首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed geochronological and geochemical analyses of the A-type granite in the Hongol area, central Inner Mongolia, to determine its age, petrogenesis and tectonic setting, which are significant for clarifying the Late Paleozoic tectonic evolution of the Xing'an Mongolian Orogenic Belt(XMOB). The rock type of the A-type granite in the Hongol area is alkali-feldspar granite, and it constitutes a western part of the Baiyinwula-Dongujimqin A-type granite belt. Zircon U-Pb geochronology yields ~(206)Pb/~(238)U ages ranging from 293 to 286 Ma for the alkali-feldspar granite, indicating this granitic pluton formed in the Early Permian. The alkali-feldspar granite is high in silica(SiO_2=75.13 wt%-80.17 wt%), aluminum(Al_2 O_3=10.59 wt%-13.17 wt%) and alkali(Na_2 O+K_2 O=7.33 wt%-9.11 wt%), and low in MgO(0.08 wt%-0.39 wt%) and CaO(0.19 wt%-0.70 wt%). It is obviously enriched in LILEs such as Rb, Th and K,depleted in HFSEs such as Nb, Ti, La and Ce, with pronounced negative anomalies of Nb, Ti, P, Eu, Sr and Ba. Its Sr-Nd-Pb isotopic compositions show positive ε_(Nd)(t)(+0.72-+3.08), low T_(DM2)(805-997 Ma),and high radioactive Pb with(~(206)Pb/~(204)Pb)_i of 18.710-19.304,(~(207)Pb/~(204)Pb)_i of 15.557-15.604 and(~(208)Pb/~(204)Pb)_i of 37.887-38.330. Petrological characteristics and geochemical data suggest that the alkalifeldspar granite in the Hongol area belongs to aluminous A-type granite. This A-type granite formed in a post-collisional extensional setting and was generated by the partial melting of felsic rocks in the middlelower crust resulting from post-collisional slab breakoff. It is suggested that the Paleo-Asian Ocean was closed before the Permian in central Inner Mongolia.  相似文献   

2.
The Xishan deposit, located in the western Guangdong Province in South China, is a quartz-vein type W-Sn deposit with an average Sn grade of 0.1–0.4 wt%. The deposit is temporally and spatially associated with Xishan alkali feldspar granite. The W–Sn mineralization is present mainly as veins that are hosted by the granite. In this paper we present new zircon U–Pb age, whole-rock geochemical data, Sr–Nd–Pb–Hf isotopic data and Re–Os age in order to constrain the nature and timing of magmatism and mineralization in the Xishan mining district with implications on geodynamic settings. LA–ICP–MS zircon U–Pb analyses yielded an age of 79.14 ± 0.31 Ma for the alkali feldspar granite, consistent with the molybdenite Re–Os age of 79.41 ± 1.11 Ma. The alkali feldspar granite shows high contents of SiO2 (71.52–76.25 wt%), high total alkalis (Na2O + K2O = 9.35–13.51 wt%), high field strength elements (e.g. Zr = 95.4–116 ppm, Y = 97.1–138 ppm, Nb = 36.1–55.5 ppm, Ga = 97.1–138 ppm), and rare earth elements (total REE = 171.8–194.0 ppm) as well as high Ga/Al ratios (10,000 × Ga/Al = 3.23–3.82) suggesting that it has the geochemical characteristics of A-type granite and shows an A2 subtype affinity. Sr–Nd isotopes of the alkali feldspar granite show that (87Sr/86Sr)i values range from 0.7111 to 0.7183, and the εNd(t) values and Nd model ages (T2DM) vary from −6.8 to −6.5 and 1414 to 1433 Ma, respectively. The Pb isotopic compositions are variable, with 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values ranging from 18.783 to 18.947, 15.709 to 15.722 and 38.969 to 39.244, respectively, indicating that the alkali feldspar granite was derived from a mantle-crust mixed source. In situ Hf isotopic analyses reveal that the alkali feldspar granite has εHf(t) values ranging from −9.69 to −0.04 and two-stage Hf model ages from 1145 Ma to 1755 Ma, indicating that the alkali feldspar granite was formed by the partial melting of Mesoproterozoic crusts of the Cathaysia Block with additions of mantle-derived materials. These results, together with previously presented regional geological relationships, suggest that the formation of the Xishan granite and associated W–Sn mineralization is related to lithospheric extension and asthenospheric upwelling that are attributed to a directional change of Pacific plate motion.  相似文献   

3.
The Jiuyishan complex massif, located in the northern section of the Nanling region, is a combination of five plutons, namely, the Xuehuading, Jinjiling, Pangxiemu, Shaziling and Xishan plutons. Whole-rock geochemistry, mineral electron microprobe analysis, zircon U-Pb dating and Hf isotope analysis were carried out for the Jinjiling and Pangxiemu plutons. The zircon U-Pb dating yields weighted mean ages of 152.9±0.9 Ma for the Jinjiling pluton and 151.7±1.5 Ma for the Pangxiemu pluton, with a narrow gap between them. The Jinjiling and Pangxiemu plutons both have geochemical characteristics of high SiO2, Al2O3, Na2O, K2O and low TiO2, MgO, CaO, P2O5 contents, with intense depletionS in Sr, Ba, Ti, Eu and enrichments?in Ga, FeOT and HFSE, and these characteristics reflect an A-type affinity. From the Jinjiling to the Pangxiemu plutons, the mineral composition of mica changes from lepidomelane to zinnwaldite, with increases in F, Li2O and Rb2O contents. The mineral composition of zircon changes from low Zr/Hf to high Zr/Hf, with increasing HfO2, P2O5 and UO2+ThO2+Y2O3 contents. The mineral compositions of feldspar indicate that the Pangxiemu pluton contains more alkali feldspar than the Jinjiling pluton. The whole-rock geochemistry and mineral compositions reveal a higher degree of differentiation for the Pangxiemu pluton. The nearly uniform εHf(t) indicates the same source region for the two plutons: both were derived from partial melting of the lower crust, with small contributions of mantle materials. In addition, higher F, lower Nb/Ta and Zr/Hf ratios in the Pangxiemu Pluton suggest a closer relationship with the rare metal mineralization than for the Jinjiling pluton.  相似文献   

4.
Barium partitioning between alkali feldspar and a natural trachyte liquid, enriched with barium, has been determined as a function of pressure and temperature from 10 to 25 kb and 900°–1100° C. Both long duration experiments and a re-equilibration experiment suggest close approach to equilibrium. Partition coefficients (D Ba) decrease as both temperature and pressure increase (e.g., D Ba changes from 8.71 at 10 kb, 900° C to 1.48 at 25 kb, 1100° C). Water activity also controls the barium partitioning with a marked decrease in D Ba af/liq for addition of less than 0.8 wt% H2O, but with no apparent additional effect for higher water contents in the bulk composition (e.g., from 0.8–4.2 wt% H2O). The composition of alkali feldspar also has a significant effect on D Ba af/liq , but the data obtained do not allow derivation of a complete D-Or relationship. These new data suggest that Henry's Law is obeyed for most of the barium concentrations examined, and the limit of Henry's Law behaviour for barium in alkali feldspar is as high as 6 wt% BaO in alkali feldspar and 1.2 wt% BaO in the melt, similar to the results of Long (1978). The experimental results broadly overlap with natural data for D Ba, determined from coexisting alkali feldspar phenocrysts and glass (or groundmass).  相似文献   

5.
在南秦岭造山带中发现的竹溪蔓荆沟碱性正长岩,呈透镜状侵入于辉绿岩体内,个别呈独立岩体侵入于早古生代地层中。单个正长岩体规模较小。通过对其进行岩相学及岩石地球化学特征研究,表明其为全碱(Na_2O~+K_2O)含量较高的钾质碱性正长岩;岩石中Mg~#值较低,明显低于原始岩浆Mg~#值,说明其为原始岩浆经历较高程度演化的产物;岩体中稀土元素总量ΣREE较高,轻稀土元素LREE富集明显,重稀土元素HREE亏损;通过微量元素构造环境判别分析认为,研究区正长岩形成于大陆裂谷环境,且形成于大陆裂谷早期阶段,其形成时代为早志留世。  相似文献   

6.
Field geological investigation and geochemical analysis are carried out on Baya’ertuhushuo Gabbro in South Great Xing’an Range. Field investigation reveals that the gabbro is a magmatic intrusion rather than a component of an ophiolite suite as previously thought. Zircon laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) U-Pb dating indicates the gabbro was formed in 274–275?Ma, just as the widespread volcanic rocks of Dashizhai Formation (P1d), monzogranites and miarolitic alkali-feldspar granites in the study area. The gabbro has SiO2 content between 47.23 wt% and 50.17 wt%, high MgO and FeOT contents of 6.95–11.29 wt% and 7.32–12.24wt%, respectively, and it belongs to low-K tholeiitic series in the SiO2-K2O diagram. The Chondrite-normalized rare earth element (REE) patterns and primitive mantle-normalized spider diagrams of the gabbro are similar to those of Normal Mid-Ocean Ridge Basalt (N-MORB) except for the enrichment of large ion lithophile elements (LILE), such as Rb, Ba and K. In trace element tectonic discriminative diagrams, the samples are mainly plotted in the N-MORB field, and Zircon in?situ Lu-Hf isotopic analysis also indicates the gabbro originated from depleted mantle. Through synthetic studies of the geochemical characteristics and petrogenesis of Baya’ertuhushuo gabbro, volcanic rocks of Dashizhai Formation and granitoids in the area, it is suggested that the early Permian magmatism in the Xilinhot-Xiwuqi area formed in the tectonic setting of asthenosphere upwelling, which was caused by breaking-off of the subducted Paleo-Asian Ocean slab.  相似文献   

7.
《Chemical Geology》2002,182(2-4):473-482
Three lithological Groups I (medium-grained, with magmatogenic arfvedsonite), II (medium-grained, with secondary arfvedsonite) and III (fine-grained, with magmatogenic arfvedsonite) are identified in the Saertielieke alkali granite pluton, Ulungur of the northern Xinjiang, China. A weak negative correlation between the δ18O values of alkali feldspar and quartz separates from each group, and the distinctly lower δ18O values of alkali feldspar separates from Groups I and II than those from Group III are interpreted in terms of superimposed closed-system and open-system isotope exchange. A small amount of locally exsolved magmatic fluid is involved in the development of the perthitic texture in alkali feldspar at ∼400 °C that results in a volume increase and, hence, causes quartz deformation. The microtextural changes promote the closed-system oxygen isotope exchange between quartz and alkali feldspar that causes a dispersion in the quartz δ18O values. However, the distinctly lower δ18O values of alkali feldspar and secondary arfvedsonite coupled with their microtextural characteristics indicate that meteoric-derived water plays an important role in the further development of alkali feldspar exsolution texture at T<400 °C and directly causes secondary arfvedsonite formation. The estimated relative exchange rates kQuartz/kFeldspar/kArfvedsonite of ∼10/100/1 for Groups I and III, and ∼10/100/100 for Group II suggest that alkali feldspar, quartz, and secondary arfvedsonite have exchanged with meteoric-derived water mainly via dissolution–reprecipitation, whereas magmatogenic arfvedsonite has exchanged via diffusion.  相似文献   

8.
The Boziguoer A-type granitoids in Baicheng County,Xinjiang,belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks.The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite,an aegirine or arfvedsonite alkali feldspar granite,and a biotite alkali feldspar syenite.The major rock-forming minerals are albite,K-feldspar,quartz,arfvedsonite,aegirine,and siderophyllite.The accessory minerals are mainly zircon,pyrochlore,thorite,fluorite,monazite,bastnaesite,xenotime,and astrophyllite.The chemical composition of the alkaline granitoids show that SiO2 varies from 64.55% to 72.29% with a mean value of 67.32%,Na2O+K2O is high (9.85%-11.87%) with a mean of 11.14%,K2O is 2.39%-5.47% (mean =4.73%),the K2O/Na2O ratios are 0.31-0.96,Al2O3 ranges from 12.58% to 15.44%,and total FeOT is between 2.35% and 5.65%.CaO,MgO,MnO,and TiO2 are low.The REE content is high and the total SREE is (263-1219) ppm (mean =776 ppm),showing LREE enrichment and HREE depletion with strong negative Eu anomalies.In addition,the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type.The Zr content is (113-1246) ppm (mean =594 ppm),Zr+Nb+Ce+Y is between (478-2203) ppm with a mean of 1362 ppm.Furthermore,the alkaline granitoids have high HFSE (Ga,Nb,Ta,Zr,and Hf) content and low LILE (Ba,K,and Sr) content.The Nb/Ta ratio varies from 7.23 to 32.59 (mean =16.59) and the Zr/Hf ratio is 16.69-58.04 (mean =36.80).The zircons are depleted in LREE and enriched in HREE.The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly.The Boziguoer A-type granitoids share similar features with A1-type granites.The average temperature of the granitic magma was estimated at 832-839℃.The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature,anhydrous,and low oxygen fugacity conditions.  相似文献   

9.
The extensive Changba-Lijiagou Pb-Zn deposit is located in the north of the Xihe–Chengxian ore cluster in West Qinling. The ore bodies are mainly hosted in the marble, dolomitic marble and biotite-calcite-quartz schist of the Middle Devonian Anjiacha Formation, and are structurally controlled by the fault and anticline. The ore-forming process can be divided into three main stages, based on field geological features and mineral assemblages. The mineral assemblages of hydrothermal stage I are pale-yellow coarse grain, low Fe sphalerite, pyrite with pits, barite and biotite. The mineral assemblages of hydrothermal stage II are black-brown cryptocrystalline, high Fe shalerite, pyrite without pits, marcasite or arsenopyrite replace the pyrite with pits, K-feldspar. The features of hydrothermal stage III are calcite-quartz-sulfide vein cutting the laminated, banded ore body. Forty-two sulfur isotope analyses, twenty-five lead isotope analyses and nineteen carbon and oxygen isotope analyses were determined on sphalerite, pyrite, galena and calcite. The δ34 S values of stage I(20.3 to 29.0‰) are consistent with the δ34 S of sulfate(barite) in the stratum. Combined with geological feature, inclusion characteristics and EPMA data, we propose that TSR has played a key role in the formation of the sulfides in stage I. The δ34 S values of stage II sphalerite and pyrite(15.1 to 23.0‰) are between sulfides in the host rock, magmatic sulfur and the sulfate(barite) in the stratum. This result suggests that multiple S reservoirs were the sources for S2-in stage II. The δ34 S values of stage III(13.1 to 22‰) combined with the structure of the geological and mineral features suggest a magmatic hydrothermal origin of the mineralization. The lead isotope compositions of the sulfides have 206 Pb/204 Pb ranging from 17.9480 to 17.9782, 207 Pb/204 Pb ranging from 15.611 to 15.622, and 208 Pb/204 Pb ranging from 38.1368 to 38.1691 in the three ore-forming stages. The narrow and symmetric distributions of the lead isotope values reflect homogenization of granite and mantle sources before the Pb-Zn mineralization. The δ13 CPDB and δ18 OSMOW values of stage I range from-0.1 to 2.4‰ and from 18.8 to 21.7‰. The values and inclusion data indicate that the source of fluids in stage I was the dissolution of marine carbonate. The δ13 CPDB and δ18 OSMOW values of stage II range from-4 to 1‰ and from 12.3 to 20.3‰, suggesting multiple C-O reservoirs in the Changba deposit and the addition of mantle-source fluid to the system. The values in stage III are-3.1‰ and 19.7‰, respectively. We infer that the process of mineralization involved evaporitic salt and sedimentary organic-bearing units interacting through thermochemical sulfate reduction through the isotopic, mineralogy and inclusion evidences. Subsequently, the geology feature, mineral assemblages, EPMA data and isotopic values support the conclusion that the ore-forming hydrothermal fluids were mixed with magmatic hydrothermal fluids and forming the massive dark sphalerite, then yielding the calcite-quartz-sulfide vein ore type at the last stage. The genesis of this ore deposit was epigenetic rather than the previously-proposed sedimentary-exhalative(SEDEX) type.  相似文献   

10.
《Gondwana Research》2001,4(3):465-475
The Tamperkola granite-acid volcanics association occurring at the western margin of the Archaean Singhbhum-Orissa Iron Ore Craton (SOC), eastern India, is intrusive into the Darjing Group which represents a sequence of mobile belt metasediments in this part of the SOC. The Darjing Group rests unconformably on the Bonai Granite (∼3.2 Ga old). Absence of any deformational imprints of the country rock metasediments on the Tamperkola granite acid volcanics together with its undeformed and unmetamorphosed nature, its alkali feldspar dominant mineralogy, and its high SiO2 and Na2O + K2O and low MgO and CaO contents suggest that this granite-acid volcanics association is anorogenic in nature. Two representative samples-one each from the granite and the acid volcanics have been dated by in situ 207Pb/206Pb zircon dating method using a small ion-microprobe. Minimum age of crystallisation of the acid volcanics is found to be 2.8 Ga. Strong peak in the 207Pb/206 Pb frequency diagram and equality of the observed and expected errors in radiogenic 207Pb/206Pb ratios suggest that this age probably represents the true age of formation of the volcanics. The age data place the deposition and metamorphism of the mobile belt metasediments of the Darjing Group in between 3.2 and 2.8 Ga. Occurrence of 2.9–2.8 Ga old small granitoid plutons, alkali-feldspar granite to syenogranite in composition, is also known from the southern margin of the SOC. Therefore, it appears that around 2.9–2.8 Ga small alkali granite bodies formed at the marginal part of this cratonic block after its stabilisation at ∼3.1 Ga.  相似文献   

11.
The electrical conductivities of alkali feldspar solid solutions ranging in chemical composition from albite (NaAlSi3O8) to K-feldspar (KAlSi3O8) were measured at 1.0 GPa and temperatures of 873–1,173 K in a multi-anvil apparatus. The complex impedance was determined by the AC impedance spectroscopy technique in the frequency range of 0.1–106 Hz. Our experimental results revealed that the electrical conductivities of alkali feldspar solid solutions increase with increasing temperature, and the linear relationship between electrical conductivity and temperature fits the Arrhenius formula. The electrical conductivities of solid solutions increase with the increasing Na content at constant temperature. At 1.0 GPa, the activation enthalpy of solid solution series shows strong dependency on the composition, and there is an abrupt increase from the composition of Or40Ab60 to Or60Ab40, where it reaches a value of 0.96 eV. According to these results in this study, it is proposed that the dominant conduction mechanism in alkali feldspar solid solutions under high temperature and high pressure is ionic conduction. Furthermore, since the activation enthalpy is less than 1.0 eV for the alkali feldspar solid solutions, it is suggested to be a model where Na+ and K+ transport involves an interstitial mechanism for electrical conduction. The change of main charge carriers can be responsible for the abrupt increase in the activation energy for Or60Ab40. All electrical conductivity data were fitted by a general formula in order to show the dependence of activation enthalpy and pre-exponential factor on chemical composition. Combining our experimental results with the effective medium theory, we theoretically calculated the electrical conductivity of alkali feldspar granite, alkali feldspar quartz syenite, and alkali feldspar syenite with different mineral content and variable chemical composition of alkali feldspar at high temperatures at 1.0 GPa, and the calculated results are almost in agreement with previous experimental studies on silicate rocks.  相似文献   

12.
The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and ge  相似文献   

13.
1 Introduction According to recent researches, the North China Craton consists of three parts: the eastern block, western block and central zone (Zhao, 2001; Wilde et al., 2002). Paleoarchean continental blocks and zircon residuals have only been found in a few regions, such as Anshan, East Liaoning (Liu et al., 1992; Song et al., 1996; Wan et al., 2002, 2005), Caozhuang, East Hebei (Liu et al., 1992) and Xinyang, West Henan (Zheng et al., 2004), which are mainly distributed in the east…  相似文献   

14.
Zircon U–Pb ages, major and trace elements, and Sr, Nd and Hf isotope compositions of the Changboshan‐Xieniqishan (CX) intrusion from the Great Xing'an Range (GXAR), northeastern China, were studied to investigate its derivation, evolution and geodynamic significance. Laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) zircon U–Pb dating yields an emplacement age of 161 ± 2 Ma for the CX intrusion. Bulk‐rock analyses show that this intrusion is characterized by high SiO2, Na2O and K2O, but low MgO, CaO and P2O5. They are enriched in large‐ion lithophile elements and light rare earth elements, with marked Eu anomalies (mostly from 0.36 to 0.65), and depleted in heavy rare earth elements and high field strength elements. Most samples have relatively low (87Sr/86Sr)i values (0.70423–0.70457), with εNd(t) fluctuating between −0.4 and 2.3. The εHf(t) for zircons varies from 5.4 to 8.7. Sr–Nd isotope modelling results, in combination with young Nd and Hf model ages (760–986 and 549–728 Ma, respectively) and the presence of relict zircons, indicate that the CX intrusion may originate from the partial melting of juvenile crust, with minor contamination of recycled crustal components, and then underwent extensive fractional crystallization of K‐feldspar, plagioclase, biotite, sphene, apatite, zircon and allanite. Considering the widespread presence of granitoids with coeval volcanic rocks, we contend that the CX intrusion formed in an extensional environment related to the upwelling of asthenospheric mantle induced by the subduction of the Palaeo‐Pacific plate, rather than a lithospheric delamination model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Two exceptionally potassium‐rich alkali mela‐syenite dykes from widely separated localities in Antarctica consist of microcline, phlogopite, alkali amphibole (K‐richterite and K‐arfvedsonite), apatite, and minor quartz, anatase, rutile, sphene, barite, zircon, and opaque minerals; they represent the more deep‐seated equivalents of the potassium‐rich mafic volcanic and subvolcanic rock suite. Both are characterised by extremely high TiO2, K2O, P2O5, F, Rb, Sr, Zr, Nb, Ba, La, Ce, Pb, Th, and U, but relatively low Al2O3, CaO, and Na2O. The dyke from Priestley Peak, Enderby Land is relatively magnesian (mg 0.67–0.71) and probably represents a near‐primary magma; its compositional variation may be mainly explained in terms of phlogopite fractionation. The dyke from Mount Bayliss, MacRobertson Land is more evolved (mg 0.54–0.58), and a similar, more rapidly cooled specimen from nearby moraine shows textural evidence that early leucite reacted with liquid to give K‐feldspar. It also shows evidence, in the form of felsic ocelli, for liquid immisci‐bility, although it is not clear whether this was petrogenetically important or merely a late‐magmatic feature.  相似文献   

16.
Lead isotope amount ratios are commonly used in diverse fields such as archaeometry, geochemistry and forensic science. Currently, five reference materials with certified lead isotope amount ratios are available, namely NIST SRM 981, 982 and 983, GBW‐04442 and NMIJ 3681‐a. Only NIST SRM 981 and NMIJ 3681‐a have approximately natural isotopic compositions, and NIST SRM 981 is predominantly used for correcting mass discrimination/mass fractionation in the applied mass spectrometric procedures. Consequently, there is no other certified reference material available to be used for validation and/or quality control of the analytical procedures applied to lead isotope amount ratio measurements. To fill this gap, two new reference materials have been produced and certified for their lead isotope amount ratios. For both certified reference materials, complete uncertainty budgets have been calculated and SI traceability has been established. This provides the users with independent means for validating and verifying their analytical procedures and for conducting quality control measures. ERM‐EB400 is a bronze material with a nominal lead mass fraction of 45 mg kg?1 and certified lead isotope amount ratios of n(206Pb)/n(204Pb) = 18.072(17) mol mol?1, n(207Pb)/n(204Pb) = 15.578(18) mol mol?1 and n(208Pb)/n(204Pb) = 38.075(46) mol mol?1 with the associated expanded uncertainties (= 2) given in brackets. ERM‐AE142 is a high‐purity solution of lead in 2% nitric acid with a nominal mass fraction of 100 mg kg?1 and certified Pb isotope amount ratios of n(206Pb)/n(204Pb) = 21.114(17) mol mol?1, n(207Pb)/n(204Pb) = 15.944(17) mol mol?1 and n(208Pb)/n(204Pb) = 39.850(44) mol mol?1 with the associated expanded uncertainties (= 2) given in brackets. Both materials are specifically designed to fall within the natural lead isotopic variation and to assist users with the validation and verification of their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM‐EB400), the other does not (ERM‐AE142). As additional information, δ208/206PbNIST SRM981 values are provided for both materials. For ERM‐AE142, a delta value of δ208/206PbNIST SRM981 = ?28.21(30)‰ was obtained, and for ERM‐EB400, a delta value of δ208/206PbNIST SRM981= ?129.47(38)‰ was obtained, with the associated expanded uncertainties (= 2) given in brackets.  相似文献   

17.
Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Archean Zhaizi TTG gneisses. And the Beiyu metamorphic granitoids consist mainly of trondhjemites, distributed at the core of the Hujiayu anticline fold. New SHRIMP zircon U-Pb dating data show that the weighted mean ^207pb/^206pb ages are 2435.9 Ma and 2477 Ma for the Henglingguan metamorphic calc-alkaline monzogranites and Beiyu metamorphic trondhjemites, respectively, and reveal -2600 Ma inherited core in magmatic zircons. Whole-rock geochemical data indicate that all the Henglingguan and Beiyu metamorphic trondhjemites and calc- alkaline monzogranites belong to the metaluminous medium- and high-potassium calc-alkaline series. These rocks are characterized by relatively high total alkali contents (Na2O+K2O, up to 9.08%), depleted Nb, Ta, P and Ti, and right-declined REE patterns with moderate to high LREEs/HREEs fractionation (the mean ratio of (La/Yb)n = 25). The Henglingguan and Beiyu metamorphic trondhjemites display negative Rb, Th and K anomalies in the multi-dement spider diagrams normalized by primitive mantle. Sm-Nd isotopic data reveal that these granitoids have initial εNd(t) =-1.2 to +2.4 and Nd depleted mantle model ages of TMD = 2622 Ma-2939 Ma. All these geochemical features indicate that these granitoids were formed in an continent-marginal arc, and the trondhjemites mainly originated from partial melting of juvenile basaltic materials and, howbeit, the Henglingguan metamorphic calc-alkaline monzogranites derived from recycling of materials in the ancient crust under a continent-marginal arc. The granitic magma underwent contamination and fractional crystallization during their formation.  相似文献   

18.
On the basis of internal structures, laser ablation U–Pb ages and trace element compositions, the origin of zircon in jadeitite in the Nishisonogi metamorphic rocks was examined. The zircon comprises euhedral zoned cores overgrown by euhedral rims. The cores contain inclusions of muscovite, quartz, albite and possibly K‐feldspar, yield 238U–206Pb ages of 126 ± 6 Ma (±2 SD, n = 45, MSWD = 1.0), and have Th/U ratios of 0.48–1.64. The rims contain inclusions of jadeite, yield 238U–206Pb ages of 84 ± 6 Ma (±2 SD, n = 14, MSWD = 1.1), and have Th/U ratios of <0.06. The cores are richer in Y, Th, Ti and rare earth elements (REEs), but the rims are richer in Hf and U. Chondrite‐normalized REE patterns of the cores indicate higher SmN/LaN ratios, lower YbN/GdN ratios and larger positive Ce anomalies compared with those of the rims. Thus, the cores and rims have different 238U–206Pb ages and trace element compositions, suggesting two stages of zircon growth. Although the 238U–206Pb ages of the rims are consistent with the reported 40Ar/39Ar spot‐fusion ages of matrix muscovite in the jadeitite, the 238U–206Pb ages of the cores are older. The mineral inclusions and high Th/U ratios in the cores are best explained by crystallization from felsic magma. Therefore, the cores are considered relicts from igneous precursor rocks. The rims surrounding the inherited cores possibly precipitated from aqueous fluids during jadeitite formation. The elevated U concentrations in the rims suggest that infiltration of external fluids was responsible for the precipitation. This study provides an example of jadeitite formation by metasomatic replacement of a protolith.  相似文献   

19.
The Jiangla'angzong granite in the northern part of the Central Lhasa Terrane is composed of syenogranite and adamellite. LA-ICP-MS zircon U-Pb analyses suggest that syenogranite has a weighted mean ~(206) Pb/~(238) U age of 86±1 Ma(mean square weighted deviation=0.37), which is in accordance with the muscovite Ar-Ar age(85±1 Ma) of Cu-Au ore-bearing skarns and the zircon U-Pb age(84±1 Ma) of adamellite. This suggests that the Jiangla'angzong magmatism and Cu–Au mineralization events took place during the Late Cretaceous. The granite contains hornblende, biotite, and pyroxene, and does not contain Al-bearing minerals, such as muscovite, cordierite, and garnet. It has high contents of SiO_2(65.10–70.91 wt%), K_2O(3.44–5.17 wt%), and total K_2O+Na_2O(7.13–8.15 wt%), and moderate contents of A_(12)O_3(14.14–16.45 wt%) and CaO(2.33–4.11 wt%), with a Reitman index(σ43) of 2.18 to 2.33, and A/CNK values of 0.88 to 1.02. The P_2O_5 contents show a negative correlation with SiO_2, whereas Pb contents show a positive correlation with SiO_2. Th and Y contents are relatively low and show a negative correlation with the Rb contents. These characteristics suggest that the Jiangla'angzong granite is a high K calc–alkaline metaluminous I–type granite. It is enriched in light rare earth elements(LREE) and large ion lithofile elements(LILE), and depleted in heavy rare earth elements(HREE) and high field strength elements(HFSE), with LREE/HREE ratios of 11.7 to 18.1. The granite has negative Eu anomalies of 0.58 to 0.94 without obvious Ce anomalies(δCe=1.00–1.04). The relatively low initial 87 Sr/86 Sr ratios of 0.7106 to 0.7179, positive εHf(t) values of 1.0 to 4.1, and two-stage Hf model ages(TDM2) ranging from 889 Ma to 1082 Ma, These geochemical features indicate that the granite derived from a juvenile crust. The(~(143) Nd/~(144) Nd)_t values from the Jiangla'angzong granite range from 0.5121 to 0.5123, its εNd(t) values range from-10.17 to-6.10, its(~(206) Pb/~(204) Pb)_t values range from 18.683 to 18.746, its(~(207) Pb/~(204) Pb)_t values range from 15.695 to 15.700, and its(~(208) Pb/~(204) Pb)_t values range from 39.012 to 39.071. These data indicate that the granite was formed by melting of the upper crust with the addition of some mantle materials. We propose that the Jiangla'angzong granite was formed during the postcollision extension of the Qiangtang and Lhasa terranes.  相似文献   

20.
Both oceanic and continental HP rocks are juxtaposed in the Huwan shear zone in the western Dabie orogen, and thus provide a window for testing the buoyancy‐driven exhumation of dense oceanic HP rocks. The HP metamorphic age of the continental rocks in this zone has not been well constrained, and hence it is not known if they are of the same age as the exhumation of the HP oceanic rocks. In situ laser ablation (multiple collector) inductively coupled plasma mass spectrometry (LA‐(MC‐)ICP‐MS), U–Pb, trace element and Hf isotope analyses were made on zircon in a granitic gneiss and two eclogites from the Huwan shear zone. U–Pb age and trace element analysis of residual magmatic zircon in an eclogite constrain its protolith formation at 411 ± 4 Ma. The zircon in this sample displays εHf (t) values of +6.1 to +14.4. The positive εHf (t) values up to +14.4 suggest that the protolith was derived from a relatively depleted mantle source, most likely Palaeotethyan oceanic crust. A granitic gneiss and the other eclogite yield protolith U–Pb ages of 738 ± 6 and 700 ± 14 Ma, respectively, which are both the Neoproterozoic basement rocks of the Yangtze Block. The zircon in the granitic gneiss has low εHf (t) values of ?14.2 to ?10.5 and old TDM2 ages of 2528–2298 Ma, suggesting reworking of Palaeoproterozoic crust during the Neoproterozoic. The zircon in the eclogite has εHf (t) values of ?1.0 to +7.4 and TDM1 ages of 1294–966 Ma, implying prompt reworking of juvenile crust during its protolith formation. Metamorphic zircon in both eclogite samples displays low Th/U ratios, trace element concentrations, relatively flat heavy rare earth element patterns, weak negative Eu anomalies and low 176Lu/177Hf ratios. All these features suggest that the metamorphic zircon formed in the presence of garnet but in the absence of feldspar, and thus under eclogite facies conditions. The metamorphic zircon yields U–Pb ages of 310 ± 3 and 306 ± 7 Ma. Therefore, both the oceanic‐ and continental‐type eclogites share the same episode of Carboniferous eclogite facies metamorphism. This suggests that high‐pressure continental‐type metamorphic rocks might have played a key role in the exhumation and preservation of oceanic‐type eclogites through buoyancy‐driven uplift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号