicating open system behaviour with possible sulfide or melt addition. There is no correlation between the age of the lithosphere and depth, at Somerset Island.  相似文献   

4.
The kimberlite fields scattered across the NE part of the Siberian Craton have been used to map the subcontinental lithospheric mantle (SCLM), as it existed during Devonian to Late Jurassic time, along a 1000-km traverse NE–SW across the Archean Magan and Anabar provinces and into the Proterozoic Olenek Province. 4100 garnets and 260 chromites from 65 kimberlites have been analysed by electron probe (major elements) and proton microprobe (trace elements). These data, and radiometric ages on the kimberlites, have been used to estimate the position of the local (paleo)geotherm and the thickness of the lithosphere, and to map the detailed distribution of specific rock types and mantle processes in space and time. A low geotherm, corresponding approximately to the 35 mW/m2 conductive model of Pollack and Chapman [Tectonophysics 38, 279–296, 1977], characterised the Devonian lithosphere beneath the Magan and Anabar crustal provinces. The Devonian geotherm beneath the northern part of the area was higher, rising to near a 40 mW/m2 conductive model. Areas intruded by Mesozoic kimberlites are generally characterised by this higher, but still ‘cratonic' geotherm. Lithosphere thickness at the time of kimberlite intrusion varied from ca. 190 to ca. 240 km beneath the Archean Magan and Anabar provinces, but was less (150–180 km) beneath the Proterozoic Olenek Province already in Devonian time. Thinner Devonian lithosphere (140 km) in parts of this area may be related to Riphean rifting. Near the northern end of the traverse, differences in geotherm, lithosphere thickness and composition between the Devonian Toluopka area and the nearby Mesozoic kimberlite fields suggest thinning of the lithosphere by ca. 50–60 km, related to Devonian rifting and Triassic magmatism. A major conclusion of this study is that the crustal terrane boundaries defined by geological mapping and geophysical data (extended from outcrops in the Anabar Shield) represent major lithospheric sutures, which continue through the upper mantle and juxtapose lithospheric domains that differ significantly in composition and rock-type distribution between 100 and 250 km depth. The presence of significant proportions of harzburgitic and depleted lherzolitic garnets beneath the Magan and Anabar provinces is concordant with their Archean surface geology. The lack of harzburgitic garnets, and the chemistry of the lherzolitic garnets, beneath most of the other fields are consistent with the Proterozoic surface rocks. Mantle sections for different terranes within the Archean portion of the craton show pronounced differences in bulk composition, rock-type distribution, metasomatic overprint and lithospheric thickness. These observations suggest that individual crustal terranes, of both Archean and Proterozoic age, had developed their own lithospheric roots, and that these differences were preserved during the Proterozoic assembly of the craton. Data from kimberlite fields near the main Archean–Proterozoic suture (the Billyakh Shear Zone) suggest that reworking and mixing of Archean and Proterozoic mantle was limited to a zone less than 100 km wide.  相似文献   

5.
U-Pb isotopic thermochronometry of rutile, apatite and titanite from kimberlite-borne lower crustal granulite xenoliths has been used to constrain the thermal evolution of Archean cratonic and Proterozoic off-craton continental lithosphere beneath southern Africa. The relatively low closure temperature of the U-Pb rutile thermochronometer (~400-450 °C) allows its use as a particularly sensitive recorder of the establishment of "cratonic" lithospheric geotherms, as well as subsequent thermal perturbations to the lithosphere. Contrasting lower crustal thermal histories are revealed between intracratonic and craton margin regions. Discordant Proterozoic (1.8 to 1.0 Ga) rutile ages in Archean (2.9 to 2.7 Ga) granulites from within the craton are indicative of isotopic resetting by marginal orogenic thermal perturbations influencing the deep crust of the cratonic nucleus. In Proterozoic (1.1 to 1.0 Ga) granulite xenoliths from the craton-bounding orogenic belts, rutiles define discordia arrays with Neoproterozoic (0.8 to 0.6 Ga) upper intercepts and lower intercepts equivalent to Mesozoic exhumation upon kimberlite entrainment. In combination with coexisting titanite and apatite dates, these results are interpreted as a record of postorogenic cooling at an integrated rate of approximately 1 °C/Ma, and subsequent variable Pb loss in the apatite and rutile systems during a Mesozoic thermal perturbation to the deep lithosphere. Closure of the rutile thermochronometer signals temperatures of 𙠂 °C in the lower crust during attainment of cratonic lithospheric conductive geotherms, and such closure in the examined portions of the "off-craton" Proterozoic domains of southern Africa indicates that their lithospheric thermal profiles were essentially cratonic from the Neoproterozoic through to the Late Jurassic. These results suggest similar lithospheric thickness and potential for diamond stability beneath both Proterozoic and Archean domains of southern Africa. Subsequent partial resetting of U-Pb rutile and apatite systematics in the cratonic margin lower crust records a transient Mesozoic thermal modification of the lithosphere, and modeling of the diffusive Pb loss from lower crustal rutile constrains the temperature and duration of Mesozoic heating to 𙡦 °C for ₞ ka. This result indicates that the thermal perturbation is not simply a kimberlite-related magmatic phenomenon, but is rather a more protracted manifestation of lithospheric heating, likely related to mantle upwelling and rifting of Gondwana during the Late Jurassic to Cretaceous. The manifestation of this thermal pulse in the lower crust is spatially and temporally correlated with anomalously elevated and/or kinked Cretaceous mantle paleogeotherms, and evidence for metasomatic modification in cratonic mantle peridotite suites. It is argued that most of the geographic differences in lithospheric thermal structure inferred from mantle xenolith thermobarometry are likewise due to the heterogeneous propagation of this broad upper mantle thermal anomaly. The differential manifestation of heating between cratonic margin and cratonic interior indicates the importance of advective heat transport along pre-existing lithosphere-scale discontinuities. Within this model, kimberlite magmatism was a similarly complex, space- and time-dependent response to Late Mesozoic lithospheric thermal perturbation.  相似文献   

6.
The collision between the North and South China cratons in Middle Triassic time (240–225 Ma) created the world’s largest belt of ultrahigh-pressure (UHP) metamorphism. U–Pb ages, Hf isotope systematics and trace element compositions of zircons from the Xugou, Yangkou and Hujialing peridotites in the Sulu UHP terrane mainly record a ~470 Ma tectonothermal event, coeval with the Early Paleozoic kimberlite eruptions within the North China craton. This event is interpreted as the result of metasomatism by fluids/melts derived from multiple sources including a subducting continental slab. The peridotites also contain zircons with ages of ~3.1 Ga, and Hf isotope data imply a component ≥3.2 Ga old. Most zircon Hf depleted mantle model ages are ~1.3 Ga, suggesting that the deep subcontinental lithospheric mantle beneath the southeastern margin of the North China craton experienced a intense mid-Mesoproterozoic metasomatism by asthenospheric components, similar to the case for the eastern part of this craton. Integrating data from peridotites along the southern margin of the craton, we argue that the deep lithosphere of the cratonic margin (≥3.2 Ga old), from which the Xugou, Yangkou and Hujialing peridotites were derived, experienced Proterozoic metasomatic modification, followed by a strong Early Paleozoic (~470 Ma) tectonothermal event and the Early Mesozoic (~230 Ma) collision and northward subduction of the Yangtze craton. The Phanerozoic decratonization of the eastern North China craton, especially along its southern margin, was not earlier than the Triassic continental collision. This work also demonstrates that although zircons are rare in peridotitic rocks, they can be used to unravel the history of specific lithospheric domains and thus contribute to our understanding of the evolution of continental cratons and their margins.  相似文献   

7.
Lower crustal xenoliths recovered from Eocene to Cambrian kimberlites in the central and southern Slave craton are dominated by mafic granulites (garnet, clinopyroxene, plagioclase±orthopyroxene), with subordinate metatonalite and peraluminous felsic granulites. Geothermobarometry indicates metamorphic conditions of 650–800 °C at pressures of 0.9–1.1 GPa. The metamorphic conditions are consistent with temperatures expected for the lower crust of high-temperature low-pressure (HT-LP) metamorphic belts characteristic of Neoarchean metamorphism in the Slave craton. U–Pb geochronology of zircon, rutile and titanite demonstrate a complex history in the lower crust. Mesoarchean protoliths occur beneath the central Slave supporting models of an east-dipping boundary between Mesoarchean crust in the western and Neoarchean crust in the eastern Slave. At least, two episodes of igneous and metamorphic zircon growth occurred in the interval 2.64–2.58 Ga that correlate with the age of plutonism and metamorphism in the upper crust, indicating magmatic addition to the lower crust and metamorphic reworking during this period. In addition, discrete periods of younger zircon growth at ca. 2.56–2.55 and 2.51 Ga occurred 20–70 my after the cessation of ca. 2.60–2.58 Ga regional HT-LP metamorphism and granitic magmatism in the upper crust. This pattern of younger metamorphic events in the deep crust is characteristic of the Slave as well as other Archean cratons (e.g., Superior). The high temperature of the lower crust immediately following amalgamation of the craton, coupled with evidence for continued metamorphic zircon growth for >70 my after ‘stabilization’ of the upper crust, is difficult to reconcile with a thick (200 km), cool lithospheric mantle root beneath the craton prior to this event. We suggest that thick tectosphere developed synchronously or after these events, most likely by imbrication of mantle beneath the craton at or after ca. 2.6 Ga. The minimum age for establishing a cratonic like geotherm is given by lower crustal rutile ages of ca. 1.8 Ga in the southern Slave. Transient heating and possible magmatic additions to the lower crust continued through the Proterozoic, with possible additional growth of the tectosphere.  相似文献   

8.
Regional-scale geophysical information, which includes aeromagnetic, gravity, seismic refraction, multi-channel seismic reflection and electromagnetic induction data, is used to extend our knowledge of the Canadian Shield beneath the Phanerozoic Williston basin of south-central Canada and the north-central United States. A new tectonic map based on this information shows the Proterozoic Flin Flon-Snow Lake and La Ronge-Lynn Lake volcanic island arcs and their associated fore-arc (Kisseynew belt) and back-arc (Reindeer-South Indian Lakes belt) basins wedged between the Archean Superior craton on the east and the Archean parts of the Churchill and Wyoming cratons on the west. Along the western margin of the Superior craton the Thompson nickel belt, including its extension southwards beneath the Williston basin, is interpreted to have been successively the site of continental rifting and rupturing, an evolving continental margin, a continent-volcanic island arc “suture” zone and eventually a continental-scale strike-slip fault. The North American Central Plains electrical conductivity anomaly and closely related seismic low-velocity zones are explained by the presence in the lower crust of buried slices of hydrated oceanic-type material, situated within the southward extension of the Reindeer-South Indian Lakes remnant back-arc basin and adjoining tectonic units. A new plate tectonic model is proposed for this region that involves the rifting and rupturing of the Archean continents and the opening and closing of one or more oceanic basins. This model is shown to be consistent with most of the geological, geophysical and geochronological data that pertains to the Proterozoic evolution of the exposed Shield and similar geophysical data and subsurface geochronological information from further south.  相似文献   

9.
Deep seismic reflection profiles collected across Proterozoic–Archean margins are now sufficiently numerous to formulate a consistent hypothesis of how continental nuclei grow laterally to form cratonic shields. This picture is made possible both because the length of these regional profiles spans all the tectonic elements of an orogen on a particular cratonic margin and because of their great depth range. Key transects studied include the LITHOPROBE SNORCLE 1 transect and the BABEL survey, crossing the Slave and Baltic craton margins, respectively. In most cases, the older (Archean) block appears to form a wedge of uppermost mantle rock embedded into the more juvenile (Proterozoic) block by as much as 100–200 km at uppermost mantle depths and Archean lithosphere is therefore more laterally extensive at depth than at the surface. Particularly bright reflections along the Moho are cited as evidence of shear strain within a weak, low-viscosity lower crustal channel that lies along the irregular top of the indenting wedge. The bottom of the wedge is an underthrust/subduction zone, and associated late reversal in subduction polarity beneath the craton margin emerges as a common characteristic of these margins although related arc magmatism may be minor.  相似文献   

10.
The electrical structure of the Slave craton   总被引:4,自引:0,他引:4  
The Slave craton in northwestern Canada, a relatively small Archean craton (600×400 km), is ideal as a natural laboratory for investigating the formation and evolution of Mesoarchean and Neoarchean sub-continental lithospheric mantle (SCLM). Excellent outcrop and the discovery of economic diamondiferous kimberlite pipes in the centre of the craton during the early 1990s have led to an unparalleled amount of geoscientific information becoming available.

Over the last 5 years deep-probing electromagnetic surveys were conducted on the Slave, using the natural-source magnetotelluric (MT) technique, as part of a variety of programs to study the craton and determine its regional-scale electrical structure. Two of the four types of surveys involved novel MT data acquisition; one through frozen lakes along ice roads during winter, and the second using ocean-bottom MT instrumentation deployed from float planes.

The primary initial objective of the MT surveys was to determine the geometry of the topography of the lithosphere–asthenosphere boundary (LAB) across the Slave craton. However, the MT responses revealed, completely serendipitously, a remarkable anomaly in electrical conductivity in the SCLM of the central Slave craton. This Central Slave Mantle Conductor (CSMC) anomaly is modelled as a localized region of low resistivity (10–15 Ω m) beginning at depths of 80–120 km and striking NE–SW. Where precisely located, it is spatially coincident with the Eocene-aged kimberlite field in the central part of the craton (the so-called “Corridor of Hope”), and also with a geochemically defined ultra-depleted harzburgitic layer interpreted as oceanic or arc-related lithosphere emplaced during early tectonism. The CSMC lies wholly within the NE–SW striking central zone defined by Grütter et al. [Grütter, H.S., Apter, D.B., Kong, J., 1999. Crust–mantle coupling; evidence from mantle-derived xenocrystic garnets. Contributed paper at: The 7th International Kimberlite Conference Proceeding, J.B. Dawson Volume, 1, 307–313] on the basis of garnet geochemistry (G10 vs. G9) populations.

Deep-probing MT data from the lake bottom instruments infer that the conductor has a total depth-integrated conductivity (conductance) of the order of 2000 Siemens, which, given an internal resistivity of 10–15 Ω m, implies a thickness of 20–30 km. Below the CSMC the electrical resistivity of the lithosphere increases by a factor of 3–5 to values of around 50 Ω m. This change occurs at depths consistent with the graphite–diamond transition, which is taken as consistent with a carbon interpretation for the CSMC.

Preliminary three-dimensional MT modelling supports the NE–SW striking geometry for the conductor, and also suggests a NW dip. This geometry is taken as implying that the tectonic processes that emplaced this geophysical–geochemical body are likely related to the subduction of a craton of unknown provenance from the SE (present-day coordinates) during 2630–2620 Ma. It suggests that the lithospheric stacking model of Helmstaedt and Schulze [Helmstaedt, H.H., Schulze, D.J., 1989. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In Ross, J. (Ed.), Kimberlites and Related Rocks, Vol. 1: Their Composition, Occurrence, Origin, and Emplacement. Geological Society of Australia Special Publication, vol. 14, 358–368] is likely correct for the formation of the Slave's current SCLM.  相似文献   


11.
It has been suggested that large areas of the Earth's lithospheric mantle undergo pervasive dehydration melting during the impact of mantle plumes and the Early-Cretaceous Paraná-Etendeka continental flood-basalt (CFB) province has repeatedly been cited as evidence of this phenomenon. During the Cretaceous, however, southern Brazil experienced two phases of mafic magmatism. These igneous events occurred ~50?Ma apart and therefore represent distinct episodes of melt genesis in the underlying mantle. The first phase of magmatism, in the Early Cretaceous, included the emplacement of lava flows associated with the Paraná-Etendeka CFB province and also the intrusion of small-volume mafic alkaline magmas (e.g. Anitápolis, Jacupiranga and Juquiá) in the Dom Feliciano and Ribeira mobile belts. During the Late Cretaceous, both sodic and potassic mafic magmas were emplaced on the margin of the adjacent Luis-Alves craton and intrude the flood-basalts at Lages. On the basis of variations in incompatible trace-element concentrations (e.g. Ba?=?1000 to 2000?ppm), initial 87Sr/86Sr ratios (0.7048–0.7064) and ?Nd values (?3 to ?12), we suggest that all of the Late-Cretaceous mafic potassic magmas were derived from the subcontinental lithospheric mantle (SCLM) which was metasomatically enriched during the Proterozoic. We propose that these relatively low temperature, volatile-rich, mafic melts provide direct evidence that the underlying SCLM did not melt wholesale during the previous Early-Cretaceous Paraná-Etendeka CFB event. Late-Cretaceous melting of the SCLM beneath southern Brazil may have been caused by heat conduction from either: (1) ponded ~132?Ma Tristan plume-head material; or (2) ~85?Ma Trindade plume-head material channelled southwards between the thick cratonic keels of the Amazonas and São Francisco cratons. The Late-Cretaceous magmatism appears to have been contemporaneous with uplift across southern Brazil and Paraguay; we suggest that both of these phenomena represent the widespread effects of the impact of the Trindade mantle plume on the base of the SCLM. Plate margin stresses and lithospheric extension associated with the opening of the South Atlantic may also have changed the geothermal gradient beneath southern Brazil and contributed to mantle melting.  相似文献   

12.
支霞臣  秦协 《岩石学报》2004,20(5):989-998
我国东部新生代玄武岩中包含丰富的地幔橄榄岩捕虏体,近年来一些研究者对兴蒙造山带的双辽、汪清,华北克拉通的龙岗、汉诺坝、栖霞、女山和扬子克拉通的盘石山、练山等地8个新生代玄武岩区近百个地幔橄榄岩捕虏体全岩粉末样品获得了Re-Os同位素数据,对澎湖列岛新生代玄武岩的地幔橄榄岩捕虏体中不同产状的硫化物包裹体作了原位的Re-Os同位素体系分析,此外,对辽宁复县和山东蒙阴古生代金伯利岩中的3个地幔橄榄岩捕虏体全岩粉末样品作了Re-Os分析。本文综合了文献中已有的数据,采用Re-Os同位素体系常用的方法,如Os同位素代理等时线年龄和Re亏损模式年龄,计算了SCLM的年龄。结果表明这些地区SCLM的形成年龄主要为早-中元古代,局部地区如辽宁复县有更老的年龄。我国东部新生代玄武岩中的尖晶石相地幔橄榄岩代表的SCLM主体上是元古代SCLM经过显生宙减薄作用后的残余部分,它对我国东部SCLM减薄作用在纵向上的规模和强度提供了制约。  相似文献   

13.
Mantle xenoliths and xenocrysts were retrieved from three of the 88–86 Ma Buffalo Hills kimberlites (K6, K11, K14) for a reconnaissance study of the subcontinental lithospheric mantle (SCLM) beneath the Buffalo Head Terrane (Alberta, Canada). The xenoliths include spinel lherzolites, one garnet spinel lherzolite, garnet harzburgites, one sheared garnet lherzolite and pyroxenites. Pyroxenitic and wehrlitic garnet xenocrysts are derived primarily from the shallow mantle and lherzolitic garnet xenocrysts from the deep mantle. Harzburgite with Ca-saturated garnets is concentrated in a layer between 135–165 km depth. Garnet xenocrysts define a model conductive paleogeotherm corresponding to a heat flow of 38–39 mW/m2. The sheared garnet lherzolite lies on an inflection of this geotherm and may constrain the depth of the lithosphere–asthenosphere boundary (LAB) beneath this region to ca 180 km depth.

A loss of >20% partial melt is recorded by spinel lherzolites and up to 60% by the garnet harzburgites, which may be related to lithosphere formation. The mantle was subsequently modified during at least two metasomatic events. An older metasomatic event is evident in incompatible-element enrichments in homogeneous equilibrated garnet and clinopyroxene. Silicate melt metasomatism predominated in the deep lithosphere and led to enrichments in the HFSE with minor enrichments in LREE. Metasomatism by small-volume volatile-rich melts, such as carbonatite, appears to have been more important in the shallow lithosphere and led to enrichments in LREE with minor enrichments in HFSE. An intermediate metasomatic style, possibly a signature of volatile-rich silicate melts, is also recognised. These metasomatic styles may be related through modification of a single melt during progressive interaction with the mantle. This metasomatism is suggested to have occurred during Paleoproterozoic rifting of the Buffalo Head Terrane from the neighbouring Rae Province and may be responsible for the evolution of some samples toward unradiogenic Nd and Hf isotopic compositions.

Disturbed Re–Os isotope systematics, evident in implausible model ages, were obtained in situ for sulfides in several spinel lherzolites and suggest that many sulfides are secondary (metasomatic) or mixtures of primary and secondary sulfides. Sulfide in one peridotite has unradiogenic 187Os/188Os and gives a model age of 1.89±0.38 Ga. This age coincides with the inferred emplacement of mafic sheets in the crust and suggests that the melts parental to the intrusions interacted with the lithospheric mantle.

A younger metasomatic event is indicated by the occurrence of sulfide-rich melt patches, unequilibrated mineral compositions and overgrowths on spinel that are Ti-, Cr- and Fe-rich but Zn-poor. Subsequent cooling is recorded by fine exsolution lamellae in the pyroxenes and by arrested mineral reactions.

If the lithosphere beneath the Buffalo Head Terrane was formed in the Archaean, any unambiguous signatures of this ancient origin may have been obliterated during these multiple events.  相似文献   


14.
We report mineralogical and chemical compositions of spinel peridotite xenoliths from two Tertiary alkali basalt localities on the Archean North China craton (Hannuoba, located in the central orogenic block, and Qixia, in the eastern block). The two peridotite suites have major element compositions that are indistinguishable from each other and reflect variable degrees (0–25%) of melt extraction from a primitive mantle source. Their compositions are markedly different from typical cratonic lithosphere, consistent with previous suggestions for removal of the Archean mantle lithosphere beneath this craton. Our previously published Os isotopic results for these samples [Earth Planet. Sci. Lett. 198 (2002) 307] show that lithosphere replacement occurred in the Paleoproterozoic beneath Hannuoba, but in the Phanerozoic beneath Qixia. Thus, we see no evidence for a compositional distinction between Proterozoic and Phanerozoic continental lithospheric mantle. The Hannuoba xenoliths equilibrated over a more extensive temperature (hence depth) interval than the Qixia xenoliths. Neither suite shows a correlation between equilibration temperature and major element composition, indicating that the lithosphere is not chemically stratified in either area. Trace element and Sr and Nd isotopic compositions of the Hannuoba xenoliths reflect recent metasomatic overprinting that is not related to the Tertiary magmatism in this area.  相似文献   

15.
Margins of old continental lithosphere are likely prone to ongoing modification processes. Therefore, constraining detailed structures beneath the margin can be essential in understanding the evolution of the continental lithosphere. The eastern margin of the Eurasian plate is a natural laboratory that allows us to study the strong effects from multiple episodes of continental collision and subduction of different oceanic plates since their formation. To reveal the detailed evolution of cratons at their margins, we describe, for the first time, the upper mantle structures beneath the southern Korean Peninsula (SKP) based strictly on teleseismic relative arrival time data from densely deployed local seismic arrays, which allows us to constrain the details of the lithospheric structures beneath the Archean-Proterozoic basement. We imaged a thick (~150 km) high-velocity anomaly mainly beneath the Proterozoic Yeongnam Massif with large velocity contrasts (dlnVp ≈ 4.0% and dlnVs ≈ 6.0%) at its boundaries, suggesting the presence of a long-lasting cratonic root in the southwestern SKP. On the other hand, low-velocity anomalies were found beneath the Proterozoic Gyeonggi Massif, Gyeongsang arc-back-arc basin, and along the eastern margin of the SKP, indicating significantly modified regions. The possible existence of a remnant cratonic root beneath the SKP and contrasting lithospheric structures across the different Precambrian massifs suggests the highly heterogeneous modification of cratonic lithosphere at the eastern Eurasian plate margin. Strong velocity reductions, which indicate a thermally elevated upper mantle potentially with partial melts, correspond to areas of Cenozoic basalts, high surface heat flow, and high topography along the eastern KP margin. We interpret this coincidence as a result of recent reactivation of a craton margin, which is controlled by intense interaction between the convective upper mantle and heterogeneous continental lithosphere.  相似文献   

16.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

17.
Broad-band and long period magnetotelluric measurements made at 63 locations along ~500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton(DC)and Eastern Ghat Mobile Belt(EGMB)in south India,is modelled to examine the lithosphere architecture of the cratonic domain and define tectonic boundaries.The 2-D resistivity model shows moderately conductive features that intersperse a highly resistive background of crystalline rocks and spatially connect to the exposed schist belts or granitic intrusions in the DC.These features are therefore interpreted as images of fossil pathways of the volcanic emplacements associated with the greenstone belt and granite suite formation exposed in the region.A near vertical conductive feature in the upper mantle under the Chitradurga Shear Zone represents the Archean suture between the western and eastern blocks of DC.Although thick(~200 km)cratonic(highly resistive)lithosphere is preserved,significant part of the cratonic lithosphere below the western DC is modified due to plume-continental lithosphere interactions during the Cretaceous—Tertiary period.A west-verging moderately conductive feature imaged beneath EGMB lithosphere is interpreted as the remnant of the Proterozoic collision process between the Indian land mass and East Antarctica.Thin(~120 km)lithosphere is seen below the EGMB,which form the exterior margin of the India shield subsequent to its separation from East Antarctica through rifting and opening of the Indian Ocean in the Cretaceous.  相似文献   

18.
The late tectonic evolution of the Slave craton involves extensive magmatism, deformation, and high temperature-low pressure (HT-LP) metamorphism. We argue that the nature of these tectonic events is difficult to reconcile with early, pre-2.7 Ga development and preservation of a thick tectosphere, and suggest that crust–mantle coupling and stabilization occurred only late in the orogenic development of the craton. The extent and repetitiveness of the tectonic reworking documented within the Mesoarchean basement complex of the western Slave, together with the development of large-volume, extensional mafic magmatism at 2.7 Ga within the basement complex argue against preservation of a widespread, thick, cool Mesoarchean tectosphere beneath the western Slave craton prior to Neoarchean tectonism. Broad-scale geological and geophysical features of the Slave craton, including orientation of an early F1 fold belt, distribution of ca. 2.63–2.62 Ga plutonic rocks, and the distribution of geochemical, petrological and geophysical domains within the mantle lithosphere collectively highlight the importance of an NE–SW structural grain to the craton. These trends are oblique to the earlier, ca. 2.7 Ga north–south trending boundary between Mesoarchean and Neoarchean crustal domains, and are interpreted to represent a younger structural feature imposed during northwest or southeast-vergent tectonism at ca. 2.64–2.61 Ga. Extensive plutonism, in part mantle-derived, crustal melting and associated HT-LP metamorphism argue for widespread mantle heat input to the crust, a feature most consistent with thin (<100 km) lithosphere at that time. We propose that the mantle lithosphere developed by tectonic imbrication of one or more slabs subducted beneath the craton at the time of development of the D1 structural grain, producing the early 2.63–2.62 Ga arc-like plutonic rocks. Subsequent collision (external to the present craton boundaries) possibly accompanied by partial delamination of some of the underthrust lithosphere, produced widespread deformation (D2) and granite plutonism throughout the province at 2.6–2.58 Ga. An implication of this model is that diamond formation in the Slave should be Neoarchean in age.  相似文献   

19.
Recent developments in seismic, magnetotelluric and geochemical analytical techniques have significantly increased our capacity to explore the mantle lithosphere to depths of several hundred kilometres, to map its structures, and through geological interpretations, to assess its potential as a diamond reservoir. Several independent teleseismic techniques provide a synergistic approach in which one technique compensates for inadequacies in another. Shear wave anisotropy and discontinuity studies using single seismic stations define vertical mantle stratigraphic columns. For example, beneath the central Slave craton seismic discontinuities at depths of 38, 110, 140 and 190 km appear to bound two distinct anisotropic layers. Tomographic (3-D) inversions of seismic wave travel-times and 2-D inversions of surface or scattered waves use arrays of stations and provide lateral coverage. In combination, and by correlation with electrical conductivity and xenolith petrology studies, these techniques provide maps of key physical properties within parts of the cratons known to host diamonds. Beneath the Slave craton, the discontinuity at 38 km is the base of the crust; the boundaries at 110 and 140 km appear to bound a layer of depleted harzburgite that is interpreted to contain graphite. To date, only some of these techniques have been applied to the Slave and Kaapvaal cratons so that the origin and geological history of the currently mapped mantle structures are not, as yet, generally agreed.  相似文献   

20.
岩浆岩Nd、Sr同位素特征表明,扬子地块基底有着和华北地块很不相同的早期演变历史。这意味着华北和扬子两地块在历史上曾经是相互独立的,后来才拼合在一起。Nd、Sr同位素研究还表明,华北和扬子两地块的会聚在泥盆纪以前就已经在进行中,它是通过位於两地块之间的古秦岭海洋壳俯冲消亡在华北地块之下实现;华北和扬子两陆块最终相碰撞至少发生在二叠纪以前。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号