首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The late tectonic evolution of the Slave craton involves extensive magmatism, deformation, and high temperature-low pressure (HT-LP) metamorphism. We argue that the nature of these tectonic events is difficult to reconcile with early, pre-2.7 Ga development and preservation of a thick tectosphere, and suggest that crust–mantle coupling and stabilization occurred only late in the orogenic development of the craton. The extent and repetitiveness of the tectonic reworking documented within the Mesoarchean basement complex of the western Slave, together with the development of large-volume, extensional mafic magmatism at 2.7 Ga within the basement complex argue against preservation of a widespread, thick, cool Mesoarchean tectosphere beneath the western Slave craton prior to Neoarchean tectonism. Broad-scale geological and geophysical features of the Slave craton, including orientation of an early F1 fold belt, distribution of ca. 2.63–2.62 Ga plutonic rocks, and the distribution of geochemical, petrological and geophysical domains within the mantle lithosphere collectively highlight the importance of an NE–SW structural grain to the craton. These trends are oblique to the earlier, ca. 2.7 Ga north–south trending boundary between Mesoarchean and Neoarchean crustal domains, and are interpreted to represent a younger structural feature imposed during northwest or southeast-vergent tectonism at ca. 2.64–2.61 Ga. Extensive plutonism, in part mantle-derived, crustal melting and associated HT-LP metamorphism argue for widespread mantle heat input to the crust, a feature most consistent with thin (<100 km) lithosphere at that time. We propose that the mantle lithosphere developed by tectonic imbrication of one or more slabs subducted beneath the craton at the time of development of the D1 structural grain, producing the early 2.63–2.62 Ga arc-like plutonic rocks. Subsequent collision (external to the present craton boundaries) possibly accompanied by partial delamination of some of the underthrust lithosphere, produced widespread deformation (D2) and granite plutonism throughout the province at 2.6–2.58 Ga. An implication of this model is that diamond formation in the Slave should be Neoarchean in age.  相似文献   

2.
Lithosphere mapping beneath the North American plate   总被引:2,自引:0,他引:2  
Major- and trace-element analyses of garnets from heavy-mineral concentrates have been used to derive the compositional and thermal structure of the subcontinental lithospheric mantle (SCLM) beneath 16 areas within the core of the ancient Laurentian continent and 11 areas in the craton margin and fringing mobile belts. Results are presented as stratigraphic sections showing variations in the relative proportions of different rock types and metasomatic styles, and the mean Fo content of olivine, with depth. Detailed comparisons with data from mantle xenoliths demonstrate the reliability of the sections.

In the Slave Province, the SCLM in most areas shows a two-layer structure with a boundary at 140–160 km depth. The upper layer shows pronounced lateral variations, whereas the lower layer, after accounting for different degrees of melt-related metasomatism, shows marked uniformity. The lower layer is interpreted as a subcreted plume head, added at ca. 3.2 Ga; this boundary between the layers rises to <100 km depth toward the northern and southern edges of the craton. Strongly layered SCLM suggests that plume subcretion may also have played a role in the construction of the lithosphere beneath Michigan and Saskatchewan.

Outside the Slave Province, most North American Archon SCLM sections are less depleted than similar sections in southern Africa and Siberia; this may reflect extensive metasomatic modification. In E. Canada, the degree of modification increases toward the craton margin, and the SCLM beneath the Kapuskasing Structural Zone is typical of that beneath Proterozoic to Phanerozoic mobile belts.

SCLM sections from several Proterozoic areas around the margin of the Laurentian continental core (W. Greenland, Colorado–Wyoming district, Arkansas) show discontinuities and gaps that are interpreted as the effects of lithosphere stacking during collisional orogeny. Some areas affected by Proterozoic orogenesis (Wyoming Craton, Alberta, W. Greenland) appear to retain buoyant, modified Archean SCLM. Possible juvenile Proterozoic SCLM beneath the Colorado Plateau is significantly less refractory. The SCLM beneath the Kansas kimberlite field is highly melt-metasomatised, reflecting its proximity to the Mid-Continent Rift System.

A traverse across the continent shows that the upper part of the cratonic SCLM is highly magnesian; the decrease in mg# with depth is interpreted as the cumulative effect of metasomatic modification through time. The relatively small variations in seismic velocity within the continental core largely reflect the thickness of this depleted layer. The larger drop in seismic velocity in the surrounding Proton and Tecton belts reflects the closely coupled changes in SCLM composition and geotherm.  相似文献   


3.
The concentrations of platinum-group elements (PGE; Os, Ir, Ru, Pd and Pt) and Re, and the Os isotopic compositions were determined for 33 lithospheric mantle peridotite xenoliths from the Somerset Island kimberlite field. The Os isotopic compositions are exclusively less radiogenic than estimates of bulk-earth (187Os/188Os as low as 0.1084) and require a long-term evolution in a low Re–Os environment. Re depletion model ages (TRD) indicate that the cratonic lithosphere of Somerset Island stabilised by at least 2.8 Ga, i.e. in the Neoarchean and survived into the Mesozoic to be sampled by Cretaceous kimberlite magmatism. An Archean origin also is supported by thermobarometry (Archean lithospheric keels are characterised by >150 km thick lithosphere), modal mineralogy and mineral chemistry observations. The oldest ages recorded in the lithospheric mantle beneath Somerset Island are younger than the Mesoarchean (>3 Ga) ages recorded in the Slave craton lithospheric mantle to the southwest [Irvine, G.J., et al., 1999. Age of the lithospheric mantle beneath and around the Slave craton: a Rhenium–Osmium isotopic study of peridotite xenoliths from the Jericho and Somerset Island kimberlites. Ninth Annual V.M. Goldschmidt Conf., LPI Cont., 971: 134–135; Irvine, G.J., et al., 2001. The age of two cratons: a PGE and Os-Isotopic study of peridotite xenoliths from the Jericho kimberlite (Slave craton) and the Somerset Island kimberlite field (Churchill Province). The Slave–Kaapvaal Workshop, Merrickville, Ontario, Canada]. Younger, Paleoproterozoic, TRD model ages for Somerset Island samples are generally interpreted as the result of open system behaviour during metasomatic and/or magmatic processes, with possibly the addition of new lithospheric material during tectono-thermal events related to the Taltson–Thelon orogen. PGE patterns highly depleted in Pt and Pd generally correspond to older Archean TRD model ages indicating closed system behaviour since the time of initial melt extraction. Younger Proterozoic TRD model ages generally correspond to more complex PGE patterns, indicating open system behaviour with possible sulfide or melt addition. There is no correlation between the age of the lithosphere and depth, at Somerset Island.  相似文献   

4.
Studies of mantle xenolith and xenocryst studies have indicated that the subcontinental lithospheric mantle (SCLM) at the Karelian Craton margin (Fennoscandian Shield) is stratified into at least three distinct layers cited A, B, and C. The origin and age of this layering has, however, remained unconstrained. In order to address this question, we have determined Re–Os isotope composition and a comprehensive set of major and trace elements, from xenoliths representing all these three layers. These are the first Re–Os data from the SCLM of the vast East European Craton.

Xenoliths derived from the middle layer B (at  110–180 km depth), which is the main source of harzburgitic garnets and peridotitic diamonds in these kimberlites, are characterised by unradiogenic Os isotopic composition. 187Os/188Os shows a good correlation with indices of partial melting implying an age of  3.3. Ga for melt extraction. This age corresponds with the oldest formation ages of the overlying crust, suggesting that layer B represents the unmodified SCLM stabilised during the Paleoarchean. Underlying layer C (at 180–250 km depths) is the main source of Ti-rich pyropes of megacrystic composition but is lacking harzburgitic pyropes. The osmium isotopic composition of layer C xenoliths is more radiogenic compared to layer B, yielding only Proterozoic TRD ages. Layer C is interpreted to represent a melt metasomatised equivalent to layer B. This metasomatism most likely occurred at ca. 2.0 Ga when the present craton margin formed following continental break-up. Shallow layer A (at  60–110 km depth) has knife-sharp lower contact against layer B indicative of shear zone and episodic construction of SCLM. Layer A peridotites have “ultradepleted” arc mantle-type compositions, and have been metasomatised by radiogenic 187Os/188Os, presumably from slab-derived fluids. Since layer A is absent in the core of the craton, its origin can be related to Proterozoic processes at the craton margin. We interpret it to represent the lithosphere of a Proterozoic arc complex (subduction wedge mantle) that became underthrusted beneath the craton margin crust during continental collision  1.9 Ga ago.  相似文献   


5.
The kimberlite fields scattered across the NE part of the Siberian Craton have been used to map the subcontinental lithospheric mantle (SCLM), as it existed during Devonian to Late Jurassic time, along a 1000-km traverse NE–SW across the Archean Magan and Anabar provinces and into the Proterozoic Olenek Province. 4100 garnets and 260 chromites from 65 kimberlites have been analysed by electron probe (major elements) and proton microprobe (trace elements). These data, and radiometric ages on the kimberlites, have been used to estimate the position of the local (paleo)geotherm and the thickness of the lithosphere, and to map the detailed distribution of specific rock types and mantle processes in space and time. A low geotherm, corresponding approximately to the 35 mW/m2 conductive model of Pollack and Chapman [Tectonophysics 38, 279–296, 1977], characterised the Devonian lithosphere beneath the Magan and Anabar crustal provinces. The Devonian geotherm beneath the northern part of the area was higher, rising to near a 40 mW/m2 conductive model. Areas intruded by Mesozoic kimberlites are generally characterised by this higher, but still ‘cratonic' geotherm. Lithosphere thickness at the time of kimberlite intrusion varied from ca. 190 to ca. 240 km beneath the Archean Magan and Anabar provinces, but was less (150–180 km) beneath the Proterozoic Olenek Province already in Devonian time. Thinner Devonian lithosphere (140 km) in parts of this area may be related to Riphean rifting. Near the northern end of the traverse, differences in geotherm, lithosphere thickness and composition between the Devonian Toluopka area and the nearby Mesozoic kimberlite fields suggest thinning of the lithosphere by ca. 50–60 km, related to Devonian rifting and Triassic magmatism. A major conclusion of this study is that the crustal terrane boundaries defined by geological mapping and geophysical data (extended from outcrops in the Anabar Shield) represent major lithospheric sutures, which continue through the upper mantle and juxtapose lithospheric domains that differ significantly in composition and rock-type distribution between 100 and 250 km depth. The presence of significant proportions of harzburgitic and depleted lherzolitic garnets beneath the Magan and Anabar provinces is concordant with their Archean surface geology. The lack of harzburgitic garnets, and the chemistry of the lherzolitic garnets, beneath most of the other fields are consistent with the Proterozoic surface rocks. Mantle sections for different terranes within the Archean portion of the craton show pronounced differences in bulk composition, rock-type distribution, metasomatic overprint and lithospheric thickness. These observations suggest that individual crustal terranes, of both Archean and Proterozoic age, had developed their own lithospheric roots, and that these differences were preserved during the Proterozoic assembly of the craton. Data from kimberlite fields near the main Archean–Proterozoic suture (the Billyakh Shear Zone) suggest that reworking and mixing of Archean and Proterozoic mantle was limited to a zone less than 100 km wide.  相似文献   

6.
The compositional structure and thermal state of the subcontinental lithospheric mantle (SCLM) beneath the Kalahari Craton and the surrounding mobile belts have been mapped in space and time using >3400 garnet xenocrysts from >50 kimberlites intruded over the period 520–80 Ma. The trace-element patterns of many garnets reflect the metasomatic refertilisation of originally highly depleted harzburgites and lherzolites, and much of the lateral and vertical heterogeneity observed in the SCLM within the craton is the product of such metasomatism. The most depleted, and possibly least modified, SCLM was sampled beneath the Limpopo Belt by early Paleozoic kimberlites; the SCLM beneath other parts of the craton may represent similar material modified by metasomatism during Phanerozoic time. In the SW part of the craton, the SCLM sampled by “Group 2” kimberlites (>110 Ma) is thicker, cooler and less metasomatised than that sampled by “Group 1” kimberlites (mostly ≤95 Ma) in the same area. Therefore, the extensively studied xenolith suite from the Group 1 kimberlites probably is not representative of primary Archean SCLM compositions. The relatively fertile SCLM beneath the mobile belts surrounding the craton is interpreted as largely Archean SCLM, metasomatised and mixed with younger material during Paleoproterozoic to Mesoproterozoic rifting and compression. This implies that at least some of the observed secular evolution in SCLM composition worldwide may reflect the reworking of Archean SCLM. There are strong correlations between mantle composition and the lateral variations in seismic velocity shown by detailed tomographic studies. Areas of relatively low Vp within the craton largely reflect the progressive refertilisation of the Archean root during episodes of intraplate magmatism, including the Bushveld (2 Ga) and Karroo (ca. 180 Ma) events; areas of high Vp map out the distribution of relatively less metasomatised Archean SCLM. The relatively low Vp of the SCLM beneath the mobile belts around the craton is consistent with its fertile composition. The seismic data may be used to map the lateral extent of different types of SCLM, taking into account the small lateral variations in the geotherm identified using the techniques described here.  相似文献   

7.
A comparison of the diamond productions from Panda (Ekati Mine) and Snap Lake with those from southern Africa shows significant differences: diamonds from the Slave typically are un-resorbed octahedrals or macles, often with opaque coats, and yellow colours are very rare. Diamonds from the Kaapvaal are dominated by resorbed, dodecahedral shapes, coats are absent and yellow colours are common. The first two features suggest exposure to oxidizing fluids/melts during mantle storage and/or transport to the Earth's surface, for the Kaapvaal diamond population.

Comparing peridotitic inclusions in diamonds from the central and southern Slave (Panda, DO27 and Snap Lake kimberlites) and the Kaapvaal indicates that the diamondiferous mantle lithosphere beneath the Slave is chemically less depleted. Most notable are the almost complete absence of garnet inclusions derived from low-Ca harzburgites and a generally lower Mg-number of Slave inclusions.

Geothermobarometric calculations suggest that Slave diamonds originally formed at very similar thermal conditions as observed beneath the Kaapvaal (geothermal gradients corresponding to 40–42 mW/m2 surface heat flow), but the diamond source regions subsequently cooled by about 100–150 °C to fall on a 37–38 mW/m2 (surface heat flow) conductive geotherm, as is evidenced from touching (re-equilibrated) inclusions in diamonds, and from xenocrysts and xenoliths. In the Kaapvaal, a similar thermal evolution has previously been recognized for diamonds from the De Beers Pool kimberlites. In part very low aggregation levels of nitrogen impurities in Slave diamonds imply that cooling occurred soon after diamond formation. This may relate elevated temperatures during diamond formation to short-lived magmatic perturbations.

Generally high Cr-contents of pyrope garnets (inside and outside of diamonds) indicate that the mantle lithosphere beneath the Slave originally formed as a residue of melt extraction at relatively low pressures (within the stability field of spinelperidotites), possibly during the extraction of oceanic crust. After emplacement of this depleted, oceanic mantle lithosphere into the Slave lithosphere during a subduction event, secondary metasomatic enrichment occurred leading to strong re-enrichment of the deeper (>140 km) lithosphere. Because of the extent of this event and the occurrence of lower mantle diamonds, this may be related to an upwelling plume, but it may equally just reflect a long term evolution with lower mantle diamonds being transported upwards in the course of “normal” mantle convection.  相似文献   


8.
A mineral inclusion, carbon isotope, nitrogen content, nitrogen aggregation state and morphological study of 576 microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, was conducted. Mineral inclusion data show the diamonds are largely eclogitic (64%), followed by peridotitic (25%) and ultradeep (11%). The paragenetic abundances are similar to macrodiamonds from the DO27 kimberlite (Davies, R.M., Griffin, W.L., O'Reilly, S.Y., 1999. Diamonds from the deep: pipe DO27, Slave craton, Canada. In: Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H. (Eds.), The J. B. Dawson Vol., Proc. 7th Internat. Kimberlite Conf., Red Roof Designs, Cape Town, pp. 148–155) but differ to diamonds from nearby kimberlites at Ekati (e.g., Lithos (2004); Tappert, R., Stachel, T., Harris, J.W., Brey, G.P., 2004. Mineral Inclusions in Diamonds from the Panda Kimberlite, S. P., Canada. 8th International Kimberlite Conference, extended abstracts) and Snap Lake to the south (Dokl. Earth Sci. 380 (7) (2001) 806), that are dominated by peridotitic stones.

Eclogitic diamonds with variable inclusion compositions and temperatures of formation (1040–1300 °C) crystallised at variable lithospheric depths sometimes in changing chemical environments. A large range to very 13C-depleted C-isotope compositions (δ13C=−35.8‰ to −2.2‰) and an NMORB bulk composition, calculated from trace elements in garnet and clinopyroxene inclusions, are consistent with an origin from subducted oceanic crust and sediments. Carbon isotopes in the peridotitic diamonds have mantle compositions (δ13C mode −4.0‰). Mineral inclusion compositions are largely harzburgitic. Variable temperatures of formation (garnet TNi=800–1300 °C) suggest the peridotitic diamonds originate from the shallow ultra-depleted and deeper less depleted layers of the central Slave lithosphere. Carbon isotopes (δ13C av.=−5.1‰) and mineral inclusions in the ultradeep diamonds suggest they formed in peridotitic mantle (670 km). The diamonds may have been entrained in a plume and subcreted to the base of the central Slave lithosphere.

Poorly aggregated nitrogen (IaA without platelets) in a large number of eclogitic (67%) and peridotitic (32%) diamonds, with similar nitrogen contents, indicates the diamonds were stored in the mantle at low temperatures (1060–<1100 °C) following crystallisation in the Archean. Type IaA diamonds have largely cubo-octahedral growth forms, and Type II and Type IaAB diamonds, with higher nitrogen aggregation states, mostly have octahedral morphologies. However, no correlation between these groups and their mineral inclusion compositions, C-isotopes, and N-contents rules out the possibility of unique source origins and suggests eclogitic and peridotitic diamonds experienced variable mantle thermal states. Variation in mineral inclusion chemistries in single diamonds, possible overgrowths of 13C-depleted eclogitic diamond on diamonds with peridotitic and ultradeep inclusions, and Type I ultradeep diamond with low N-aggregation is consistent with diamond growth over time in changing chemical environments.  相似文献   


9.
Lower crustal xenoliths recovered from Eocene to Cambrian kimberlites in the central and southern Slave craton are dominated by mafic granulites (garnet, clinopyroxene, plagioclase±orthopyroxene), with subordinate metatonalite and peraluminous felsic granulites. Geothermobarometry indicates metamorphic conditions of 650–800 °C at pressures of 0.9–1.1 GPa. The metamorphic conditions are consistent with temperatures expected for the lower crust of high-temperature low-pressure (HT-LP) metamorphic belts characteristic of Neoarchean metamorphism in the Slave craton. U–Pb geochronology of zircon, rutile and titanite demonstrate a complex history in the lower crust. Mesoarchean protoliths occur beneath the central Slave supporting models of an east-dipping boundary between Mesoarchean crust in the western and Neoarchean crust in the eastern Slave. At least, two episodes of igneous and metamorphic zircon growth occurred in the interval 2.64–2.58 Ga that correlate with the age of plutonism and metamorphism in the upper crust, indicating magmatic addition to the lower crust and metamorphic reworking during this period. In addition, discrete periods of younger zircon growth at ca. 2.56–2.55 and 2.51 Ga occurred 20–70 my after the cessation of ca. 2.60–2.58 Ga regional HT-LP metamorphism and granitic magmatism in the upper crust. This pattern of younger metamorphic events in the deep crust is characteristic of the Slave as well as other Archean cratons (e.g., Superior). The high temperature of the lower crust immediately following amalgamation of the craton, coupled with evidence for continued metamorphic zircon growth for >70 my after ‘stabilization’ of the upper crust, is difficult to reconcile with a thick (200 km), cool lithospheric mantle root beneath the craton prior to this event. We suggest that thick tectosphere developed synchronously or after these events, most likely by imbrication of mantle beneath the craton at or after ca. 2.6 Ga. The minimum age for establishing a cratonic like geotherm is given by lower crustal rutile ages of ca. 1.8 Ga in the southern Slave. Transient heating and possible magmatic additions to the lower crust continued through the Proterozoic, with possible additional growth of the tectosphere.  相似文献   

10.
Integrated models of diamond formation and craton evolution   总被引:4,自引:0,他引:4  
Two decades of diamond research in southern Africa allow the age, average N content and carbon composition of diamonds, and the dominant paragenesis of their syngenetic silicate and sulfide inclusions to be integrated on a cratonwide scale with a model of craton formation. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the mid-Proterozoic and display little correspondence with the prominent variations in the P-wave velocity (±1%) that the mantle lithosphere shows at depths within the diamond stability field (150–225 km). Silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane show a regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity relative to the craton average correlates with a greater proportion of eclogitic vs. peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds. The oldest formation ages of diamonds support a model whereby mantle that became part of the continental keel of cratonic nuclei first was created by middle Archean (3.2–3.3 Ga or older) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of eclogitic sulfide inclusions in the 2.9 Ga age population links late Archean (2.9 Ga) subduction–accretion events to craton stabilization. These events resulted in a widely distributed, late Archean generation of eclogitic diamonds in an amalgamated craton. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite. Similar age/paragenesis systematics are seen for the more limited data sets from the Slave and Siberian cratons.  相似文献   

11.
The kimberlites of the Kharamai field intruded through the Siberian Traps shortly after their eruption in Permo-Triassic time. The composition and thermal state of the subcontinental lithospheric mantle (SCLM) beneath the Kharamai field in lower Triassic time have been reconstructed using major- and trace-element analyses of 345 Cr-pyrope garnet xenocrysts from six of the kimberlites, supplemented by a small suite of mantle-derived peridotite xenoliths. The data define a geotherm lying near a 38 mW/m2 conductive model to a depth of ca 170 km, where the base of the depleted lithosphere is defined by a marked increase in melt-related metasomatism and by an inflected geotherm. Compared to the SCLM sampled by Devonian (pre-Trap) kimberlites in the same and adjacent terranes, the Kharamai SCLM in Triassic time was warmer and was cooling from a previous thermal high. It was also thinner than the SCLM beneath the Daldyn and Alakit kimberlite fields, and had been strongly metasomatised. The metasomatism lowered the mean Fo content of olivine (from ≥Fo93 to Fo92), greatly reduced the proportion of subcalcic harzburgites, and increased the proportion of fertile lherzolites, especially in the depth range of 80–130 km. The overall pattern of metasomatism is similar to that observed in the SCLM sampled by the Group I kimberlites of the SW Kaapvaal Craton, and inferred to be related to the Karoo thermal event. These observations suggest that events such as the eruption of the Karoo basalts and Siberian Traps change the composition of the SCLM, but do not necessarily destroy it, at distances of several hundred kilometres from the main eruption centres.  相似文献   

12.
Mineral inclusions recovered from 100 diamonds from the A154 South kimberlite (Diavik Diamond Mines, Central Slave Craton, Canada) indicate largely peridotitic diamond sources (83%), with a minor (12%) eclogitic component. Inclusions of ferropericlase (4%) and diamond in diamond (1%) represent “undetermined” parageneses.

Compared to inclusions in diamonds from the Kaapvaal Craton, overall higher CaO contents (2.6 to 6.0 wt.%) of harzburgitic garnets and lower Mg-numbers (90.6 to 93.6) of olivines indicate diamond formation in a chemically less depleted environment. Peridotitic diamonds at A154 South formed in an exceptionally Zn-rich environment, with olivine inclusions containing more than twice the value (of  52 ppm) established for normal mantle olivine. Harzburgitic garnet inclusions generally have sinusoidal rare earth element (REEN) patterns, enriched in LREE and depleted in HREE. A single analyzed lherzolitic garnet is re-enriched in middle to heavy REE resulting in a “normal” REEN pattern. Two of the harzburgitic garnets have “transitional” REEN patterns, broadly similar to that of the lherzolitic garnet. Eclogitic garnet inclusions have normal REEN patterns similar to eclogitic garnets worldwide but at lower REE concentrations.

Carbon isotopic values (δ13C) range from − 10.5‰ to + 0.7‰, with 94% of diamonds falling between − 6.3‰ and − 4.0‰. Nitrogen concentrations range from below detection (< 10 ppm) to 3800 ppm and aggregation states cover the entire spectrum from poorly aggregated (Type IaA) to fully aggregated (Type IaB). Diamonds without evidence of previous plastic deformation (which may have accelerated nitrogen aggregation) typically have < 25% of their nitrogen in the fully aggregated B-centres. Assuming diamond formation beneath the Central Slave to have occurred in the Archean [Westerlund, K.J., Shirey, S.B., Richardson, S.H., Gurney, J.J., Harris, J.W., 2003b. Re–Os systematics of diamond inclusion sulfides from the Panda kimberlite, Slave craton. VIIIth International Kimberlite Conference, Victoria, Canada, Extended Abstracts, 5p.], such low aggregation states indicate mantle residence at fairly low temperatures (< 1100 °C). Geothermometry based on non-touching inclusion pairs, however, indicates diamond formation at temperatures around 1200 °C. To reconcile inclusion and nitrogen based temperature estimates, cooling by about 100–200 °C shortly after diamond formation is required.  相似文献   


13.
We present the first data on the petrology of the mantle lithosphereof the Southeastern (SE) Slave craton, Canada. These are basedon petrographic, mineralogical and geochemical studies of mantlexenoliths in Pipe 5034 of the Cambrian Gahcho Kué kimberlitecluster. Major types of mantle xenoliths include altered eclogite,coarse garnet or spinel peridotite, and deformed garnet peridotite.The peridotites belong to the low-temperature suite and formedat T=600–1300°C and P= 25–80 kbar in a thick(at least 220–250 km), cool lithosphere. The SE Slavemantle is cooler than the mantle of other Archaean cratons andthat below other terranes of the Slave craton. The thick lithosphereand the relatively cool thermal regime provide favourable conditionsfor formation and preservation of diamonds beneath the SE Slaveterrane. Similar to average Archaean mantle worldwide, the SESlave peridotite is depleted in magmaphile major elements andcontains olivine with forsterite content of 91–93·5.With respect to olivine composition and mode, all terranes ofthe Slave mantle show broadly similar compositions and are relativelyorthopyroxene-poor compared with those of the Kaapvaal and Siberiancratons. The SE Slave spinel peridotite is poorer in Al, Caand Fe, and richer in Mg than deeper garnet peridotite. Thegreater chemical depletion of the shallow upper mantle is typicalof all terranes of the Slave craton and may be common for thesubcontinental lithospheric peridotitic mantle in general. Peridotiticxenoliths of the SE Slave craton were impregnated by kimberliticfluids that caused late-stage recrystallization of primary clinopyroxene,spinel, olivine and spinel-facies orthopyroxene, and formationof interstitial clinopyroxene. This kimberlite-related recrystallizationdepleted primary pyroxenes and spinel in Al. The kimberliticfluid was oxidizing, Ti-, Fe- and K-rich, and Na-poor, and introducedserpentine, chlorite, phlogopite and spinel into peridotitesat P < 35 kbar. KEY WORDS: kimberlite xenolith; lithosphere; mantle terrane; chemical zoning; thermobarometry; Slave craton  相似文献   

14.
M.P. Stubley   《Lithos》2004,77(1-4):683-693
Exploration within the Slave craton has revealed clusters of kimberlite intrusions, commonly with internally consistent geochemical and temporal characteristics. Translation diagrams (“Fry analysis”) allow an unbiased geometrical examination of the distance and direction between each kimberlite occurrence and all others in the database. Recurrent patterns are visually accentuated due to the square function in data density. Circular histograms quantify the azimuthal density of kimberlite at various distances. For this study, the database comprises the geographic position of 212 kimberlite occurrences of which 70% are from the Lac de Gras field (LDG). Analyses are presented separately for the LDG data and for all non-LDG data in order to test for regional variations and to avoid overwhelming the craton-scale studies by the high density of LDG data.

Empirical grouping of kimberlite locations results in delineation of five elliptical clusters that encompass all but four kimberlite occurrences. Clusters within the western part of the craton are elongate to the north–northeast and align within a narrow zone (“Western Corridor”). Elsewhere, the clusters are elongate to the northwest or west–northwest and appear to be arranged en echelon within a poorly defined north–northwest trending zone (“Central Corridor”). Geometrical spatial analyses of kimberlite locations highlight the craton-scale pattern of emplacement within the two main corridors. At regional and local scales, individual intrusions are preferentially located towards the west–northwest (ca. 280°) and north–northeast (ca. 015°) of other intrusions, and these orientations are interpreted to reflect upper mantle trends in magma generation. At local scales (10–25 km), kimberlite of the central and southern craton tends to be located to the northeast (ca. 045°), and possibly weakly to the east–northeast (ca. 070°), of other intrusions, and these orientations correspond to major crustal fractures systems. It is proposed that kimberlite emplacement is controlled primarily by the interaction of elongate 280° and 015° source regions with near-surface deviations influenced by crustal fracture systems.

The 015° trend evident at craton, regional, and local scales is parallel to a swarm of alkaline diabase dykes that are concentrated in a ca. 30-km-wide corridor passing through Lac de Gras. A profound spatial association between significantly diamondiferous kimberlite and the margins of the dyke corridor suggests the corridor is the surface expression of a mantle-depth structure. It remains unclear whether the proposed mantle structure coincides with a diamond-rich zone near the base of the lithosphere, or delineates pathways favorable for diamond preservation during emplacement. The linear array of kimberlite within the western craton forms a parallel corridor that may be an analogous mantle structure, but which to date has failed to yield economic diamond concentrations.  相似文献   


15.
The thermal structure of Archean and Proterozoic lithospheric terranes in southern Africa during the Mesozoic was evaluated by thermobarometry of mantle peridotite xenoliths erupted in alkaline magmas between 180 and 60 Ma. For cratonic xenoliths, the presence of a 150–200 °C isobaric temperature range at 5–6 GPa confirms original interpretations of a conductive geotherm, which is perturbed at depth, and therefore does not record steady state lithospheric mantle structure.

Xenoliths from both Archean and Proterozoic terranes record conductive limb temperatures characteristic of a “cratonic” geotherm (40 mW m−2), indicating cooling of Proterozoic mantle following the last major tectonothermal event in the region at 1 Ga and the probability of thick off-craton lithosphere capable of hosting diamond. This inference is supported by U–Pb thermochronology of lower crustal xenoliths [Schmitz and Bowring, 2003. Contrib. Mineral. Petrol. 144, 592–618].

The entire region then suffered a protracted regional heating event in the Mesozoic, affecting both mantle and lower crust. In the mantle, the event is recorded at 150 Ma to the southeast of the craton, propagating to the west by 108–74 Ma, the craton interior by 85–90 Ma and the far southwest and northwest by 65–70 Ma. The heating penetrated to shallower levels in the off-craton areas than on the craton, and is more apparent on the southern margin of the craton than in its western interior. The focus and spatial progression mimic inferred patterns of plume activity and supercontinent breakup 30–100 Ma earlier and are probably connected.

Contrasting thermal profiles from Archean and Proterozoic mantle result from penetration to shallower levels of the Proterozoic lithosphere by heat transporting magmas. Extent of penetration is related not to original lithospheric thickness, but to its more fertile character and the presence of structurally weak zones of old tectonism. The present day distribution of surface heat flow in southern Africa is related to this dynamic event and is not a direct reflection of the pre-existing lithospheric architecture.  相似文献   


16.
The Archean lithospheric mantle beneath the Kaapvaal–Zimbabwe craton of Southern Africa shows ±1% variations in seismic P-wave velocity at depths within the diamond stability field (150–250 km) that correlate regionally with differences in the composition of diamonds and their syngenetic inclusions. Seismically slower mantle trends from the mantle below Swaziland to that below southeastern Botswana, roughly following the surface outcrop pattern of the Bushveld-Molopo Farms Complex. Seismically slower mantle also is evident under the southwestern side of the Zimbabwe craton below crust metamorphosed around 2 Ga. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa, and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the Proterozoic and show little correspondence with these lithospheric variations. However, silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane do show some regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity correlates with a greater proportion of eclogitic versus peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds whereas the converse is true for diamonds from higher velocity mantle. The oldest formation ages of diamonds indicate that the mantle keels which became continental nuclei were created by middle Archean (3.2–3.3 Ga) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of sulfide inclusions that are eclogitic in the 2.9 Ga age population links late Archean (2.9 Ga) subduction-accretion events involving an oceanic lithosphere component to craton stabilization. These events resulted in a widely distributed younger Archean generation of eclogitic diamonds in the lithospheric mantle. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite.  相似文献   

17.
Mantle xenocrysts from early Triassic kimberlite pipes from Kharamai,Ary-Mastakh and Kuranakh fields in the Anabar shield of Siberia revealing similar compositional trends were studied to estimate the superplume influence on the subcratonic lithosphere mantle(SCLM).Pressure-temperature(PT) reconstructions using monomineral thermobarometry for 5 phases show division of the SCLM beneath the Kharamai field into 6 units:pyroxenitic Fe-rich(1-2 GPa) and Mg-rich(2-3 GPa) layers;middle with two levels of Gar-Sp pyroxenites at ~3 and 4-5 GPa;Gar-dunite-harzburgites ~4.5-6.5 GPa subjected to Ilm-Px vein metasomatism;and a Mg-rich dunite lower part.In the Anabar shield(Ary-Mastakh,Dyuken and Kuranakh fields) mantle lithosphere is composed of three large units divided into two parts:upper part with amphiboles and phlogopite;two levels of pyroxenites and eclogites at 3 and 4 GPa,and a lower part composed of refertilized dunites.Diagrams showing P-Fe~#Gar clusters for garnets and omphacites illustrate the differences between SCLM of these localities.Differences of Triassic SCLM from Devonian SCLM are in simple layering;abundance of Na-Cr-amphiboles and metasomatism in the upper SCLM part,thick pyroxenite-eclogite layer and lower part depletion,heated from SCLM base to 5.0 GPa.Kharamai mantle clinopyroxenes represent three geochemical types:(1) harzburgitic with inclined linear REE,HFSE troughs and elevated Th,U;(2) lherzolitic or pyroxenitic with round TRE patterns and decreasing incompatible elements;(3) eclogitic with Eu troughs,Pb peak and high LILE content.Calculated parental melts for garnets with humped REE patterns suggest dissolution of former Cpx and depression means Cpx and garnets extraction.Clinopyroxenes from Ary-Mastakh fields show less inclined REE patterns with HMREE troughs and an increase of incompatible elements.Clinopyroxenes from Kuranakh field show flatter spoon-like REE patterns and peaks in Ba,U,Pb and Sr,similar to those in ophiolitic harzburgites.The PT diagrams for the mantle sections show high temperature gradients in the uppermost SCLM accompanied by an increase of P-Fe~#Ol upward and slightly reduced thickness of the mantle keel of the Siberian craton,resulting from the influence of the Permian-Triassic superplume,but with no signs of delamination.  相似文献   

18.
A passive teleseismic experiment (TOR), traversing the northern part of the Trans-European Suture Zone (TESZ) in Germany, Denmark and Sweden, recorded data for tomography of the upper mantle with a lateral resolution of few tens of kilometers as well as for a detailed study of seismic anisotropy. A joint inversion of teleseismic P-residual spheres and shear-wave splitting parameters allows us to retrieve the 3D orientation of dipping anisotropic structures in different domains of the sub-crustal lithosphere. We distinguish three major domains of different large-scale fabric divided by first-order sutures cutting the whole lithosphere thickness. The Baltic Shield north of the Sorgenfrei–Tornquist Zone (STZ) is characterised by lithosphere thickness around 175 km and the anisotropy is modelled by olivine aggregate of hexagonal symmetry with the high-velocity (ac) foliation plane striking NW–SE and dipping to NE. Southward of the STZ, beneath the Norwegian–Danish Basin, the lithosphere thins abruptly to about 75 km. In this domain, between the STZ and the so-called Caledonian Deformation Front (CDF), the anisotropic structures strike NE–SW and the high-velocity (ac) foliation dips to NW. To the south of the CDF, beneath northern Germany, we observe a heterogeneous lithosphere with variable thickness and anisotropic structures with high velocity dipping predominantly to SW. Most of the anisotropy observed at TOR stations can be explained by a preferred olivine orientation frozen in the sub-crustal lithosphere. Beneath northern Germany, a part of the shear-wave splitting is probably caused by a present-day flow in the asthenosphere.  相似文献   

19.
Alan G. Jones  James A. Craven 《Lithos》2004,77(1-4):765-782
Previously proposed methods of area selection for diamond-prospective regions have predominantly relied on till geochemistry, airborne geophysics, and/or an appraisal of tectonic setting. Herein we suggest that a novel, deep-probing geophysical technique—electromagnetic studies using the natural-source magnetotelluric (MT) method—can contribute to such an activity. Essentially, diamondiferous regions must have (1) old lithosphere, (2) thick lithosphere, and (3) lithosphere that contains high concentrations of carbon. Deep-probing MT studies are able to address all three of these. The second and the third of these can be accomplished independently using MT, but for the first the geometries produced from modelling the MT observations must be interpreted with appropriate interaction with geologists, geochemists and other geophysicists. Examples are given from the Slave and Superior cratons in North America, with a brief mention of an area of the Rae craton, and general speculations about possible diamondiferous regions.  相似文献   

20.
Temperature estimates and chemical composition of mantle xenoliths from the Cretaceous rift system of NW Argentina (26°S) constrain the rift evolution and chemical and physical properties of the lithospheric mantle at the eastern edge of the Cenozoic Andean plateau. The xenolith suite comprises mainly spinel lherzolite and subordinate pyroxenite and carbonatized lherzolite. The spinel lherzolite xenoliths equilibrated at high-T (most samples >1000 °C) and P below garnet-in. The Sm–Nd systematics of compositionally unzoned clino- and orthopyroxene indicate a Cretaceous minimum age for the high-T regime, i.e., the asthenosphere/lithosphere thermal boundary was at ca. 70 km depth in the Cretaceous rift. Major elements and Cr, Ni, Co and V contents of the xenoliths range between values of primitive and depleted mantle. Calculated densities based on the bulk composition of the xenoliths are <3280 kg/m3 for the estimated PT conditions and indicate a buoyant, stable upper mantle lithosphere. The well-equilibrated metamorphic fabric and mineral paragenesis with the general lack of high-T hydrous phases did not preserve traces of metasomatism in the mantle xenoliths. Late Mesozoic metasomatism, however, is obvious in the gradual enrichment of Sr, U, Th and light to medium REE and changes in the radiogenic isotope composition of an originally depleted mantle. These changes are independent of the degree of depletion evidenced by major element composition. 143Nd/144Ndi ratios of clinopyroxene from the main group of xenoliths decrease with increasing Nd content from >0.5130 (depleted samples) to ca. 0.5127 (enriched samples). 87Sr/86Sri ratios (0.7127–0.7131, depleted samples; 0.7130–0.7134, enriched samples) show no variation with variable Sr contents. Pbi isotope ratios of the enriched samples are rather radiogenic (206Pb/204Pbi 18.8–20.6, 207Pb/204Pbi 15.6–15.7, 208Pb/204Pbi 38.6–47) compared with the Pb isotope signature of the depleted samples. The large scatter and high values of 208Pb/204Pbi ratios of many xenoliths indicates at least two Pb sources that are characterized by similar U/Pb but by different Th/Pb ratios. The dominant mantle type in the investigated system is depleted mantle according to its Sr and Nd isotopic composition with relatively radiogenic Pb isotope ratios. This mantle is different from the Pacific MORB source and old subcontinental mantle from the adjacent Brazilian Shield. Its composition probably reflects material influx into the mantle wedge during various episodes of subduction that commenced in early Paleozoic or even earlier. Old subcontinental mantle was already replaced in the Paleozoic, but some inheritance from old mantle lithosphere is represented by rare xenoliths with isotope signatures indicating a Proterozoic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号