首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
文中用不等径的葫芦状毛管网络模型讨论了均质土的重力释水机制,认为重力释水与变动后的潜水位以上原饱水带及与其相联系的支持毛细水带有关;据此定义了给水度。 均质土给水度的大小与重力释水前后包气带的水分分布特征有关。由模型的分析说明,蒸发条件下的初始水分分布特征曲线偏低,造成均质土的重力释水减量,使给水度变小。  相似文献   

2.
本文选取了5种具有毛细导水特性的布料进行了水中的排水试验、土中的排水试验、毛细上升试验以及核磁共振试验,对其排水性能和孔隙结构进行系统研究。旨在揭示其毛细吸水排水性能的机制,为寻找或生产出能够应用到我国一些含水率较高的非饱和土地区的土工材料做参考。结果表明,毛细导水材料在非饱和土中具有良好的排水效果,能够一定程度上提高非饱和土的排水速率。毛细导水材料在水中的排水试验表明,各材料的排水效果受毛细上升距离和空气相对湿度的影响。此外,通过对比不同种类的毛细导水材料在土中和水中排水性能的强弱,发现试验布料的排水性能大致可以分为两类:COOLPASS、COOLMAX和普通网布的排水性能最好,而SHCOOL和COOLPLUS的性能稍弱。通过核磁共振试验测得COOLPASS、COOLMAX和普通网布的孔隙大小约为53.4 μm,SHCOOL和COOLPLUS的孔隙大小约为37.8 μm。布料吸排水的强弱与其孔径大小及孔隙分布特征有关,综合考虑毛细导水材料毛细吸水和蒸发排水的两个过程,发现孔径较大且孔隙分布特征表现为稀疏的普通网布材料在非饱和土中的排水效果最佳,相同条件下比未设置毛细导水布料的土样含水率多降低了2.19%。在毛细上升高度试验中,COOLMAX的毛细上升高度最大,表明毛细导水材料的吸水能力与其孔隙分布特征有关,孔隙分布越密集,其吸水能力越强。  相似文献   

3.
土-水特征曲线滞后阻塞模型   总被引:3,自引:0,他引:3  
基于Young-Laplace方程利用土-水特征曲线估算孔隙分布,借鉴非饱和渗流统计模型,建立了土-水特征曲线的滞后模型。在某一基质吸力下对应的毛细半径上限的毛细水对更大孔隙半径的毛细水具有阻塞作用,阻塞概率与孔隙分布函数直接相关。孔隙分布函数自身属性体现了土体孔隙空间分布的非均匀性。该模型显示:在高基质吸力与低基质吸力阶段,脱湿曲线与吸湿曲线趋近相等;中等基质吸力阶段,脱湿曲线饱和度高于吸湿曲线饱和度,两者的差值存在一个明显的峰值。并采用实例验证了该模型的可靠性,发现该模型对中、细粒土预测效果较好,而砂类土因孔隙分布不符合假设,导致存在较大误差。对于砂类土等特征尺寸较大的土质,引入阻塞概率修正系数,发现最佳修正系数与土-水特征曲线半对数坐标下的土-水特征曲线最大斜率呈反比例关系。  相似文献   

4.
介绍了一种新研制的可以测定松散土体真实给水度和毛细负压值的实验仪器,它能测定天然状况下原状土体的给水度和毛细负压值,并能很好的反映出给二者随地下水位埋深变化的特点。选做的均质土体的给水度和毛细负压值测定实验,验证实验仪器的可靠性和实用性。  相似文献   

5.
非饱和土粒间毛细水作用是其基质吸力的主要来源。本文基于二维非连续变形分析算法(DDA),建立了一种能够模拟不同饱和度下毛细水分布状态及计算土水特征曲线的扩展DDA算法。该算法首先通过反复迭代的方式来计算出不同饱和度下毛细水弯液面的半径,并利用圆心轨迹交汇法确定粒间毛细水弯液面与颗粒的搭接位置,从而确定各个颗粒表面被毛细水浸湿的区域。而后利用Young-Laplace方程计算出各个浸湿区域毛细负压的大小,并将其与表面张力添加到传统DDA算法控制方程中。为验证该算法,参照真实黄土中含量最多的粗颗粒建立一理想黄土微观土骨架模型,模拟了不同饱和度下土体中的毛细水分布状态,并获得了土水特征曲线。将模拟结果与实测的土水特征曲线进行对比分析,结果显示预测值和实测值基本一致,该方法能够从微观上揭示非饱和土粒间吸力作用的本质。  相似文献   

6.
孙蓉琳  何世伟  黄康 《地球科学》2021,46(5):1840-1847
给水度是重要的水文地质参数之一,为探讨潜水含水层给水度的影响因素,设计均质粗砂、均质细砂、上细下粗、上粗下细4种土柱的排水实验,按照一定间距分段降低地下水位,每段降深设计不同排水时间,求取不同水位埋深的给水度.当地下水位埋深小于支持毛细水高度,给水度受地下水位埋深影响显著,其关系可以用非线性函数来表示.排水时间越长,给水度越大,当土柱分段排水时间超过1 h,给水度值稳定.0.6~0.9 mm粒径的粗砂给水度大于0.2~0.4 mm的细砂;当地下水位在土层分界面下20 cm时,上细下粗土柱给水度显著增大,上粗下细土柱给水度显著减小.给水度的大小与地下水位埋深、排水时间、岩土颗粒和潜水面附近及之上非均质结构等因素有关.   相似文献   

7.
有效应力参数的合理确定是非饱和土有效应力研究的重要内容。然而,现有的有效应力参数未能较好地考虑孔隙水的微观赋存形态对有效应力的影响。为此,分析了孔隙水的微观赋存形态,明确了孔隙水可分为收缩膜、吸附水和毛细水,建立了非饱和粉土的扩展三相孔隙介质模型,即孔隙气、毛细水和广义土骨架。基于该模型,采用分相平衡分析法,推导了非饱...  相似文献   

8.
土体冻融过程中的未冻水动态变化与冰-水相变过程密切相关,是冻融过程中非饱和土研究的重要基础。利用在线控温以及分层扫描的核磁共振新技术直观测试冻融过程中非饱和砂土的未冻水含量。结合T_(2)分布曲线(曲线上不同的T;值对应着孔隙水类别特性,曲线下方的面积对应试样水分含量)在冻融过程中的峰值大小和峰面积数据反演土体中含水量的大小与赋存的位置,而曲线的峰形态以及弛豫范围(各峰起始值以及终止值)等信息反演不同类型水分(吸附水与毛细水)以及土体结构的分布。在处理试验结果时,首先依据测试得到的冻结温度划分试样冻结区与未冻区。冻结区与未冻区未冻水含量及其孔隙变化差异明显,究其原因是冰水相变与水分迁移。在土样冻结区域冰水相变占主导地位,水分主要由未冻区向冻结锋面附近的e、f层迁移。首先以中大孔隙中毛细水迁移为主,其次以小孔隙中的吸附水迁移为辅。依据水相变成冰体积增大和孔隙体积占比数据分析可知,冻结区微小孔隙会在冻结过程中连通形成中大孔隙;而在未冻区水分迁移占主导地位。未冻区受固结作用中大孔隙压缩形成为小孔隙。试验过程中冻结锋面附近的e、f层孔隙变化最为剧烈。  相似文献   

9.
杨明辉  陈贺  陈可 《岩土力学》2019,(10):3805-3812
微观土颗粒及孔隙分布的非均匀性及由此引起的瓶颈效应是造成非饱和土土-水特征曲线(SWCC)滞后效应的主要原因。引入分形理论,考虑非饱和土孔径及渗流路径的微观分形特性,提出了一个用于描述水在非饱和土中渗流的毛细管模型。模型中将非饱和土孔隙简化为一系列具有不同孔径大小的毛细弯管,其孔径大小及弯曲程度假定服从分形规律。在此基础上,推导得了非饱和土的吸湿与脱湿过程的饱和度S_e~-水头高度h来描述土-水特征曲线滞后效应的特征方程以及饱和度S_e~-相对水力传导系数Kr特征方程。与室内观测结果及已有研究的对比表明,该模型相比以往方法,可更好地模拟非饱和土土-水特征曲线的滞后效应。对非饱和土吸湿与脱湿过程滞后效应的本质进行了对比分析,揭示了滞后效应产生的根本原因在于土体中流通孔隙大小的非均匀性。  相似文献   

10.
研究非饱和土微结构的动态演化规律对认识非饱和土宏观物理力学行为的本质有重要意义。然而目前岩土学界对此尚不清楚。文章提出利用毛细水算法进行非饱和土压缩数值试验,研究其宏观变形过程中土水作用与孔隙的演变规律。首先参考黄土骨架颗粒的形态和优势颗粒的大小,建立了540 μm×400 μm理想的非饱和土微观结构模型;其次利用毛细...  相似文献   

11.
In this paper, the plexiglass experimental column was used to analyze the capillary fringe thickness of three kinds of lithologies-silty sand, silt and silty clay-providing a basis for defining the interface in the study of hydrodynamics at the water table between vandose water and groundwater. The capillary fringe generally refers to the subsurface layer in which the groundwater seeps up to the air-entry suction value due to capillary action, and is nearly saturated with water. The thickness of the capillary fringe varies with different lithologies. In this experiment, self-made stable water supply devices were used to study the height of capillary rise, capillary water volume and capillary fringe thickness of the three lithologies through capillary experiment and numerical simulation. Experimental results show as follows:(1) Rising height of capillary water is related to time, particle radius, volume, etc., and the relationship between height and time is in line with the Hill model.(2) The smaller the particle radius, the more water the pores contain, and the ratio of the unsaturated portion of capillary water to the total water content gradually rises. Experimental results obtained by numerical simulation, segmentation and actual measurement are consistent.(3) The thickness of the capillary zone is related to the lithology. The larger the particle size, the smaller the thickness of the capillary fringe, and vice versa. In silty sand, the thickness measures about 13 cm. The figure rises to 16 cm in silt, and 37 cm in silty clay. This work studies the law of soil water transport at saturated-unsaturated interface. Experimental results are of great significance to the study of soil water and salt transport and soil salinization control in unsaturated zone.  相似文献   

12.
Polychlorinated biphenyls (PCBs) are the main constituents of clophen (the liquid of the electric transformers and capacitors) and have been characterized as potential human carcinogens. PCBs can be a hazardous contaminant of soil and groundwater. We used the mathematical model variably saturated 2D flow and transport (VS2DT model) to simulate the transport of PCBs from the soil surface to groundwater for a time period of 30 years. We also used a mathematical model to simulate the colloid-facilitated PCB transport, under saturated flow conditions. The results showed that PCBs dissolved in water cannot be transported to large depths in unsaturated soils, because of their strong sorption onto soil and low solubility in water. For soils with very low or no organic matter content, PCB transport is much faster and the probability of groundwater contamination is much higher. PCBs can partition to colloids originating from dissolved organic matter in groundwater. Colloid-facilitated PCB transport is faster compared to PCB transport in aqueous solution with no colloids present.  相似文献   

13.
This paper reports results from centrifuge tests designed to investigate capillary rise in soils subjected to different gravitational fields. The experimental programme is part of the EU-funded NECER project (Network of European Centrifuges for Environmental Geotechnic Research), whose objective is to investigate the appropriateness of geotechnical centrifuge modelling for the investigation of geoenvironmental problems, particularly with reference to partially saturated soils. The tests were performed at the geotechnical centrifuge laboratories of Cardiff, Bochum, Manchester, and LCPC in Nantes. The aim was to determine the scaling laws of capillary rise under both equilibrium and transient conditions.

In all laboratories, column wetting tests in fine poorly graded sands (Congleton Sand, Bochum Normsand, HPF5 Sand, and Fontaineblau Sand) were performed. Capillary rise above the phreatic surface of the sand model was distinguished in a continuous capillary zone (completely saturated) and a discontinuous capillary zone (partially saturated).

The Cardiff Geotechnical Centrifuge Laboratory used matrix potential probes to follow the capillary rise of the continuous zone and, therefore, determine the suction above the phreatic zone during centrifuge testing. At Bochum, two cameras were used for optical and volumetric measurements, in order to follow the rise of the visible wetting front (upper limit of discontinuous zone) in the sand within the sample column. At Manchester, the movement of the wetting front was observed by video cameras over periods up to 8 h, whereas in LCPC pore pressure transducers recorded the changes in pressure caused by capillarity.

A simple centrifuge similitude law for capillary rise in these sands has been established and the kinetic phenomena have been measured as a function of the gravitational field. The results from these experiments verify that both the continuous and discontinuous capillary zones are scaled at a factor 1/N whereas the time for rise seems to be scaled at a factor 1/N2. This research suggests that capillary phenomena can be modelled using a geotechnical centrifuge. Therefore, centrifuge testing can be a useful tool for future modelling of boundary value problems involving complex transport phenomena.  相似文献   


14.
Impacts of irrigation with treated wastewater effluents on soils and groundwater aquifer in the vicinity of Sidi Abid Region (Tunisia) are evaluated. The groundwater aquifer was monitored by several piezometers, where monthly water levels were registered and groundwater salinity was evaluated. This resulted in characterizing the spatial and temporal evolution of the hydrochemical and hydrodynamic properties of the aquifer, showing thereby the impact of artificial recharge. Piezometric maps for pre-recharge and post-recharge situations were developed and a comparison study of both piezometric situations was considered. The piezometric evolution map showed a generalized rise of the piezometric level in the vicinity of the irrigation zone. The extent of recharge was shown to increase with time as the groundwater level increase, which was localized in the vicinity of the irrigation area, reached more extended zones. Several groundwater samples were withdrawn from wells and piezometers and analyzed. Examining the corresponding physical and chemical parameters showed an increase in the concentrations of nutrients (28 mg/l for NO3 and 3.97 mg/l for NH4) in the groundwater aquifer below the irrigation zone, which confirms again the infiltration of treated wastewater effluents. The evolution of soil salinity was examined through chemical analysis of soil samples. Electric conductivities of soils were generally shown to be less than 4 mS/cm while the irrigation water has an electric conductivity that may reach 6.63 mS/cm. This might be explained by the phenomenon of dilution and the capacity of soils to evacuate salts downward.  相似文献   

15.
Taiyuan city has experienced serious land subsidence since the 1950s, with the maximum accumulated subsidence of 2,960 mm and a total affected area of 585 km2 by 2003. Tectonic settlement was found to contribute about 1% and the major cause is over-exploitation of groundwater. The spatial–temporal relationship between the areal distribution of land subsidence and that of groundwater drawdown from 1956 to 2000 indicates that although land subsidence centers overall match groundwater depression cones, there are local deviations, and that although the time series curves are similar, land subsidence always lags behind groundwater level decline, with different lag time at different sites. The major findings of this work on the control of stratigraphic heterogeneity on the spatial pattern of land subsidence at Taiyuan include: (1) land subsidence centers shift from the corresponding groundwater depression cones to the sides with thicker accumulated clay layers; (2) under the same pumping rate, land subsidence at places with more clay interlayers and thinner individual interlayers is greater and the lag time shorter; and (3) land subsidence is closely related to the physical properties of clay soils. The Interbed Storage Package-1, a modular subroutine of MODFLOW was employed to simulate the areal distribution of individual layer compression. The modeling results show that compression of different clay layers has different contribution to land subsidence. Pumping groundwater from water-bearing zones close to the most compressible clay layers should therefore be carefully controlled.  相似文献   

16.
Soil column experiments showed that a surficial sodic soil is efficiently reclaimed using freshwater, after the addition of saturated gypsum solution. Gypsum application in the field was beneficial in terms of maintaining high soil permeability, increased water infiltration and neutral pH after a rainfall event. In the present paper, two different reclamation techniques for the plough layer of a sandy loam sodic soil were tested in laboratory columns, 25 cm long and 10 cm in diameter; the first using freshwater alone and the second using a saturated gypsum solution. The dynamics of salt removal were studied by continuous analysis of the water drained from the bottom of the columns. When freshwater was used, sodium presented the lower removal rate and adversely affected soil permeability. When gypsum solution was used, calcium was present in the flushing solution and the effect of sodium dominance on clay dispersion and soil clogging was limited. The results presented in this study are of practical importance with respect to the reclamation of sodic soils found in the coastal area of the east Nestos Delta, Greece, where freshwater is limited, due to seawater intrusion, and saline groundwater is used for irrigation.  相似文献   

17.
地面沉降通常由于地下水的超采而引发,其发生发展相对于地下水位的变化具有一定滞后性。如何获取准确的地面沉降滞后时间一直是地面沉降研究的重要课题。基于北京平各庄地面沉降监测站2008—2018年地面沉降和地下水位长时间序列的分层监测数据,采用Mann-Kendall趋势检验、连续小波变换、交叉小波变换等方法,分析了不同层位地层形变对地下水位动态的滞后特征。结果表明:中–深层承压水具有1 a左右的主震荡周期,潜水和浅部承压水在大部分时域无显著周期;深部严重沉降层的形变量具有1 a左右的主震荡周期,地下水位与形变量共振周期显著,地层由浅到深形变时滞分别为(16.58±8.91)、(7.16±7.09)和(9.66±6.62) d;浅部弱沉降层中,埋深在32~63 m地层形变量具有1 a左右的主震荡周期,与中层承压水存在显著共振周期,形变时滞为(32.02±9.67) d,其他地层形变量与地下水位无显著周期及相关性。研究成果为构建地面沉降精细化模型、提高地面沉降预测精度以及研究更有效的地面沉降防控措施提供了新的技术思路。   相似文献   

18.
岩溶地下水位对降雨响应具有时空变异性,甑皮岩遗址地下水动力系统结构的认识存在分歧。利用高分辨率降雨水位数据,将研究区分割为不同含水体,通过水位动态、相关分析、滑动窗口采样相关分析等方法,探讨岩溶地下水对降雨响应时空变异特征及成因。结果表明,岩溶强发育、扩散流导水的含水体水位对降雨的响应表现为缓升缓降,水位自相关性强;发育岩溶管道的含水体水位表现为陡升陡降,水位自相关系数衰减速率快,对降雨响应的滞后时间短,互相关函数图呈多峰型;岩溶发育的极不均匀性是造成空间响应差异的主要原因。雨季地下水位对降雨响应的滞后时间远小于枯季;雨季累积降雨量大、水位埋深浅、包气带长期处于饱和或者近饱和状态,降雨垂直入渗补给历时短;雨季暴雨频繁导致含水体地下水短期内形成较大水力梯度,径流补给速度加快。综合分析认为,甑皮岩遗址地下水动力系统由NE向岩溶管道、NS向管道-裂隙以及NE向强径流带3个子径流系统组成。  相似文献   

19.
The occurrence of sulfate-induced heave of roadways that were chemically stabilized with either lime or cement can require expensive road repairs. Previous research attributed the heave to the formation of an expansive mineral named ettringite. However, not all chemically stabilized soils will exhibit heave. The overall goal of this research was to determine if the sulfate concentration in water can contribute to, or even cause, sulfate induced heave. Two soils, one with a soluble sulfate level below 3000 mg/kg and one with >8000 mg/kg sulfate, were stabilized with either lime or cement and subjected to a capillary soak with distilled water or saturated sulfate water. The low sulfate soils did not swell above the accepted limit of 1.5 %. The high sulfate soils swelled significantly (p < 0.05) above accepted level regardless of the stabilizer used. Overall, stabilized soils subjected to a capillary soak with saturated sulfate water swelled more than soils soaked with distilled water. The results found in this study demonstrated that cement will increase the axial load capacity of the soil, but the soil will still have the potential to heave excessively if sulfate and aluminum are present above the stoichiometric requirements to from ettringite.  相似文献   

20.
This study examines the effect of loss of apparent cohesion from rainwater infiltration upon the stability of partly saturated, allophanic soil slopes of Dominica (West Indies). The parent material of the Dominican allophanic soils are the andesitic and dacitic volcanic rocks from ten volcanic centres of mainly Pleistocene age. Although simplifying assumptions are made to assess the depth of wetting front and magnitudes of true and apparent cohesion values of the partly saturated allophanic soils, certain inferences of practical significance emerge from the study.

Matric suction contributes to the effective stress of unsaturated soils and increases the shear strength of these soils by imparting them an apparent cohesion strength component. This apparent cohesion strength component of the partly saturated Dominician allophanic soils is considered to be related to the matric suction term (uauw) by a parabolic relationship.

The partly saturated allophanic soil slopes of Dominica would invariably fail from loss of apparent cohesion upon saturation of the soil mantle by the infiltrating water front only if (a) the average slope angle (β) is greater than or equal to the drained shear strength parameter of the unsaturated soil (Φd) (slopes with β ≥ Φd are referred to as category 1 slopes in this study) and (b) the drained cohesion parameter (cd) belonging to the partly saturated soil of the category 1 slope is mainly contributed by matric suction induced apparent cohesion (capp) and contribution from true cohesion (c′) is absent. However, the possibility of the category 1 slopes (for the case 1 situation) failing in the saturated condition from effective stress reduction due to rise in ground water table is shown to be an unfeasible proposition. In contrast, for the case 1 situation, the partly saturated category 2 slopes (β < Φd) are insusceptible to failure from reduction in effective stress due to loss of matric suction but fail in the saturated condition from effective stress reduction due to rise in ground water table. If the allophanic soils were to possess a sufficient magnitude of true cohesion (c′), even the partly saturated category 1 slopes possessing slope angles (β) much in excess of their Φd values (β − Φd = 15.1°) would remain stable upon total elimination of the matric suction induced cohesion. However, partly saturated category 1 slopes possessing a true cohesion component and insusceptible to failure from reduction in effective stress upon loss of matric suction, invariably fail in the saturated condition from reduction in effective stress due to rise in ground water table.

Using the methodology developed in this study, two previously reported case histories pertaining to rain induced translational landslides in the residual soil areas of Brazil are re-examined and the results obtained in this study are found to be in agreement with the findings of the previous researchers.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号