首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 531 毫秒
1.
青海共和盆地干热岩赋存地质特征及开发潜力   总被引:4,自引:1,他引:3  
青海共和盆地贮藏有丰富的干热岩地热资源。为提升共和盆地干热岩地热资源成因的理论认识,进一步推动干热岩资源的勘探,文章从共和盆地干热岩热源机制、盖层条件、储层特征等方面对共和盆地干热岩资源成因件进行了全面分析。首先,结合区域地质构造分析、地热地质调查、地球物理(航磁、地震)解译等手段,在共和盆地恰卜恰岩体内实施了4口深度为2927~3705 m的干热岩勘查孔,并在3705 m处钻获236℃的优质干热岩资源,为中国非现代火山区干热岩地热资源勘探的首个重大突破。其次,系统测试了钻孔不同深度花岗岩放射性,结果表明,共和盆地花岗岩体铀、钍、钾放射性含量略高于大地背景值,放射性生热率较低,对干热岩热源的贡献小,其热源可能来自壳内熔融体。第三,基于地质资料分析和航磁解译,圈定了共和盆地总体面积约1.4×104 km2的潜在干热岩分布区。最后,采用体积法评估了共和盆地干热岩资源潜力,结果表明,共和盆地3.0~6.0 km深度范围保守的、静态干热岩资源总量为8974.74×1018 J,换算标准煤可达3066.19×108 t,具有广阔的开发利用前景。   相似文献   

2.
秦岭、祁连、昆仑造山带结合处的共和盆地记录了复杂的构造、岩浆、变质和沉积作用事件,是研究青藏高原北部构造-岩浆演化的关键地区。近年来,共和盆地花岗岩类高温干热岩的发现使得该区成为新型地热资源的战略基地。然而,有关干热岩原岩的组成、侵位时代、结晶温压及其时空分布等特征仍不清楚,制约着干热岩地热能勘查开采及该区构造-热演化历史的认识。本文以共和盆地东北部恰卜恰地区3口干热岩钻井岩芯和野外露头样品为基础,结合区域地质调查资料,开展了系统的岩石学、锆石U-Pb年代学和矿物温压计研究。研究发现,该区干热岩主要由花岗闪长岩、英云闪长岩、二长花岗岩和正长花岗岩等花岗岩类组成,偶见闪长岩包体。电子探针分析显示,样品中多数角闪石为铁角闪石。角闪石-斜长石矿物对温压计研究表明,岩体的结晶压力属于中低压(1.91~3.52kbar),温度为中低温(681~693℃),其岩浆结晶深度约在7.2~13.2km。锆石Ti饱和温度计分析表明,该区岩浆结晶温度主要为643~804℃,而恰卜恰北部的沟后杂岩体相较干热岩钻井岩芯钻揭的杂岩体具有更高的结晶温度。锆石U-Pb年代学分析表明,共和盆地东北部恰卜恰地区干热岩原岩形成时间主要为243~236Ma和225~210Ma两个时期,存在不同时期、不同源区的侵入,与印支期青藏高原北部古特提斯洋盆的俯冲消减相关。之后,共和干热岩经历了至少4.2km的隆升剥露。结合前人多种地球物理研究资料,构建了该区深部四层结构构造剖面,干热岩热源可能与地幔上涌、中下地壳存在局部熔融体有关,且受多条隐伏断裂的影响,盆地基底下的干热岩地热藏具有分区性。  相似文献   

3.
地球深度热状况是深部地球动力学和岩石圈活动性研究的重要内容, 岩石圈热结构和热-流变结构可以很好地揭示岩石圈范围内的热状况。近年来, 在青海共和盆地钻探揭露了深部高温干热岩体, 关于其热源机制尚未有定论。本文以青海共和盆地为研究对象, 分析壳内温度分布和流变强度, 探讨壳内低速体的地质属性。结果表明, 共和盆地的地壳流变结构从上而下分为脆性和韧性两层, 韧性层又包括中地壳和下地壳两层韧性层, 在上地壳尺度均表现为脆性破裂为主, 并逐渐过渡为韧性流变; 恰卜恰地区在脆性破裂的上地壳延伸至中下地壳时, 破裂沿一系列滑脱面发生韧性滑动, 局部地段形成壳内熔融, 为恰卜恰地区提供了额外的热源, 使其大地热流值(109.6 mW/m2)显著高于贵德地区(77.6 mW/m2)。这一认识为共和盆地壳内低速体存在提供了新的佐证, 也为区内干热岩热源分析以及高温地热资源探测开发提供了科学依据。  相似文献   

4.
青海共和盆地地热资源热源机制与聚热模式   总被引:2,自引:0,他引:2  
青海共和盆地东侧贵德扎仓热田是探讨共和盆地地热资源成因的关键地区。本文综合区域地质、岩石热物性、同位素年代学、水文地球化学和地球物理测量等方法,重点分析了共和盆地的构造背景和热源机制,深入研究了共和盆地地热能系统的关键环节。研究发现:①识别出盆地地壳15 km以下深度发育高导体,并可与新生代青藏高原东部中-下地壳发育的层状低速高导层对比;②近NW-NS向的瓦里贡左旋走滑逆冲断裂是扎仓热田重要的控热和导热断裂;③晚中生代花岗岩与上覆围岩具有显著的热导率;④温泉氢氧同位素指示水源以地表水补给为主;⑤存在浅层新生界碎屑岩中-低温热储和深层花岗岩中-高温热储,发育四层两类地热资源。综合分析提出了共和盆地干热岩三元聚热模式:即新生代中-下地壳发育的高温低速高导层是主要热源,中晚三叠世花岗岩是良好的导热和储热体,既是干热岩母岩,也是热储,新生代低热导率沉积岩是良好的盖层。研究对于青藏高原地热成因、资源预测、开发规划等具有参考意义。  相似文献   

5.
东南沿海位于欧亚板块与菲律宾板块的俯冲带,构造运动活跃,同时,该区也是我国最主要的高放射性花岗岩分布区,发育大面积的中生代酸性花岗岩体,具有良好的干热岩赋存背景。本文以东南沿海福建厦门湾-漳州盆地为例,在区域地热地质背景研究的基础上,从区域大地热流、地温梯度、热储温度、循环深度以及深部地温场分布等方面系统分析了厦门湾-漳州地区干热岩资源的形成条件,科学评价了本区未来干热岩资源勘查的适宜深度。分析认为,区内平均地温梯度约为18.3℃/km,低于大陆地区平均值;花岗岩体的放射性生热率仅略高于世界范围内的花岗岩放射性生热率的平均值;区内相对高的地表热流值很大一部分来自于地幔热传导,放射性元素生热贡献相对较低,要达到180℃的干热岩开发温度,勘查深度要超过6 km;区内未来干热岩资源的开发应充分考虑深部热源条件、地表盖层厚度以及区域断裂对钻探工程的影响,这些认识对于本区未来干热岩资源勘查开发工作有一定的指导意义。  相似文献   

6.
对胶北.辽东和吉南地区古元古代层状岩系第一系构造变形作的详细研究和综合分析,并以此为典型实例,提出了古元古代拉伸构造模式,即隆起一顺层分层滑脱构造模式。该模式由核部隆起和上部盖居及两者之间的拆离型韧性剪切带三部分组成。核部隆起常由岩浆隆起或基底隆起构成,上部盖层内发育有顺层分层滑脱构造体系,由底部主滑脱面和内部次级滑脱面、低级滑脱面及其间的流褶居和片理化带构成,靠近核部隆起的盖居表现为正向滑脱,而滑脱前缘则表现为反向滑脱,具有滑覆特征。该模式一般发生在大规模收缩造山作用之前,由于区域拉伸作用,导致壳下地任上隆,形成岩桨隆起或基底隆起,使上覆盖层岩系重力失稳,发生滑脱,内部横向构造置换强烈,形成透入性片理,且平行区域地层层理  相似文献   

7.
冀中坳陷中区中生代中晚期大型拆离滑覆构造的确定   总被引:8,自引:2,他引:6  
晚侏罗世至早白垩世 ,太行地区受区域热构造事件的影响 ,燕山期的岩浆活动达到高潮 ,并由此引发了阜平、赞皇变质核杂岩的强烈拱升及浅层的侧向伸展拆离作用 ,在阜平变质核杂岩东侧的冀中坳陷中区形成了西部伸展而东部挤压的有机相连、有序发展的拆离滑覆构造体系 ,波及宽度达 1 5 0km。其后缘伸展区表现为变质核杂岩内的韧性剪切带、盖层内的拆离伸展断层及伴随的断陷盆地 ;而前缘挤压区形成叠瓦状逆冲推覆构造体系 ;介于二者之间的中部过渡带构造变形相对较弱  相似文献   

8.
萍—乐坳陷及其基底存在不同层次的滑脱,并由宜春盆地滑覆系、九岭南缘逆冲推覆系和乐平逆冲推覆系组成一个规模宏大的复杂推覆系。推覆系内部存在三种不同的结构类型:基底逆冲叠瓦式、盆地盖层对滑式和盆岭对冲式。盖层区逆冲断层扩展的主导因素是盖层底部不整合面的拆离,后继作用是多层次滑脱和随后的切层逆冲,扩展顺序由盆内指向盆缘,即内序列。推覆作用主要导源于东秦岭中生代的陆内俯冲,分三个推覆期:印支期、燕山早期和喜马拉雅期。  相似文献   

9.
造山带与相邻盆地间物质的横向迁移   总被引:16,自引:1,他引:16  
本文以太行山隆起与相邻华北断陷盆地为例,论述了在大陆岩石圈中造山带与相邻断陷盆地在地球动力学机制上是相辅相成的对立统一体系。当软流圈受力产生波状起伏变形时,在软流圈和上地幔隆起上方,地壳发生减薄并裂陷;软流圈和上地幔拗陷上方,地壳变厚,由脉隆升。造山带遭受物理(化学)风化作用的产物被搬运至相邻断陷盆地,并以逆冲推覆岩片、拆离滑脱构造体系向盆地扩展。断陷盆地的中下地壳物质,则在地幔上隆形成的地幔位势差、密度差和盆地扩张力的共同驱动下,沿向造山带缓倾的拆离滑脱变形带,向山根蠕动流动,以补充因地幔拗陷和山脉隆升造成的重力亏损,从而达到岩石圈四维空间物质的动态调整。  相似文献   

10.
通过野外调研和资料分析,发现萍乐坳陷带西段存在一伸展构造体系,它由变质核杂岩、固态流变构造群落、浅层次的顺层正滑拆离断层以及晚期的重力滑脱构造体系组成。变质核杂岩外缘由以多条大环状分布外倾的花岗质糜棱岩带为代表的韧性剪切带组成,带中的矿物拉伸线理显示韧性剪切作用是沿隆起两翼近南北向进行的。顺层固态流变群落最突出的表现为浅变质岩中近水平的韧性剪切带。部分泥盆系-二叠系亦卷入顺层固态流变群落,表现为带内动力片岩及碳酸岩糜棱岩带。浅层次顺层正滑拆离断层多沿已存界面或岩性软弱面由南向北多层次滑移,并可分为后缘拉张、中部递进滑脱及前缘挤压三个构造分带。晚期重力滑脱体系主要发育于武功山北麓,由众多滑块组成。依据法国奥尔良大学所获变质核杂岩中糜棱岩同位素年龄可知,该伸展构造体系始于华力西晚期-印支期;依据卷入的地层,至少是燕山末期、甚至喜山期才结束.  相似文献   

11.
《China Geology》2018,1(3):331-345
The Gonghe Basin, a Cenozoic down-warped basin, is located in the northeastern part of the Qinghai-Xizang (Tibetan) Plateau, and spread over important nodes of the transfer of multiple blocks in the central orogenic belt in the NWW direction. It is also called “Qin Kun Fork” and “Gonghe Gap”. The basin has a high heat flow value and obvious thermal anomaly. The geothermal resources are mainly hot dry rock and underground hot water. In recent years, the mechanism of geothermal formation within the basin has been controversial. On the basis of understanding the knowledge of predecessors, this paper proposes the geothermal formation mechanism of the “heat source–heat transfer–heat reservoir and caprock–thermal system” of the Gonghe Basin from the perspective of a geological background through data integration-integrated research-expert, discussion-graph, compilation-field verification and other processes: (1) Heat source: geophysical exploration and radioisotope calculations show that the heat source of heat in the basin has both the contribution of mantle and the participation of the earth’s crust, but mainly the contribution of the deep mantle. (2) Heat transfer: The petrological properties of the basin and the exposed structure position of the surface hot springs show that one transfer mode is the material of the mantle source upwells and invades from the bottom, directly injecting heat; the other is that the deep fault conducts the deep heat of the basin to the middle and lower parts of the earth’s crust, then the secondary fracture transfers the heat to the shallow part. (3) Heat reservoir and caprock: First, the convective strip-shaped heat reservoir exposed by the hot springs on the peripheral fault zone of the basin; second, the underlying hot dry rock layered heat reservoir and the upper new generation heat reservoir and caprock in the basin revealed by drilling data. (4) Thermal system: Based on the characteristics of the “heat source-heat transfer-heat reservoir and caprock”, it is preliminarily believed that the Gonghe Basin belongs to the non-magmatic heat source hydrothermal geothermal system (type II21) and the dry heat geothermal system (type II22). Its favorable structural position and special geological evolutionary history have given birth to a unique environment for the formation of the geothermal system. There may be a cumulative effect of heat accumulation in the eastern part of the basin, which is expected to become a favorable exploration area for hot dry rocks.  相似文献   

12.
Hot dry rock (HDR) is an important geothermal resource and clean energy source that may play an increasingly important role in future energy management. High-temperature HDR resources were recently detected in deep regions of the Gonghe Basin on the northeastern edge of the Tibetan Plateau, which led to a significant breakthrough in HDR resource exploration in China. This research analyzes the deep temperature distribution, radiogenic heat production, heat flow, and crustal thermal structure in the Qiaboqia Valley, Guide Plain, and Zhacanggou area of the Gonghe Basin based on geothermal exploration borehole logging data, rock thermophysical properties, and regional geophysical exploration data. The results are applied to discuss the heat accumulation mechanism of the HDR resources in the Gonghe Basin. The findings suggest that a low-velocity layer in the thickened crust of the Tibetan Plateau provides the most important source of constant intracrustal heat for the formation of HDR resources in the Gonghe Basin, whereas crustal thickening redistributes the concentrated layer of radioactive elements, which compensates for the relatively low heat production of the basal granite and serves as an important supplement to the heat of the HDR resources. The negative effect is that the downward curvature of the lithospheric upper mantle caused by crustal thickening leads to a small mantle heat flow component. As a result, the heat flows in the Qiaboqia Valley and Guide Plain of the Gonghe Basin are 106.2 and 77.6 mW/m2, respectively, in which the crust-mantle heat flow ratio of the former is 3.12:1, indicating a notably anomalous intracrustal thermal structure. In contrast, the crust-mantle heat flow ratio in the Guide Plain is 1.84:1, which reflects a typical hot crust-cold mantle thermal structure. The Guide Plain and Zhacanggou area show the same increasing temperature trend with depth, which reflects that their geothermal backgrounds and deep high-temperature environments are similar. These results provide important insight on the heat source mechanism of HDR resource formation in the Tibetan Plateau and useful guidance for future HDR resource exploration projects and target sites selection in similar areas.  相似文献   

13.
共和盆地处于西秦岭、南祁连、东昆仑造山带结合部,其中发现了高温干热岩及多套烃源岩,但地热藏和油气藏的成因、资源潜力与分布规律尚不清楚,难以对其开展准确评价和有效勘探开发。本文在系统研究共和盆地及周缘地层发育、沉积充填、构造变形与盆地深部结构的基础上,深入探讨了盆地演化的动力学机制,分析了盆地地热藏和油气藏的成藏主控因素,预测了有利分布区带和勘探方向。多期活动的哇洪山—温泉、多禾茂、瓦里贡、塘格木右行走滑逆冲断裂与青海南山左行走滑逆冲断裂异向、同向相交(切),叠加地幔上涌作用,导致在中新生代共和盆地长期处于走滑-伸展的独特环境,并控制了盆地7个隆起、断陷构造单元的展布及属性。它经历了6期演化阶段:早中三叠世处于昆北弧前盆地及陆缘火山弧带,共和盆地基底主要岩石发育;晚三叠世阿尼玛卿洋闭合并发生碰撞造山,共和盆地褶皱基底形成;晚三叠纪末期发生碰撞后伸展,发育初始小型陆内裂谷盆地;在侏罗纪—白垩纪区域性伸展环境下形成局部断陷盆地;古近纪晚期—中新世发育拉分-断陷盆地;中新世末至今发育陆内前陆盆地。形成了3个大构造-沉积层序和8个亚层序,发育了深海陆棚相-碳酸盐岩台地相-火成岩相以及多旋回的冲积...  相似文献   

14.
青海共和盆地干热岩经历的热历史过程、热源是了解干热岩地热藏形成亟待解决的难题,不同时期、不同类型的脉体可为其经历的热过程、热源提供证据。经调查发现,盆地东北当家寺岩体及井下干热岩中电气石脉体与该区后期断裂产状相近,是否代表后期热事件需要确定。本研究选择对GR1井、DR3井中酸性侵入岩岩芯和当家寺露头岩体中发现的电气石脉体开展了岩相学、锆石年代学、电子探针、LA-MC-ICPMS原位微量元素及B同位素分析,以约束电气石脉体的成因和源区。结果表明,GR1、DR3井岩芯及当家寺岩体含有电气石脉体的岩性分别是碱长花岗岩、高镁闪长岩及二长花岗岩;其中露头区花岗岩体中电气石脉的宽度约20cm,产状直立,其围岩的形成时代为239~241Ma。背散射及显微图像特征揭示,GR1井和DR3井下中酸性侵入岩及当家寺岩体中电气石为碱族的黑电气石和镁电气石,具有远近不同的多个流体来源。δ^(11)B分布在-11.50‰~-11.93‰,与大陆地壳平均的同位素组成δ^(11)B值(-10‰±3‰)相近。结合区域地质资料,认为在晚三叠世时期,该区域整体处于碰撞期或后碰撞期,陆壳加厚发生部分熔融形成S型花岗岩(~220Ma),其中含硼的热液流体侵位于早期具有俯冲背景的I型花岗岩(~240Ma)中形成电气石脉。  相似文献   

15.
利用小波多尺度分解方法分离不同深源尺度花岗岩侵入体的重力异常信息, 结合视密度填图方法划分了5 km、15 km及25 km深花岗岩体分布特征, 并综合地震成像和大地电磁测深资料, 对南岭花岗岩侵入体的赋存侵位、诱发热源以及成因模式等问题进行初步探讨.研究结果表明, 以茶陵-郴州断裂为界, 区内重力场和岩体构造呈明显分区, 东南区岩体局部重力异常幅值较小, 地表出露岩体较薄, 岩浆沿着小通道上涌形成岩盖; 西北区岩体局部重力异常幅值较大, 侵位深度较深; 区内大多数岩体侵位深度不超过25 km; 深部地球物理资料还揭示诸广山和猫儿岭地区15~25 km附近存在大规模低密度、低速特征的陆壳重熔区; 诸广山地区上地幔顶部存在低速、低阻熔体特征的软流圈上涌通道, 推测来自软流圈的玄武岩浆底侵造成该区中下地壳岩石部分熔融, 并为其周围大规模成岩成矿提供热源和物质来源.   相似文献   

16.
共和干热岩资源富集于花岗岩地层,硬度高,研磨性强,部分层段裂隙发育,取心困难。针对干热岩地层和取心需求特点,研制一套KT178取心钻具,并配套设计了孕镶金刚石取心钻头。该钻具为单动双管取心钻具,可配套井底动力钻具使用,设计中注重对钻具外管、卡簧等关键部件的强度校核。在GH-01井和GH-02井中,经过两轮实验和优化,钻具逐渐成熟,获取了较完整的岩心样本,满足干热岩勘探取心要求,具备了向页岩气、水资源勘察等具有间断取心需求的同类工程推广应用的条件。  相似文献   

17.
为了研究干热岩成因机理,综合分析了干热岩形成背景、控热构造系统及尺度.地球中的干热岩具有特殊的形成构造背景,控热构造对干热岩热能的传输与聚敛具有很重要的作用,导致岩石圈不同热结构和热异常.控热构造可划分为生热、导热、储热和释热构造.生热构造包括地幔软流圈底辟,具有大量高放射性元素的岩浆房,活动性的深大断裂等;中、下地壳脆韧性转换带,活动的韧性剪切带是导热构造;中、下地壳的低阻高导体,韧性剪切流变层既是导热层,也是储热构造;火山、地震、浅表层次的活动断裂等为释热构造;控热构造的类型受到构造尺度和构造背景的限定.由于地壳中控热构造分布状态及发育特征差异较大,从而导致干热岩等地热能资源在地壳中的埋深、规模、热量以及分布状态等也有较大差异.   相似文献   

18.
近年来,围绕三门峡断陷盆地中的油气、地热资源做了大量的工作,成因机制研究较少,严重制约了矿产资源的勘探开发。本文在前人研究工作基础上,结合野外地质调查并利用高精度深反射地震剖面、大地电磁(MT)、重磁等地球物理探测技术,对三门峡盆地进行综合研究。发现三门峡盆地主要由东、西2个负花状构造构成,西花状构造体大于东花状构造体;盆地东部边缘以观音堂隆起与洛阳凹陷相邻,观音堂隆起发育有壳内透镜状低速体,其东、西两侧均发育有规模较大的隐伏逆断层。研究区内莫霍面为大约5 km厚度滑脱层,在深反射地震剖面上表现为蚯蚓状反射特征,指示滑脱层为西向运动。莫霍面滑脱层上部与下部新发现多条弧形断层。地质与地球物理资料综合研究表明,莫霍面滑脱层的解耦作用是三门峡断陷盆地花状构造形成的主因;在不同时空构造力系作用下,形成研究区新生代全地壳旋转花状构造盆地。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号