首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Hydrothermal experiments with mixtures of synthetic minerals have shown the reversibility of the reaction 5 phlogopite + 6 calcite + 24 quartz = 3 tremolite + 5 K-feldspar + 2 H2O + 6 CO2. In an isobaric T – diagram the equilibrium curve reaches a maximum at = 0,75. The P, T-values for this maximum are: 2 kb-523°; 4 kb-585°; 6 kb-625°; P±5%, T±10° C. These results give a first approximation of the P, T conditions responsible for a similar mineral reaction which has been recorded from natural metamorphic assemblages.

Herrn Prof. H. G. F. Winkler danke ich für anregende Diskussionen, desgleichen Herrn Dr. D. Puhan für wichtige Hinweise und Mitteilung seiner exp. Daten. Herrn Prof. V. Trommsdorff und Herrn P. H. Thompson bin ich für petrographische Angaben zu Dank verpflichtet. Der Aufbau der Hydrothermalanlage und die Finanzierung der laufenden Untersuchungen wurde aus den Mitteln des Fonds zur Förderung der wissenschaftlichen Forschung ermöglicht. Für diese Unterstützung gilt daher mein besonderer Dank.  相似文献   

3.
Cu2+和Cd2+在蒙脱石-胡敏酸复合体上的吸附及其竞争   总被引:1,自引:0,他引:1  
土壤和水体中的腐殖酸常常与粘土矿物紧密结合成为特殊的复合体.这种粘土矿物-腐殖酸复合体对重金属的吸附作用既有别于粘土矿物,更有别于腐殖酸.以蒙脱石和胡敏酸分别作为粘土矿物和腐殖酸的代表,通过一系列实验研究了Cu2+、Cd2+在单一体系和共存体系条件下在蒙脱石-胡敏酸复合体上的吸附作用,同时探讨了二者的竞争特点.实验结果表明,在单一体系条件下,蒙脱石-胡敏酸复合体对Cu2+的吸附量始终明显大于Cd2+,且二者的吸附量均随其初始浓度的增大而呈线性增大;而在Cu2+和Cd2+共存体系条件下,Cu2+的吸附量始终略大于Cd2+的吸附量,即复合体对Cu2+的吸附有较好的选择性.在吸附过程中,复合体中的蒙脱石与Cd2+和Cu2+的阳离子交换作用处于主导地位.无论是在单一体系还是在共存体系中,Cd2+优先替换电价相同而半径略大的Ca2+,而Cu2+则优先替换半径相近、电价低的Na+.因此,Cd2+的存在使Cu2+在复合体上的吸附量明显地减小,而Cu2+的存在对Cd2+的吸附几乎没有影响.这些实验结果将有助于深入探讨重金属离子在土壤、水体等环境中的迁移-固定行为.  相似文献   

4.
The reaction 2 epidote+2 calcite+3 wollastonite3 grossular-andraditess+ 2 CO2+1 H2O has been explored by hydrothermal experiments at a total fluid pressure of 1000 bars. For a grossular-andraditess of andradite 25 composition, the isobaric univariant curve passes through the points 458°C: XCO2=0.00; 521°C: XCO2=0.026; 523°C: XCO2=0.052; 526°C: 0.088; 528°C: XCO2=0.104. This curve intersects the isobaric univariant curve of the reaction calcite+quartz+[H2O] wollastonite+CO2+[H2O] at the isobaric invariant point around 528°C and XCO2=0.12. At higher values of XCO2, this reaction is replaced by another one, namely: 2 epidote+5 calcite+3 quartz3 grossular-andraditess+5 CO2+ 1 H2O. It is demonstrated that both the reactions do actually take place during the metamorphism of calcareous rocks. The petrologic significance of contrasted sequence of reactions within this system observed by various workers is also discussed.  相似文献   

5.
6.
 借助原位液槽原子力显微镜(in situ AFM)的观察,通过Cd2+,Pb2+替代方解石最外层晶格Ca2+生长模式的实验研究, 探讨了Cd2+与Pb2+作用下方解石表面溶解与结晶行为。在液体反应槽中,分别将含不饱和Cd2+与Pb2+溶液流经方解石{101 _ 4}解理面,结果发现:(1)Cd2+的存在不影响方解石沿<4_41> 晶向台阶的溶解,而Pb2+的存在则强烈阻碍了方解石沿<441>+晶向台阶的溶解;(2)停止输入溶液含Cd2+,Pb2+溶液后,随着方解石表面与溶液达到平衡,溶解过程逐渐转变为结晶过程。结果显示在Cd2+存在时,单分子生长层具有方解石原有的定向性,而在Pb2+存在时的生长则不具任何定向性。尽管有此差异, 但(Ca,Cd)CO3 和(Ca,Pb)CO3 固溶体都受控于单分子层外延生长这一结晶机理。   含Cd2+和Pb2+溶液对方解石溶解动力学的作用与选择性吸附的阳离子半径大小、吸附复合体的几何形状及其结晶学取 向有关。Cd2+离子倾向于优先进入更狭小的<4_41>- 晶向的微台阶上,而Pb2+则倾向于形成扭曲的八面体络合物吸附在更开 阔的<4_41>+ 晶向台阶上。因此,Pb2+存在下方解石表面生长方向无序可认为是白铅矿和方解石结构差异的原因。  相似文献   

7.
The equilibrium curve for the reaction 3 dolomite + 1 K-feldspar + 1 H2O=1 phlogopite + 3 calcite + 3 CO2 was determined experimentally at a total gas pressure of 2000 bars using two different methods.
  1. In the first case water alone was added to the reactants. The CO2 component of the gas phase was producted solely by the reaction under favourable P-T conditions. This manner of carrying out the reaction is called the “water method”. With this method sufficient time must be allowed for the gas phase to attain a constant composition (see Fig. 1). Reverse reactions were carried out using reaction products of the forward reaction.
  2. In the second case silver oxalate + water were added to the reactants. Breakdown of the silver oxalate leads to formation of a CO2-H2O gasphase of definite composition. At constant temperature and gas pressure the \(X_{{\text{CO}}_{\text{2}} } \) determines whether the reaction products will be phlogopite + calcite or dolomite + K-feldspar. In this case it is not necessary to wait for equilibrium to be attained. This method is abbreviated the “oxalate method”. Reactants for reverse reactions are not identical with the products of the forward reaction.
At high temperatures the results of the two different methods agree well (see Tables 1 and 2). Equilibrium was attained in one case at 490° C and \(X_{{\text{CO}}_{\text{2}} } \) of approximately 0.77, and in the other case at 520° C and \(X_{{\text{CO}}_{\text{2}} } \) of 0.90. At lower temperatures there are considerable differences in the results. With the water method an \(X_{{\text{CO}}_{\text{2}} } \) of about 0.25 was reached at 450° C. With the oxalate method dolomite K-feldspar and water still react with each other at even higher \(X_{{\text{CO}}_{\text{2}} } \) values. Phlogopite, calcite and CO2 are formed together with metastable talc. There are no criteria to indicate which of the methods is the correct one at lower temperatures and in Fig. 2, therefore, both equilibrium curves are plotted.  相似文献   

8.
The distribution of the intensities of individual pulses of PSR B0950+08 as a function of the longitudes at which they appear is analyzed. The flux density of the pulsar at 111 MHz varies strongly from day to day (by up to a factor of 13) due to the passage of the radiation through the interstellar plasma (interstellar scintillation). The intensities of individual pulses can exceed the amplitude of the mean pulse profile, obtained by accumulating 770 pulses, by more than an order of magnitude. The intensity distribution along the mean profile is very different for weak and strong pulses. The differential distribution function for the intensities is a power law with index n = ?1.1 ± 0.06 up to peak flux densities for individual pulses of the order of 160 Jy.  相似文献   

9.
The crystal structures of the langbeinite type M 2 + + K2(SO4)3 with M + +=Mg, Ni, Co, Zn, Ca in their cubic phase (P 2 1 3) and Ca2K2(SO4)3 in its orthorhombic phase (P 2 1 2 1 2 1) are determined. Whereas the SO4-tetrahedra in these compounds are almost undistorted, the two symmetry-independent coordination polyhedra of M + + are highly distorted octahedra with trigonal site symmetry in P 2 1 3. The deformation of the oxygen octahedra and the off-centering of M + + along the trigonal axis show systematic dependences on the ionic radii and the electronegativities of the M + +-ions. The correlations are remarkably different for the two symmetry-independent M + +-ions indicating different M + + — O bonding. The octahedral deformations show also linear correlations with the phase transition temperatures (P 2 1 3P 2 1 2 1 2 1) of the different compounds. This observation leads to a new model for the phase transition mechanism which is based on thermal instabilities of the M + + — O and K — O polyhedral distortions. The cubic high temperature phase is characterized by high symmetric oxygen coordinations around M + + which distort with decreasing temperature. At T c the trigonal site symmetry is broken in such a way that the K — O coordination becomes denser at the expense of a wider and less symmetric M + + — O coordination.  相似文献   

10.
The equilibrium conditions of the following reaction 2 zoisite +1 CO2?3 anorthite+1 calcite+1 H2O 2 Ca2Al3[O/OH/SiO4/Si2O7]+1 CO2?3 CaAl2Si2O8+1 CaCO3+1 H2O have been determined experimentally at total pressures of P j= 2000 bars, P f =5000 bars, and P f =7000 bars. Owing to the vertical position of the equilibrium curves in isobaric T- \(X_{{\text{CO}}_{\text{2}} }\) diagrams, the composition of the binary H2O-CO2 fluid phase coexisting with zoisite is independent of temperature in the temperature interval investigated. According to our experiments, orthorhombic zoisite is only stable in equilibrium with a fluid phase at a concentration of CO2 which is less than, respectively, ca. 2 Mol% CO2 at P f =2000 bars, ea. 6 Mol% at P f =5000 bars, and ca. 10 Mol% at P f =7000 bars. Thus, the fluid phase coexisting with zoisite is rich in H2O. While this is independent of temperature the experimental data demonstrate that the influence of pressure cannot be neglected: With increasing pressure the concentration of CO2 of the fluid phase coexisting with zoisite can rise a little. The position of the reaction studied, which is independent of temperature and exhibits small values of \(X_{{\text{CO}}_{\text{2}} }\) ,leads to two important petrogenetic conclusions:
  1. The occurrence of zoisite is an indicator for a CO2-poor and H2O-rich fluid composition during metamorphism of marly calcsilicates.
  2. If the concentration of CO2 of the fluid phase coexisting with zoisite exceeds the equilibrium value of \(X_{{\text{CO}}_{\text{2}} }\) calcite+anorthite+H2O is formed from zoisite+CO2. Thus, a considerable increase in the anorthite-content of plagioelase is possible.
  相似文献   

11.
A garnet websterite nodule from the Honolulu volcanic series,Oahu, Hawaii, has been melted in the presence of nearly pureH2O. The solidus is intermediate between that of peridotiteand gabbro. The curve displays a temperature minimum around20 kb reflecting the breakdown of plagioclase. The Iiquidusis between 1130 ?C and 1150 ?C between 10 and 20 kb vapor pressure.Amphibole (pargasitic hornblende) has an extensive stabilityfield, reaching a maximum temperature about 20 ?C below thegarnet websterite liquidus at 15 kb and a maximum pressure of27.5 kb at 950 ?C. The amphibole-out curve intersects the soliduswith a positive slope. Liquids formed by partial melting of garnet websterite are quartz-normativewithin the stability field of amphibole, but become olivine-normative(tholeiitic) with increasing temperature. Amphibole and clinopyroxeneare enriched in Tschermak's molecule at higher temperatures,pargasite content of amphibole increases with increasing pressure. A garnet websterite-rich upper mantle containing modal olivineyields quartz-normative (13–16 per cent), aluminous (21–4wt. per cent A12O3) melts at 17 P 10 kb and in the presenceof nearly pure H2O. However, the presence of amphibole controlsthe liquid composition, a situation not found for liquids formedfrom wet peridotite. In contrast to many basalt liquids, liquidof garnet websterite composition cannot fractionate to andesiteby precipitation of amphibole, as amphibole is not a liquidusphase.  相似文献   

12.
基于三乙醇胺-盐酸介质中,Fe2 与邻二氮菲形成的阳离子配合物被强酸型阳离子交换树脂吸附富集,使树脂显桔红色,据此建立了测定痕量铁的树脂相分光光度法,并讨论了适宜的实验条件。方法的检出限为1.65×10-2μg/mL,ε=9.44×104L·mol-1·cm-1。用于茶叶、余甘中痕量铁的测定,结果令人满意。  相似文献   

13.
Diffusion coefficients of Co2+ and Ni2+ in synthetic single crystal forsterite along the c-axis were determined in the temperature ranges, 700–1200?°C and 800–1300?°C, respectively. The synthesized forsterite specimens were coated with thin evaporated films of CoO and NiO on the c-surface and annealed for diffusion experiments. The short penetration distance of diffusing ions in forsterite was measured by secondary ion mass spectrometry using the depth profile method. The diffusion coefficients of Co (700–1200?°C) and Ni (800–1300?°C) are given by: and The observed diffusion coefficient values show good linear relationships in Arrhenius plots and the activation energy values obtained agree well with the previous values, although the diffusion coefficient values observed at the high temperature end of the experimental range deviate from the previous values. These results indicate that Co and Ni diffuse in olivine with a single mechanism within the temperature range observed, possibly with an extrinsic in nature as in the case of Mg tracer diffusion observed by Chakraborty et?al. 1994 and of Fe-Mg interdiffusion by Chakraborty.  相似文献   

14.
A series of stable pentasulfide complexes of the common base metals, Mn, Fe, Co, Ni, Cu and Zn exist in aqueous solutions at ambient temperatures. Pure sodium pentasulfide was prepared and reacted with the divalent cations of Mn, Fe, Co, Ni, Cu and Zn in aqueous solution at ambient temperature. The S52- complexes were found to exist as determined by voltammetric methods.Pentasulfide complexes with compositions assigned as [M(1-S5)] and [M2(- S5)]2+ occur for Mn, Fe, Co and Ni where only one terminal S atom in the S52- binds to one metal (1 = mono-dentate ligand or M-S-S-S-S-S, = ligand bridging two metal centers or M-S-S-S-S-S-M). Conditional stability constants are similar for all four metals with log 1 between 5.3 and 5.7 and log 2 between 11.0 and 11.6. The constants for these pentasulfide complexes are similar to the tetrasulfide complexes and are approximately 0.4–0.8 log units higher than for comparable bisulfide complexes [M(SH)]+ as expected based on the higher nucleophilicity of S52- compared to HS-. Voltammetric results indicate that these are labile complexes.As with the bisulfide and tetrasulfide complexes, Zn(II) and Cu(II) are chemically distinct from the other metals. Zn(II) reacts with pentasulfide to form a stable monomeric pentasulfide chelate, [Zn(1-S5)] with log = 8.7. Cu(II) reacts with pentasulfide to form a complex with the probable stoichiometry [Cu(S5)]2 with log estimated to be 20.2. As with the other four metals, these complexes are comparable with the tetrasulfide complexes. Discrete voltammetric peaks are observed for these complexes and indicate they are electrochemically inert to dissociation. Reactions of Zn(II) and Cu(II) also lead to significant breakup of the polysulfide.The relative strength of the complexes is Cu > Zn > Mn, Fe, Co, Ni. Cu displaces Zn from [Zn(1- S5)] and both Cu and Zn displace Mn, Fe, Co and Ni from their pentasulfide complexes.  相似文献   

15.
Optical absorption spectra are presented for taramellite, traskite and neptunite, all of which have both Fe2+ and Ti4+ as major elements. The spectra of each of these minerals are dominated by a single, intense absorption band in the 415 to 460 nm region with 7000 to 9000 cm?1 halfwidth. These transitions, assigned to Fe2+-Ti4+ intervalence charge transfer, showed little difference in intensity at 80 and 300 K and have molar absorptivities which range from ~100 to ~1300 M?1 cm?1. The Fe2+-Ti4+ absorptions in these standards generally compare well to other mineral spectra in which Fe2+ — Ti4+ intervalence absorption has previously been proposed with the exception of the most cited example, blue corundum.  相似文献   

16.
The formation of the solid solution series MgCO3-FeCO3 in the system Mg2+-Fe2+-CO 3 2? -Cl 2 2? -H2O has been investigstad between 200° C and 500° C. The experimental results show that the composition of any of these carbonates strongly depends on the temperature: At high temperatures mixed crystals rich in MgCO3 are formed and low temperatures lead to the formation of FeCO3-rich carbonates. Thus, at 200° C a Fe-poor (Mg-rich) solution is in equilibrium with a Fe-rich carbonate. At temperatures higher than 350° C a Fe-rich (Mg-poor) solution coexists with a Fe-poor (Mg-rich) solid phase; see Fig. 1. At 350° C a solution with a mole fractionmFe2+/(mFe2++mMg2+) of 0.20 leads to the formation of magnesite very poor in Fe, whereas at 250° C the same solution is in equilibrium with sideroplesit, containing 80 Mol-% FeCO3, see Figs. 2 and 3. The importance of the experimental results for the formation of deposits of magnesite and siderite is discussed.  相似文献   

17.
Reversals for the reaction 2 annite+3 quartz=2 sanidine+3 fayalite+2 H2O have been experimentally determined in cold-seal pressure vessels at pressures of 2, 3, 4 and 5?kbar, limiting annite +quartz stability towards higher temperatures. The equilibrium passes through the temperature intervals 500–540°?C (2?kbar), 550–570°?C (3?kbar), 570–590°?C (4?kbar) and 590–610°?C (5?kbar). Starting materials for most experiments were mixtures of synthetic annite +fayalite+sanidine+quartz and in some runs annite+quartz alone. Microprobe analyses of the reacted mixtures showed that the annites deviate slightly from their ideal Si/Al ratio (Si per formula unit ranges between 2.85 and 2.92, AlVI between 0.06 and 0.15). As determined by Mössbauer spectroscopy, the Fe3+ content of annite in the assemblage annite+fayalite +sanidine+quartz is around 5–7%. The experimental data were used to extract the thermodynamic standard state enthalpy and entropy of annite as follows: H 0 f,?Ann =?5125.896±8.319 [kJ/mol] and S 0 Ann=432.62±8.89 [J/mol/K] (consistent with the Holland and Powell 1990 data set), and H 0 f,Ann =?5130.971±7.939 [kJ/mol] and S 0 Ann=424.02±8.39 [J/mol/K] (consistent with the TWEEQ data base, Berman 1991). The preceeding values are close to the standard state properties derived from hydrogen sensor data of the redox reaction annite=sanidine+magnetite+H 2 (Dachs 1994). The experimental half-reversal of Eugster and Wones (1962) on the annite +quartz breakdown reaction could not be reproduced experimentally (formation of annite from sanidine+fayalite+quartz at 540°?C/1.035?kbar/magnetite-iron buffer) and probable reasons for this discrepancy remain unclear. The extracted thermodynamic standard state properties of annite were used to calculate annite and annite+quartz stabilities for pressures between 2 and 5?kbar.  相似文献   

18.
Partitioning of Ni2+, Co2+, Fe2+, Mn2+ and Mg2+ between olivine and silicate melts has been determined near the join (Mg0.5·-Fe0.5)2SiO4-K2O 4SiO2 and for seven different basaltic compositions. The experiments were made at 1 atm total pressure, 1500-1100°C, and under moderate to reducing oxygen fugacities. The concentration factor, defined as KMO = (MO)ol/(MO)liq (molar ratio), increases markedly for all the cations studied as the olivine component of the liquid decreases. Much of the increase in KMO is considered as due to the compositional effect of the coexisting liquid: the temperature effect on KMO is probably opposite to the compositional effect (KMO decreases as temperature decreases).The partition coefficient KMO-MgO = (MO/MgO)ol/(MO/MgO)liq for the reaction, Mol2+ + Mgliq2+ = Mliq2+ + Mgol2+. is relatively constant over a wide range of SiO2 content of the liquid, except in the case of Ni2+. The partition coefficients have similar ranges both in synthetic and natural rock systems: KNiO-MgO = 1.8–3.0, KCoO-MgO = 0.6–0.8, KFeO-MgO = 0.27–0.38, and KMnO-MgO = 0.23–0.32. There is a systematic variation in the partition coefficient KMO-MgO with the composition of liquid; KMO-MgO increases with increasing SiO2 content of melt. The partition coefficients for Co2+, Fe2+ and Mn2+ are useful to test the equilibration of olivine with magma of a wide compositional range.  相似文献   

19.
获得CO2在地下咸水中的溶解度是CO2地质储存研究中亟待解决的问题,然而不同离子对CO2溶解度的影响却鲜有文献提及。为了填补实验数据的空缺,本研究设计了一套高压条件下CO2溶解度测量装置,克服了传统高压釜取样不便和实验重现性差的缺点;通过测定纯水中CO2的溶解度验证了实验装置和方法的精准性;测定了地质埋存条件下0.1 mol/L、0.2 mol/L和0.5 mol/L Ca Cl2、Mg Cl2溶液中CO2的溶解度。与文献结果不同,实验发现Ca2+对超临界CO2溶解度的影响小于Mg2+,并且CO2在两种溶液中的溶解度差异会受到温度和压力的影响。在本实验范围内,不同离子溶液中溶解度的最大差别高达18.53%,而几乎所有CO2溶解度模型文献都没有提及此变化。最后对溶解度随温度、压力以及离子种类变化的现象进行了理论分析。  相似文献   

20.
The color and spectroscopic properties of ironbearing tourmalines (elbaite, dravite, uvite, schorl) do not vary smoothly with iron concentration. Such behavior has often been ascribed to intervalence charge transfer between Fe2+ and Fe3+ which produces a new, intense absorption band in the visible portion of the spectrum. In the case of tourmaline, an entirely different manifestation of the interaction between Fe2+ and Fe3+ occurs in which the Fe2+ bands are intensified without an intense, new absorption band. At low iron concentrations, the intensity of light absorption from Fe2+ is about the same for Ec and Ec polarizations, but at high iron concentrations, the intensity of the Ec polarization increases more than ten times as much as Ec. This difference is related to intensification of Fe2+ absorption by adjacent Fe3+. Extrapolations indicate that pairs of Fe2+-Fe3+ have Fe2+ absorption intensity ~200 times as great as isolated Fe2+. Enhanced Fe2+ absorption bands are recognized in tourmaline by their intensity increase at 78 K of up to 50%. Enhancement of Fe2+ absorption intensity provides a severe limitration on the accuracy of determinations of Fe2+ concentration and site occupancy by optical spectroscopic methods. Details of the assignment of tourmaline spectra in the optical region are reconsidered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号