首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
秦岭造山带燕山期斑岩-矽卡岩型铜矿床因过去发现的数量有限,限制了对区内铜矿床成矿机制的深入研究。小河口铜矿床是南秦岭柞水-山阳矿集区内的典型矽卡岩型铜矿床,矿体产于燕山期花岗闪长玢岩与泥盆系桐峪寺组地层接触处的矽卡岩带内。成矿作用划分为4个阶段:Ⅰ干矽卡岩阶段、Ⅱ湿矽卡岩-氧化物阶段、Ⅲ石英-硫化物阶段和Ⅳ碳酸盐-石英阶段。本文在对该矿床矽卡岩矿物(石榴子石和辉石)和金属矿物(磁铁矿和硫化物)详细的岩(矿)相学观察基础上,针对这些矿物进行系统的电子探针成分分析,来示踪矽卡岩的成因和形成环境,讨论成矿元素的沉淀富集过程。研究表明,小河口铜矿床为典型的接触交代成因钙质矽卡岩型矿床。干矽卡岩矿化阶段从早到晚依次形成钙铝榴石(Adr_(24-31)Gr_(68-74))、钙铝榴石组分-钙铁榴石组分交替系列(Adr_(26-68)Gr_(31-72))和透辉石(Di_(73-91)Hd_(8-24))-纯钙铁榴石(Adr_(68-100)Gr_(0-30))。伴随着岩浆结晶分异,初始岩浆-热液流体与灰岩发生接触交代作用首先形成无环带钙铝榴石(Grt-a)矽卡岩,此时成岩环境为低氧逸度、酸性还原环境,不利于矽卡岩铁、铜矿化的形成;成矿流体不断从岩浆中出溶并发生多次沸腾,引起残留热液的氧化还原状态发生周期性变化,成矿热液由酸性逐渐向弱碱性演化,进而导致Fe~(3+)和Al~(3+)活度的变化,在振荡的物理化学环境中形成了钙铝榴石-钙铁榴石组分交替生长的宽环带石榴子石(Grt-c)矽卡岩;随着岩浆演化和流体作用的扩大,成矿体系处于较稳定的碱性和高氧逸度环境,Fe和Al的过饱和程度此消彼长,形成了透辉石-密集振荡环带钙铁榴石(Grt-b和Grt-d)矽卡岩。成矿流体演化进入湿矽卡岩-氧化物阶段后,富含挥发分的热液活动起主导作用,沸腾作用将H~+和CO_2分离进入气相,导致流体体系碱性和氧逸度程度进一步升高,进而形成磁铁矿和镜铁矿大量沉淀富集。石英-硫化物阶段,随着温度和氧逸度骤减导致黄铁矿、磁黄铁矿和黄铜矿等硫化物发生沉淀,并以石英-硫化物脉的形式充填于构造裂隙或矽卡岩内。  相似文献   

2.
青海省兴海县赛什塘铜矿床矽卡岩矿物学特征及地质意义   总被引:1,自引:0,他引:1  
赛什塘铜矿位于东昆仑造山带东端的鄂拉山地区,是中国西部重要的矽卡岩型铜矿之一。矽卡岩形成于印支期石英闪长岩与中—下三叠统地层Tb2 1-2岩性段的接触带,矿体主要呈似层状、透镜状产于外接触带矽卡岩中。Tb2 1-2岩性段由中性火山岩、大理岩及变质粉砂岩构成,其中变安山质凝灰岩及安山岩与铜矿化有着密切的空间关系。岩相学研究表明,含铜矽卡岩的形成经历了矽卡岩阶段、退化蚀变阶段、石英-硫化物阶段及石英-碳酸盐阶段。矽卡岩阶段形成石榴子石、辉石及硅灰石,退化蚀变阶段则形成绿帘石、角闪石及磁铁矿,石英-硫化物阶段大量金属硫化物发生沉淀。电子探针分析表明,石榴子石与辉石矿物组分分别为Gro0.00~91.00And7.02~100.00(Pyr+Alm+Spe)0.00~4.27与Di12.80~98.08Hd2.41~79.80(Jo+Jd+Opx)0.00~13.47,表明其属于典型的钙矽卡岩类。空间上,靠近石英闪长岩与安山岩接触带处,钙铝榴石和绿帘石更富集,而向大理岩的一侧以钙铁榴石为主,并常见硅灰石及含Mn的钙铁辉石。矿物学特征及矿物成分的变化显示:从矽卡岩阶段到石英-硫化物阶段,流体性质呈幕式的变化,成矿流体至少经历了2次氧化还原性质的转变,这种变化可能与成矿流体中大气降水的不断加入有关。赛什塘铜矿属于矽卡岩型矿床,以石英闪长岩为主的岩浆活动携带了大量的热量及流体,侵入到中—下三叠统地层中,与围岩地层发生物质交换的同时,引起了大理岩、变质粉砂岩与中性火山岩之间的双交代作用,是导致矽卡岩和矿体形成的重要机制。  相似文献   

3.
浙江漓渚铁矿床系钦杭成矿带东段一典型矽卡岩型矿床,矿体呈透镜状、似层状、不规则状等,产于广山复式花岗岩体外接触带的南华系、震旦系、寒武系和奥陶系层间的矽卡岩中。矿区发育透辉石、石榴子石、铁浅闪石、金云母、绿泥石、榍石等矽卡岩矿物,金属矿物主要包括磁铁矿、黄铁矿、方铅矿、闪锌矿、辉钼矿等。作者利用电子探针技术对漓渚铁矿床中的矽卡岩矿物进行了系统分析,结果表明:漓渚铁矿床矽卡岩演化经历了矽卡岩期和热液蚀变期,其中,矽卡岩期包括辉石-石榴子石阶段、磁铁矿阶段和角闪石-金云母阶段;热液蚀变期包括石英-硫化物阶段和石英-碳酸盐阶段。辉石以透辉石为主,有向钙铁辉石演化的趋势,即Mg+2→Fe+2演化;石榴子石由钙铝榴石向钙铁榴石转变,显示Al+3→Fe+3演化,这些矿物学特征反映了矽卡岩早期的成矿流体中Fe逐渐增加,且氧逸度f(O2)逐渐升高。铁浅闪石具有富Na、K的特征,且铁浅闪石、金云母和榍石等富F以及矽卡岩萤石化现象,反映成矿流体呈碱性、具有富F的特征,有利于Fe的迁移、富集、成矿。漓渚铁矿床的形成与区内广山-柵溪岩体的岩浆活动有关,Fe可能来源于多期岩浆热液。  相似文献   

4.
龙玛拉铅锌矿床是位于冈底斯成矿带之念青唐古拉铅锌成矿亚带东段的一个典型矽卡岩型矿床。前人对矿床成矿物质来源及演化、成岩-成矿时代、矿床形成动力学背景等方面进行过一定的研究, 但对矽卡岩矿物学及分带模式还缺乏系统的研究。为此, 本文通过详细的野外地质编录、系统的镜下鉴定和电子探针分析, 开展矽卡岩矿物组合、矿物成分及其分带特征研究。矿床矽卡岩矿物主要包括石榴子石、辉石、硅灰石、绿泥石和绿帘石等。矽卡岩矿物组合和化学成分在空间上具有明显的分带性。矽卡岩主要发育在角岩与大理岩接触带, 或沿裂隙充填在围岩中, 横向上显示了从褪色角岩→石榴子石矽卡岩→深色角岩→透辉石矽卡岩(矿体)→大理岩→角岩的分带特征。垂向上由顶板至底板表现出从角岩→石榴子石矽卡岩→透辉石矽卡岩→大理岩→石榴子石矽卡岩→透辉石矽卡岩→角岩的岩性分带特征。矿床石榴子石为钙铁-钙铝榴石类质同象系列(And7.92~88.63Gro5.92~86.46Pyr+Spe1.04~5.11), 端员组分变化范围较大, 表明矽卡岩的形成环境并不是完全封闭的体系。通过对铅锌主矿体的赋矿矽卡岩中石榴子石进行研究, 表明成矿流体是从矿区南西方向向北东方向运移就位形成主矿体, 为矿区寻找成矿岩体及深部找矿提供指导。  相似文献   

5.
西藏邦铺超大型钼多金属矿床中矽卡岩铅锌矿体赋存于下二叠统洛巴堆组矽卡岩和大理岩中,矿体呈似层状、透镜状产出,矽卡岩矿物较为发育。为进一步查明矿床矽卡岩矿物种属及矽卡岩类型,剖析矽卡岩形成环境及其与矿化类型之间的关系,基于对矽卡岩矿物系统地显微镜下观测,利用电子探针对矿床主要矽卡岩矿物化学成分进行了系统分析。结果表明,石榴子石端员组分以钙铁榴石为主,含少量锰铝榴石和钙铝榴石;单斜辉石主要为透辉石-钙铁辉石系列,含少量锰钙辉石;似辉石为铁钙蔷薇辉石;角闪石主要为钙质阳起石;绿帘石贫Fe、Mg。矽卡岩矿物组合特征表明,矿床矽卡岩兼具钙矽卡岩和锰质矽卡岩特征;早期矽卡岩形成于较强的氧化环境,成矿岩浆流体亦具有较高氧逸度。邦铺首次发现锰质矽卡岩矿物组合,表明矿区具有银矿找矿潜力,为下一步找矿工作提供了理论支撑。  相似文献   

6.
西藏浦桑果铅锌多金属矿床位于南冈底斯成矿带火山岩浆弧内,矿区矽卡岩型铅锌矿体主要呈似层状和透镜状近东西向赋存于白垩系塔克那组第4岩性段矽卡岩化大理岩中,矽卡岩矿物较发育。为进一步查明矽卡岩矿物种属及矽卡岩类型,剖析矽卡岩的形成环境及其与成矿的关系,在对矽卡岩矿物系统的显微镜下鉴定基础上,利用电子探针对矿区内主要矽卡岩矿物化学成分进行了系统分析。结果表明,石榴子石主要为非连续的钙铁榴石钙铝榴石类质同像系列(And47.39~98.17Gro0.59~50.22Ura+Pyr+Spe0~3.53),且早期主要形成钙铁榴石,部分钙铁榴石含锰质较高;单斜辉石主要为钙铁辉石-锰钙辉石-透辉石类质同像系列(Hd37.91~74.16Jo0.91~61.66Di0.43~46.07);似辉石主要为硅灰石,端员组分为Wo99.09~99.26En0.50~0.56Fs0.13~0.24;角闪石主要为镁角闪石,具钙质角闪石属性;绿帘石贫铁、镁而富铝、钙;绿泥石属于密绿泥石类。矿床矽卡岩矿物组合特征表明,浦桑果矿床矽卡岩兼具钙质矽卡岩和锰质矽卡岩的特征。早期矽卡岩形成于高温、偏碱性、强氧化的开放体系中,成矿流体具有较高氧逸度。锰质矽卡岩矿物特征及独立银矿物的存在综合表明矿区具有银矿找矿潜力,为下步找矿工作提供了思路和方向。  相似文献   

7.
新疆维宝矽卡岩铜铅锌矿床维西矿段矿物学特征   总被引:2,自引:0,他引:2       下载免费PDF全文
维宝矽卡岩铜铅锌矿床位于新疆与青海两省交界处,大地构造位置属祁漫塔格造山带东段,可以分为维东、主矿段和维西三个矿段。主矿段和维东矿段以铅锌矿化为主,铜矿化很少,而维西矿段铜、铅、锌矿化均较发育。本次我们选取维西矿段的矽卡岩和矿石样品,进行了详细的矿物学研究。根据矿物共生组合、矿石组构以及脉体的穿插关系,可以将维西矿段成矿过程分为4个阶段,即早期矽卡岩阶段、晚期矽卡岩阶段、石英-硫化物阶段和石英-碳酸盐阶段,其中石英-硫化物阶段是主要的成矿阶段。矽卡岩矿物主要为石榴子石、辉石、绿帘石和角闪石等,硫化物主要为黄铜矿、方铅矿、闪锌矿、黄铁矿和磁黄铁矿等。电子探针分析表明,石榴子石成分以钙铁榴石分子(And=59.00%~97.70%)和钙铝榴石分子(Gro=1.92%~40.42%)为主,为钙铁—钙铝系列石榴子石;辉石主要由透辉石分子(Di=45%~91%)和钙铁辉石分子(Hd=8%~53%)组成,表现在矿物上以透辉石为主,而钙铁辉石数量很少;角闪石成分变化范围比较大,但总体上为透闪石—阳起石系列。综合矿物组合和化学成分特征表明维宝矿床维西矿段矽卡岩为钙矽卡岩。此外,具有环带结构的石榴子石从核部到边部,化学成分表现出有规律的变化,Al2O3含量先上升后下降,FeOT含量则先下降后上升。这表明随着交代作用的进行,成矿流体的pH值不断发生变化,由最初的弱酸性—碱性条件转变为近中性条件,最终又恢复到弱酸性—碱性条件。维西矿段硫化物的金属原子与硫原子的比值大部分都大于理论值,表明它们形成于硫逸度较高的环境。此外,闪锌矿中Fe、Zn含量变化范围比较大,Zn=54.50%~64.75%,Fe=1.15%~10.16%,这种大范围变化指示成矿过程中温度和硫逸度可能发生波动。  相似文献   

8.
东天山红云滩铁矿赋存于下石炭统雅满苏组火山碎屑岩地层中.矿体主要呈层状、似层状、透镜状.矿石矿物以大量磁铁矿为主,含少量的磁赤铁矿、镜铁矿、黄铁矿和极少量的黄铜矿等.脉石矿物主要有石榴石、透辉石、阳起石、绿帘石、绿泥石、黑云母、钠长石、石英等.矿石构造以块状构造和浸染状构造为主,局部为条带状构造、脉状构造;矿石结构包括半自形-他形粒状结构、交代结构.围岩蚀变对称分带明显,从矿(化)体到两侧围岩,蚀变呈现从深色到浅色的变化现象.根据矿物共生组合、矿石组构的观察,本次工作识别出矽卡岩期和热液期两个成矿期,进一步细分为4个成矿阶段:矽卡岩阶段、退化蚀变阶段(主成矿期)、热液早期阶段及石英-硫化物阶段.电子探针分析表明石榴石端员组分以钙铁榴石-钙铝榴石系列为主,辉石端员组分以透辉石-钙铁辉石为主,角闪石端员组分主要为阳起石和透闪石,这些特点表明矿区矽卡岩为热液交代钙矽卡岩.磁铁矿的主、微量元素特征表明其形成与矽卡岩密切相关.结合成矿地质特征,认为矽卡岩是由富铁岩浆热液流体沿断裂构造运移、交代下石炭统雅满苏组富钙火山碎屑岩地层而形成的,磁铁矿的形成与矽卡岩的退化变质作用有关.  相似文献   

9.
本文分析了冈底斯成矿带西段尼雄矿田滚纠铁矿石榴子石、辉石、绿泥石成因矿物学特征,结果显示矿区石榴子石多为钙铁榴石,并存在一定量的钙铝榴石;辉石主要为透辉石、次透辉石和铁次透辉石,表明成矿流体早期为酸性、高温和高氧逸度环境。矽卡岩内接触带富钙铝榴石,外接触带富钙铁榴石,反映成矿流体由矽卡岩内接触带运移至矽卡岩外接触带过程中,温度逐渐降低,而pH和氧逸度逐渐升高。绿泥石主要为富铁贫镁的铁镁绿泥石,其在低温(206~268℃)、低pH值、还原环境下形成。方解石C-O同位素揭示成矿流体δ13C∑C为-2.6‰~-0.7‰,δ18OV-SMOW为+9.8‰~+12.0‰。石榴子石、磁铁矿、石英δDV-SMOW值为-121‰~-105‰,成矿流体δ18OH2O为8.7‰~11.3‰,反映成矿流体主要来源于花岗质岩浆。磁铁矿矿石中黄铁矿弱富铁亏硫,S/Fe为1.05~1.07,Co/Ni>1,指示为岩浆热液成因;黄铁矿δ34S为4.2‰~11.1‰,与花岗质岩浆硫相当,综合反映成矿物质也来源于花岗质岩浆。结合前人研究资料,认为高温、高氧逸度使金属元素大量进入岩浆,岩浆上升侵位、分异出富含成矿物质的流体。成矿流体运移过程中遭遇围岩,并与之反应形成矽卡岩和退化蚀变矿物,导致成矿流体物理化学性质改变,在温度(180~400℃)、氧化-弱氧化和弱碱性-碱性条件下,发生磁铁矿沉淀。  相似文献   

10.
朱溪铜钨多金属矿床位于赣东北深大断裂北西侧。矿体主要产于燕山期侵入岩与碳酸盐岩接触带的矽卡岩或矽卡岩化大理岩中,代表性矽卡岩矿物有石榴子石、透辉石、透闪石、硅灰石、蛇纹石、金云母、符山石、绿泥石等。根据矿物共生组合及交代关系推断流体经历了5个阶段,分别为矽卡岩阶段、退化蚀变阶段、石英硫化物阶段、石英碳酸盐阶段和表生氧化阶段。特征矿物的电子探针分析结果表明,石榴子石主要为钙铝榴石—钙铁榴石;辉石以透辉石—钙铁辉石系列为主;角闪石属钙角闪石系列;绿泥石主要是密绿泥石和斜绿泥石。推测岩浆侵入后,在矽卡岩阶段为中酸性弱氧化条件,在退化蚀变阶段氧逸度和p H值升高,氧化物析出,随着氧逸度的又一次降低,金属硫化物沉淀。最后,通过其矿物成分特征推测该矿床金属矿化的种类。  相似文献   

11.
岔路口矿床是大兴安岭北段新发现的巨型斑岩钼矿床(Mo金属量246万t,工业品位0.087%),其形成与晚侏罗世晚期侵入的细晶斑岩和花岗斑岩关系最为密切。岔路口矿床中发育多种类型的角砾岩,包括岩浆角砾岩和热液角砾岩。通过对这些角砾岩详细的填图和鉴定,并根据其角砾类型、基质、胶结物和结构差异,又将热液角砾岩分为A相、B1相、B2相和E相4个亚相。其中,A相角砾岩形成最早,是细晶斑岩流体释放的产物,以无矿石英胶结物为特征。随后,花岗斑岩侵位形成了以长英质岩浆(含石英、长石斑晶)为胶结物的岩浆角砾岩,花岗斑岩流体的释放造成的超压作用和流体演化,形成了胶结物组合分别为石英+辉钼矿+黄铁矿、绢云母+伊利石+黄铁矿+萤石和绿泥石+碳酸盐+黄铁矿+闪锌矿+方铅矿+萤石的B1相、B2相和E相角砾岩。在角砾岩形成过程中,流体化作用造成的角砾混合和磨损是B1相和B2相角砾岩中复杂成分角砾和大量岩粉基质产生的原因。富基质的角砾岩虽然由于渗透性的降低,造成自身钼品位较低,但它代表了流体聚集的位置;在角砾岩形成过程中,它是高渗透性带,可以作为流体运移的通道,在成矿过程中起重要作用。略深的岩体侵位深度、单次较小释放量流体的多次注入、富氟的岩浆-热液系统及围岩先存薄弱构造是岔路口斑岩钼矿床内角砾岩主要呈脉状产出的原因。  相似文献   

12.
滇东南老君山矿集区广泛分布的矽卡岩是本区锡-钨-锌-铟多金属矿床的主要赋存围岩。长期以来,该区含矿矽卡岩的成因争议较大,由此也制约了对该区锡钨多金属成矿规律的认识。本文以区内代表性的都龙和南秧田矿区含矿矽卡岩为研究对象,在对其地质特征详细研究的基础上,运用电子探针和ICP-MS分别测定了上述两个矿区含矿矽卡岩的矿物成分、微量和稀土元素组成,探讨了它们和多金属矿床的成岩成矿机制的关系。结果表明,区内同时存在与地层产状一致的"层状"含矿矽卡岩和明显切割层理的穿层含矿矽卡岩。都龙矿区含矿矽卡岩富Fe、贫Al,主要矿物端元成分为钙铁榴石(And_(52-69)Gro_(28-45)Spe_(1-4))、钙铁辉石(Di_(11-41)Hd_(51-73)Jo_(0-28))和铁阳起石等,从干矽卡岩到退化蚀变阶段,形成环境由酸性的弱还原环境向偏碱性的相对氧化环境变化。南秧田矿区含矿矽卡岩富Mg、Al,贫Fe,主要矿物端元成分为钙铝榴石(Gro_(82-89)Alm_(7-13)And_(2-5))、透辉石(Di_(55-81)Hd_(18-42)Jo_(0-5))和透闪石(阳起石)等,形成于相对还原的环境。都龙和南秧田矿区含矿矽卡岩与花岗岩都显示出相似的、LREE相对富集的右倾型稀土配分模式,多具有中等-弱Eu负异常,与典型的热液交代成因矽卡岩特征相似。综合分析认为,该区含矿矽卡岩主要形成于燕山晚期花岗岩浆热液与围岩的交代作用,"层状"矽卡岩可能是热液沿层间构造、岩相突变带等有利位置进行交代的结果。  相似文献   

13.
付家山矽卡岩钨矿床位于长江中下游成矿带鄂东矿集区,矿体产于晚中生代花岗闪长斑岩体与下二叠统含碳质地层的接触带。付家山矿区西侧地层为茅口组灰岩,东侧地层为栖霞组灰岩,茅口组灰岩中有机碳含量(0.72%)低于栖霞组灰岩(0.95%)。为了探明不同地层对矽卡岩钨矿床的矿物成分的影响,文章针对付家山矽卡岩钨矿的地层、矽卡岩矿物和白钨矿进行详细地野外地质观察和编录,并利用电子探针(EMPA)开展矿物成分分析。东、西侧地层中矽卡岩阶段的石榴子石和辉石有明显差异,与茅口组接触交代形成的石榴子石变化范围较小(And_(31~90)Gro_(1~53)Spr_(5~20)),辉石端员成分变化范围变化较大(Di_(0~100)Hd_(0~97));而与栖霞组接触交代形成的石榴子石变化范围较大,主要为And_(66~95)Gro_(0~27)Spr_(3~7),部分为And_(19~33)Gro_(60~76)Spr_(3~7)。辉石端员成分为Di_(44~64)Hd_(29~49(。西侧矿段石英-硫化物阶段和方解石阶段中白钨矿的MoO_3相较于东侧矿段含量要高,产于茅口组矿体的石英-硫化物和方解石阶段白钨矿w(MoO_3)为0~1.82%,产于栖霞组矿体的石英-硫化物和方解石阶段白钨矿w(MoO_3)为0.08%~0.86%。上述矿物组合暗示付家山西侧矿段相较于东侧矿段形成环境更为氧化,表明含碳量不同的地层对矽卡岩钨矿的形成有明显的影响。  相似文献   

14.
江西永平铜矿矽卡岩矿物特征及其地质意义   总被引:4,自引:3,他引:1  
田明君  李永刚  万浩章  张宇  高婷婷 《岩石学报》2014,30(12):3741-3758
永平铜矿含矿岩石主要为绿帘石透辉石石榴石矽卡岩,这种岩石类型是与斑岩体有关的矽卡岩铜矿的典型赋矿岩石。通过对这一主要赋矿矽卡岩的研究,我们发现石榴石生长分为两个阶段:(1)早期石榴石:主要分布在石榴石颗粒核部,XAdr=1.0,主要以钙铁榴石为主,说明早期流体中可能含有较多的铁,是在较氧化条件下形成的;(2)晚期石榴石,沿石榴石裂隙重新成核或者在靠近流体通道的早期石榴石表面生长,出现震荡环带,XAdr=0.46~0.99,为钙铁-钙铝石榴石系列。石榴石发生变化的期间也形成新的矿物,如绿帘石、萤石、方解石和石英等。共存石榴石和绿帘石矿物中存在Fe3+-Al3+之间的替代,说明流体的氧逸度、组分浓度或aFe3+/aAl3+可能发生了变化。金属矿物也可能是在这一阶段形成的。永平铜矿矽卡岩从接触带到大理岩空间上有分带现象。从岩体到围岩的变化趋势为:石榴石含量减少,颜色存在红棕色-棕色-棕绿色-黄绿色-浅黄色的变化趋势;矿石品位降低,这与石榴石中Al2O3含量的变化较一致。我们认为这种变化是含矿热液对早期矽卡岩进行再交代改造的结果,表现为石榴石和绿帘石中Fe3+-Al3+含量的变化,并将Cu等金属沉淀下来。根据矽卡岩矿物的这些特征,在矿床勘探时,可依据棕色石榴石来追踪主矿体的位置。  相似文献   

15.
The Nuri Cu‐W‐Mo deposit is located in the southern subzone of the Cenozoic Gangdese Cu‐Mo metallogenic belt. The intrusive rocks exposed in the Nuri ore district consist of quartz diorite, granodiorite, monzogranite, granite porphyry, quartz diorite porphyrite and granodiorite porphyry, all of which intrude in the Cretaceous strata of the Bima Group. Owing to the intense metasomatism and hydrothermal alteration, carbonate rocks of the Bima Group form stratiform skarn and hornfels. The mineralization at the Nuri deposit is dominated by skarn, quartz vein and porphyry type. Ore minerals are chalcopyrite, pyrite, molybdenite, scheelite, bornite and tetrahedrite, etc. The oxidized orebodies contain malachite and covellite on the surface. The mineralization of the Nuri deposit is divided into skarn stage, retrograde stage, oxide stage, quartz‐polymetallic sulfide stage and quartz‐carbonate stage. Detailed petrographic observation on the fluid inclusions in garnet, scheelite and quartz from the different stages shows that there are four types of primary fluid inclusions: two‐phase aqueous inclusions, daughter mineral‐bearing multiphase inclusions, CO2‐rich inclusions and single‐phase inclusions. The homogenization temperature of the fluid inclusions are 280°C–386°C (skarn stage), 200°C–340°C (oxide stage), 140°C–375°C (quartz‐polymetallic sulfide stage) and 160°C–280°C (quartz‐carbonate stage), showing a temperature decreasing trend from the skarn stage to the quartz‐carbonate stage. The salinity of the corresponding stages are 2.9%–49.7 wt% (NaCl) equiv., 2.1%–7.2 wt% (NaCl) equiv., 2.6%–55.8 wt% (NaCl) equiv. and 1.2%–15.3 wt% (NaCl) equiv., respectively. The analyses of CO2‐rich inclusions suggest that the ore‐forming pressures are 22.1 M Pa–50.4 M Pa, corresponding to the depth of 0.9 km–2.2 km. The Laser Raman spectrum of the inclusions shows the fluid compositions are dominated in H2O, with some CO2 and very little CH4, N2, etc. δD values of garnet are between ?114.4‰ and ?108.7‰ and δ18OH2O between 5.9‰ and 6.7‰; δD of scheelite range from ?103.2‰ to ?101.29‰ and δ18OH2O values between 2.17‰ and 4.09‰; δD of quartz between ?110.2‰ and ?92.5‰ and δ18OH2O between ?3.5‰ and 4.3‰. The results indicate that the fluid came from a deep magmatic hydrothermal system, and the proportion of meteoric water increased during the migration of original fluid. The δ34S values of sulfides, concentrated in a rage between ?0.32‰ to 2.5‰, show that the sulfur has a homogeneous source with characteristics of magmatic sulfur. The characters of fluid inclusions, combined with hydrogen‐oxygen and sulfur isotopes data, show that the ore‐forming fluids of the Nuri deposit formed by a relatively high temperature, high salinity fluid originated from magma, which mixed with low temperature, low salinity meteoric water during the evolution. The fluid flow through wall carbonate rocks resulted in the formation of layered skarn and generated CO2 or other gases. During the reaction, the ore‐forming fluid boiled and produced fractures when the pressure exceeded the overburden pressure. Themeteoric water mixed with the ore‐forming fluid along the fractures. The boiling changed the pressure and temperature, oxygen fugacity, physical and chemical conditions of the whole mineralization system. The escape of CO2 from the fluid by boiling resulted in scheelite precipitation. The fluid mixing and boiling reduced the solubility of metal sulfides and led the precipitation of chalcopyrite, molybdenite, pyrite and other sulfide.  相似文献   

16.
Detailed geological observations and analytical studies make it possible to distinguish two groups of fluid-explosion breccias (FEB) in the Vysokogorskoe tin deposit of the Kavalerovo ore district. These breccias are assumed to be related to different stages of geological (geodynamic) evolution and played different roles in ore formation. The earlier breccias (79–69 Ma), which were altered by boron metasomatism and subsequent main tin mineralization, were most probably formed at the Cretaceous subduction stage. The later breccias (55–51 Ma) are syngenetic to the dacite (rhyolite) porphyry dikes of the Paleocene–Eocene transform stage. They were formed after precipitation of the majority of the cassiterite, but prior to the latest quartz–fluorite–carbonate stage of ore formation. According to the Sillitoe classification, the explosion breccias of the Vysokogorskoe deposit correspond to a magmatic–hydrothermal genetic type. They are characterized by multiple brecciation and intersection by small bodies of porphyritic rhyolites.  相似文献   

17.
The Nuri Cu–W–Mo deposit is a large newly explored deposit located at the southern margin of the Gangdese metallogenic belt. There are skarn and porphyry mineralizations in the deposit, but the formation age of the skarn and the relationship between the skarn and porphyry mineralizations are controversial. Constraints on the precise chronology are of fundamental importance for understanding the ore genesis of the Nuri deposit. To determine the formation age of the skarn, we chose garnets and whole rock skarn samples for Sm–Nd dating. We also selected biotite associated with potassic alteration for Ar–Ar dating to confirm the ore formation age of the porphyry mineralizations. The Sm–Nd ages of the skarn are 25.73 ± 0.92 – 25.2 ± 3.9 Ma, and the age of the potassic alteration is 24.37 ± 0.32 Ma. The results indicate that the skarn and porphyry mineralization are coeval and belong to a unified magmatic hydrothermal system. Combined with a previous molybdenite Re–Os age, we think that the hydrothermal activity of the Nuri deposit lasted for 1.2 – 2.1 Myr, which indicates that the mineralization formed rapidly. The chronologic results indicate that the Nuri deposit formed in the period of transformation from compression to extension in the late collisional stage of the collision between the Indian and Eurasian continents.  相似文献   

18.
西藏列廷冈铁多金属矿床矽卡岩矿物学特征及其地质意义   总被引:2,自引:2,他引:0  
李壮  唐菊兴  王立强  杨毅  李松涛  王豪  王维 《矿床地质》2017,36(6):1289-1315
西藏列廷冈铁多金属矿床位于冈底斯北缘弧背断隆带内,是近年来勘查评价的规模可达中型的接触交代矽卡岩型矿床。矿区矽卡岩主要呈层状、似层状,矽卡岩型铁多金属矿体赋存于下-中三叠统查曲浦组(T_(1-2)c)矽卡岩和大理岩中,矿体呈透镜状、囊状、似层状产出,矽卡岩矿物较发育。为进一步查明矿床矽卡岩矿物种属及矽卡岩类型,剖析矽卡岩形成环境及其与矿化类型之间的关系,基于对矽卡岩矿物系统的显微镜下观测,利用电子探针对矿床主要矽卡岩矿物化学成分进行了系统分析。矽卡岩矿物主要为石榴子石、透辉石、角闪石、绿帘石、绿泥石等,矿床矽卡岩具典型钙矽卡岩特征。根据矿物共生组合及交代关系推断成矿流体经历了5个阶段,分别为早期矽卡岩阶段、退化蚀变阶段、早期热液阶段、石英硫化物阶段和碳酸盐阶段。特征矿物的电子探针分析结果表明,石榴子石主要为钙铁榴石-钙铝榴石系列(And_(18.37~99.89)Gro_(0.24~79.05)Ura+Pyr+Spe_(0.98~6.63)),且发育环带结构;辉石主要为透辉石-钙铁辉石系列(Di_(53.56~99.91)Hd_(1.61~44.55)Jo_(0.08~5.11));角闪石主要为阳起石,次为铁、镁角闪石,均属钙质角闪石系列;绿泥石主要为富铁的铁镁绿泥石;绿帘石贫Fe、Mg。在矿床成矿演化过程中,其成矿环境是发生改变的,早期矽卡岩阶段到最晚期碳酸盐阶段,成矿环境至少经历了从高温、偏碱性的氧化环境到相对低温、偏酸性的还原环境的转变。  相似文献   

19.
滇西北红山铜矿床成矿流体地球化学特征及矿床成因   总被引:6,自引:3,他引:3  
红山铜矿床为滇西北地区一大型斑岩-矽卡岩型铜多金属矿床,它产于印支期石英闪长玢岩及燕山期石英二长斑岩体内及其周边地层中,其形成经历了多期次热液叠加成矿作用过程.流体包裹体岩相学、显微测温及碳、氢、氧稳定同位素综合研究表明,矿区早期成矿流体为中高温、高盐度NaCl-H2O体系热液,主要来源于印支晚期岛弧型岩浆活动,对区内矽卡岩型矿化形成起了重要作用;晚期成矿流体为中高温、高盐度NaCl-CO2-H2O体系热液,主要来源于隐伏的燕山期后造山伸展型花岗质岩浆侵入体,形成了区内斑岩型Cu、Mo及相关的Pb、Zn多金属矿化.因此,红山铜矿床是两期岩浆热液叠加成矿作用结果.  相似文献   

20.
《Resource Geology》2018,68(3):258-274
The Dabaoshan deposit in Northern Guangdong Province, South China, is a Cu–Mo–W–Pb–Zn polymetallic deposit, located in the southern part of the Qin–Hang porphyry–skarn Cu–Mo ore belt. The deposit mainly comprises porphyry Mo and stratiform skarn Cu ore deposits. The genesis of the Cu ore deposit has been ascribed to a typical skarn ore deposit formed by the metasomatism of Devonian carbonate rock layers or to a volcanic rock‐hosted massive sulfide deposit formed by marine exhalation. In this paper, we report on the homogenization temperatures and salinities of fluid inclusions and C, H, O, S, and Pb isotopic compositions of fluids and minerals in this deposit. Homogenization temperatures and salinities of fluid inclusions in garnet, diopside, quartz, and calcite provide information on the skarnification, mineralization, and postmineralization stages. The data show that ore‐forming fluids experienced a continuous transition from high temperatures and salinities to low temperatures and salinities over the entire period of mineralization. C, H, and O isotopic compositions indicate that ore‐forming fluids were derived mainly from magmatic water. O isotopic compositions indicate that ore‐forming fluids mingled with atmospheric water during the last stage of mineralization. Sulfur in the ore came mainly from deep magmatic sources. Pb isotopic compositions in the orebody show that almost all the lead in the ore was derived from magma with a crustal source. Combined geological, geophysical, and geochemical data were achieved before we proposed that the Dabaoshan porphyry–skarn Cu–Mo–W–Pb–Zn deposit, as one member of the Qin–Hang porphyry–skarn Cu–Mo ore belt, formed during the Jurassic subduction of the paleo‐Pacific plate beneath the Eurasian continent at quite low angle. NE‐ and EW‐trending structures controlled the emplacement of magmatic rocks in the South China region. In the mining area, the Xiangguanping Fault and its branches were the main conduits for magmatic crystallization and mineralization. The many subfaults, folds, and interlayer fracture zones on both sides of the main fault provided the requisite space for the ore and, together, were the controlling structures of the orebody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号