首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The junction of the southeastern Guizhou, the southwestern Hunan, and the northern Guangxi regions is located within the southwestern Jiangnan orogen and forms a NE-trending ∼250 km gold belt containing more than 100 gold deposits and occurrences. The Pingqiu gold deposit is one of the numerous lode gold deposits in the southeastern Guizhou district. Gold mineralization is hosted in Neoproterozoic lower greenschist facies metamorphic rocks and controlled by fold-related structures. Vein types present at Pingqiu include bedding-parallel and discordant types, with saddle-reefs and their down limb extensions dominating but with lesser discordant types. The major sulfide minerals are arsenopyrite and pyrite, with minor sphalerite, galena, chalcopyrite, and rare pyrrhotite, marcasite, and tetrahedrite. Much of the gold is μm- to mm-sized grains, and occurs as fracture-controlled isolated grains or filaments in quartz, galena, sphalerite, pyrite, and wallrock.Three types of fluid inclusions are distinguished in hydrothermal minerals. Type 1 aqueous inclusions have homogenization temperatures of 171–396 °C and salinities of 1.4–9.8 wt% NaCl equiv. Type 2 aqueous-carbonic inclusions yield final homogenization temperatures of 187–350 °C, with salinities of 0.2–7.7 wt% NaCl equiv. Type 3 inclusions are carbonic inclusions with variable relative content of CO2 and CH4, and minor amounts of N2 and H2O. The close association of CO2-rich inclusions and H2O-rich inclusions in groups and along the same trail suggests the presence of fluid immiscibility. The calculated δ18OH2O values range from 4.3‰ to 8.3‰ and δDH2O values of fluid inclusions vary from −55.8‰ to −46.9‰. A metamorphic origin is preferred on the basis of geological background and analogies with other similar deposit types.Two ore-related sericite samples yield well-defined 40Ar/39Ar plateau ages of 425.7 ± 1.7 Ma and 425.2 ± 1.3 Ma, respectively. These data overlap the duration of the Caledonian gold mineralization along the Jiangnan orogen, and suggest that gold mineralization was post-peak regional metamorphism and occurred during the later stages of the Caledonian orogeny.Overall, the Pingqiu gold deposit displays many of the principal characteristics of the Bendigo gold mines in the western Lachlan Orogen (SE Australia) and the Dufferin gold deposit in the Meguma Terrane (Nova Scotia, Canada) but also some important differences, which may lead to the disparity in gold endowment. However, the structural make-up at deposit scale, and the shallow mining depth at present indicate that the Pingqiu gold deposit may have considerable gold potential at depth.  相似文献   

2.
万古金矿床位于江南造山带中部,赋存于新元古界冷家溪群浅变质岩系中,受NNE-NE向长沙-平江断裂带和近EW向九岭-清水韧性剪切带联合控制,金资源量约85t。其主要矿石类型为毒砂-黄铁绢英岩型和石英-硫化物脉型,其次为构造角砾岩型。毒砂和黄铁矿为该矿床主要的载金矿物,分布广泛。金成矿作用可分为四个阶段,I为乳白色石英-绢云母-白钨矿阶段;Ⅱ为烟灰色石英-绢云母-毒砂-黄铁矿-金阶段;Ⅲ为烟灰色石英-绢云母-黄铁矿-毒砂-多金属硫化物-金阶段;IV为乳白色石英-方解石阶段。其中,Ⅱ、Ⅲ为成矿主阶段。根据成矿主阶段毒砂电子探针分析结果,Ⅱ阶段毒砂中As的含量在42.19%~44.84%之间,均值为43.42%(n=56),Ⅲ阶段毒砂中As的含量在40.08%~43.36%之间,均值为42.08%(n=19)。通过毒砂温度计相图估算出Ⅱ、Ⅲ阶段的形成温度和硫逸度分别为364±21℃、319±22℃和10^(-9.7)~10^(-7)、10^(-11.5)~10_(-8.6)。电子探针数据揭示的载金毒砂和黄铁矿中不可见金含量分别为0.01%~0.66%和0.01%~0.11%。黄铁矿Au-As元素投点分布于金溶解度曲线两侧,说明其内金主要以纳米级颗粒和固溶体金或晶格金的形式赋存;其中Ⅱ阶段黄铁矿纳米级金颗粒占比为73.33%,多于Ⅲ阶段黄铁矿(67.80%)。以上数据说明在水岩反应过程中,围岩中的含铁矿物与成矿流体中的H;S发生反应,生成毒砂和黄铁矿。伴随着强烈的水岩反应,成矿温度和硫逸度降低,成矿Ⅱ阶段至Ⅲ阶段主要载金硫化物由毒砂转变为黄铁矿,强烈的硫化作用导致金-硫络合物失稳并释放金,金以置换的方式进入硫化物晶格或以显微-超显微金颗粒的形式沉淀,形成含金硫化物;即硫化作用是导致万古矿床不可见金沉淀的主导机制。  相似文献   

3.
The world-class > 4 Moz Wona-Kona gold deposit is hosted within the Paleoproterozoic Birimian Houndé greenstone belt which is the most important gold mineralized belt in the western part of Burkina Faso, with a cumulative reserve of ~ 11 Moz. The mineralization consists of a pervasive silicification with disseminated pyrite–arsenopyrite crosscut by quartz–carbonate veinlets (1 to 10 cm wide) forming a vertical, thick (up to 40 m) and laterally extensive (5 km) northeast trending orebody hosted within a large (200 m wide) shear zone of regional extent. Gold occurs in association with 3 generations of pyrite and 2 generations of arsenopyrite. Free gold, interpreted as the last mineralizing event, occurs as late fracture filling in the pervasive silicification zone.  相似文献   

4.
The Youga gold deposits are located in southern Burkina Faso, close to the border with Ghana and classified as epigenetic mesothermal orogenic type gold deposits. They are hosted within or adjacent to Tarkwaian-type metasediments of the Youga Basin, composed of a succession of arkosic sandstones, conglomerates and subordinate chlorite schists. The Youga deposits are characterized by two distinct styles of mineralization; the moderately to weakly silicified host rock with quartz stockwork veining and pyrite as the predominant sulphide which generally grades between 0.5 and 2 g/t and the intensely silicified arkose with abundant quartz veins and more diverse sulphides (pyrite, arsenopyrite, chalcopyrite, pyrrhotite and galena) which generally grades > 3 g/t. The alteration paragenesis associated with the mineralized vein stockwork is characterized by quartz, ankerite, albite, chlorite and pyrite. The first mineralization episode occurred under brittle-ductile conditions during the D1Y deformation event characterized by E–W trending penetrative to discrete structures. Gold is concentrated in zones affected by irregular fracturing, quartz veining and occasional brecciation. Reworking of these structures during D2Y, by N–S to NE-trending sub-vertical shear zones, lead to further economic concentration of gold found in eight individual deposits, all localized in or immediately adjacent to Tarkwaian-type sediments (Main, East, West Zone 1, 2, and 3, A2NE, NTV and Zergoré). Absolute age of mineralization is unknown as well as that of the host sediments; however stratigraphic and structural craton-wide correlations suggest that the mineralization occurred after 2110 Ma if not much later. Commercial production was achieved at the Youga Gold Mine in 2008 and as of December 31st, 2014 has produced 537,621 oz of gold.  相似文献   

5.
The Tamlalt–Menhouhou gold deposit belongs to the Neoproterozoic–Palaeozoic Tamlalt inlier located in the Eastern High-Atlas (Morocco). It occurs in altered Upper Neoproterozoic bimodal volcanic and volcano-sedimentary units outcropping in the Tamlalt–Menhouhou area. Gold mineralization has been identified in quartz veins related to shear-zones associated with a strong quartz-phyllic-argillic alteration. Visible free gold is related to goethite–malachite–barite boxworks in quartz veins. The other alteration minerals accompanying gold mineralization are mainly carbonates, chlorite, hematite, albite and pyrite whose relative proportion defines three alteration types. 40Ar/39Ar geochronology performed on phengite grains from phyllic alteration and the auriferous quartz veins, yields plateau ages ranging from 300 ± 5 Ma to 284 ± 12 Ma with a weighted mean age of 293 ± 7 Ma. This identifies a Late Variscan age for the Tamlalt–Menhouhou “shear zones-related” gold deposit and emphasizes the consequences of the Variscan orogeny for gold mineralization in the High-Atlas and Anti-Atlas Neoproterozoic inliers.  相似文献   

6.
The Jiehe gold deposit, containing a confirmed gold reserve of 34 tonnes (t), is a Jiaojia-type (disseminated/stockwork-style) gold deposit in Jiaodong Peninsula. Orebodies are hosted in the contact zone between the Jurassic Moshan biotite granite and the Cretaceous Shangzhuang porphyritic granodiorite, and are structurally controlled by the NNE- to NE-striking Wangershan-Hedong Fault. Sulphide minerals are composed predominantly of pyrite with lesser amounts of chalcopyrite, galena, and sphalerite. Hydrothermal alteration is strictly controlled by fracture zones, in which disseminated sulfides and native gold are spatially associated with pervasive sericitic alteration. Mineralogical, textural, and field relationships indicate four stages of alteration and mineralization, including pyrite-bearing milky and massive quartz (stage 1), light-gray granular quartz–pyrite (stage 2), quartz–polysulfide (stage 3) and quartz–carbonate (stage 4) stages. Economic gold is precipitated in stages 2 and 3.The Jiehe deposit was previously considered to form during the Eocene (46.5 ± 2.3 Ma), based on Rb-Sr dating of sericite. However, 40Ar/39Ar dating of sericite in this study yields well-defined, reproducible plateau ages between 118.8 ± 0.7 Ma and 120.7 ± 0.8 Ma. These 40Ar/39Ar ages are consistent with geochronological data from other gold deposits in the region, indicating that all gold deposits in Jiaodong formed in a short-term period around 120 Ma. The giant gold mineralization event has a tight relationship with the extensional tectonic regime, and is a shallow crustal metallogenic response of paleo-Pacific slab subduction and lithospheric destruction in the eastern NCC.  相似文献   

7.
The Maevatanana gold deposit in Madagascar is hosted by Archean metamorphic rocks in quartz–sulfide veins that are structurally controlled by NNW–SSE trending shear zones. Fluid inclusion data show that the trapping conditions in quartz range from 0.87 to 2.58 kbar at temperatures of 269–362 °C. Laser Raman spectroscopy confirms that these inclusions consist of CO2, SO2, and H2O. The δ34S values of the pyrites range from 1.7‰ to 3.6‰, with an average of 2.25‰, supporting a magmatic origin. Noble gases (He, Ne, Ar, Ke, Xe) are chemically inert, thus will not be involved in chemical reactions during geological processes. Also due to the low concentration of He in the atmosphere and the low solubility of He in aqueous fluids, the atmosphere-derived He is unlikely to significantly affect He abundances and isotopic ratios of crustal fluids, ensures that He production should have the typical crust 3He/4He ratios. The 3He/4He ratios of fluid inclusions in pyrite from the deposit range from 0.06 to 0.12 Ra, while the 40Ar/36Ar ratios range from 6631 to 11441. We infer that the ore-forming fluids could have been exsolved from a granitic magma. The oxygen and hydrogen isotope compositions of the ore-forming fluids (1.5‰  δ18OH2O  7.8‰; –72‰  δD  –117‰) indicate they were derived from a granitic magma. Four pyrite samples from the gold deposit yield a precise Re–Os isochron age of 534 ± 13 Ma. Given that the post-collisional granites in northern and central Madagascar were derived by melting of sub-continental lithospheric mantle and formed between 537 and 522 Ma, we can state that the gold metallogenesis was coeval with the crystallization age of these parental magmas. These data could be accounted for the formation of the Maevatanana gold deposit. First, the shear zones hosting the deposit formed around 2.5 Ga, when the Madagascan micro-continental blocks collided with other continental blocks, triggering large-scale tectono-magmatic activity and forming NNW–SSE trending shear zones. The gold mineralization at Maevatanana is coeval with the crystallization age of the Cambrian post-collisional A-type granitoid plutons in northern and central Madagascar, implying that this deposit is associated with extensional collapse of the East African Orogen. This extension in turn induced asthenospheric upwelling, melting of sub-continental lithospheric mantle. These magmas underplated the lower crust, generating voluminous granitic magmas by partial melting of the lower crust. The mixing magma during tectono-thermal reactivation of the East African Orogen produced large volumes of volatiles that extracted gold from the granitic magma and produced Au–S complexes (e.g., Au(HSO3)2−). The shear zones, which were then placed under extensional collapse of the East African Orogen in the Cambrian, formed favorable pathways for the magmatic ore-forming fluids. These fluids then precipitated gold-sulfides that form the Maevatanana gold deposit.  相似文献   

8.
The Xiongcun district, located in the western segment of the Gangdese porphyry copper belt (GPCB), hosts the only known Jurassic mineralization in the GPCB, Tibet, PRC. The No. I deposit in the Xiongcun district is related to the Middle Jurassic quartz diorite porphyry (167–161 Ma) and the mineralization was formed at ca. 161.5 ± 2.7 Ma. Ore-bearing Middle Jurassic quartz diorite porphyry emplaced into the Early Jurassic volcano-sedimentary rock sequences of the Xiongcun Formation. Veinlets and disseminated mineralization developed within the Middle Jurassic quartz diorite porphyry and the surrounding metamorphosed tuff, hosting a measured and indicated resource of 1.04 Mt copper, 143.31 t gold and 900.43 t silver with an average grade of 0.48% copper, 0.66 g/t gold, and 4.19 g/t silver. The mineralization can be assigned to four stages, including three main stages of hypogene mineralization and one epigenetic stage. The main alteration associated with mineralization is potassic. Seven mineralization-related hydrothermal veins have been recognized, including quartz–sulfide, biotite–sulfide, magnetite–sulfide, quartz–molybdenite–sulfide, chalcopyrite–pyrite–pyrrhotite, pyrite and polymetallic veins. The S and Pb isotopic compositions of the ore sulfides and the Re contents of the molybdenite suggest a mantle source for the ore-forming materials with minor contamination from the subducted sediments. Hydrogen and oxygen isotope compositions of quartz in the ores suggest that both magmatic and meteoric waters were involved in the ore-forming process. The ore-bearing porphyry (167–161 Ma) and ore-forming (161.5 ± 2.7 Ma) ages of the No. I deposit correspond to the time of northward subduction of Neo-Tethys oceanic slab. The geochemical data of the ore-bearing porphyry indicate that the No. I deposit formed in an intra-oceanic island arc setting and the ore-bearing porphyry originated from the partial melting of mantle with limited contribution of subducted sediments. The genesis of the ore-bearing porphyry and No. I deposit is interpreted as being related to northward intra-oceanic subduction of Neo-Tethys oceanic slab in the Middle Jurassic time (167–161 Ma).  相似文献   

9.
Including past production, current indicated and inferred resources, Wassa is a 5 Moz poly-deformed early-orogenic gold deposit located on the eastern flank of the Ashanti Belt, in southwest Ghana. It is hosted by metamorphosed volcanic, intrusive and sedimentary rocks of the Sefwi Group (ca. 2260–2160 Ma). Early mineralization has an Eoeburnean age (2164 ± 22 Ma, Re–Os on pyrite) and is characterized by quartz veins, by a carbonate alteration of the host rocks, and by deformed gold-bearing pyrite. Remobilization of this gold occurred during the late stages of the Eburnean Orogeny (~ 2.1 Ga) and is associated with quartz-carbonate veins with visible gold and euhedral pyrites.  相似文献   

10.
The giant Jianchaling gold deposit is located in the Shaanxi Province, China. The mineralization is hosted by WNW-trending faults in the Mianxian-Lueyang-Yangpingguan (MLY) area. The mineralization can be divided into three stages based on mineralogical assemblages and crosscutting relationships of mineralized quartz veins. These stages, from early to late, are characterized by the mineral assemblage of: (1) quartz – coarse-grained pyrite – pyrrhotite – pentlandite – dolomite; (2) quartz – pyrite – gold – sphalerite – galena – carbonate – arsenopyrite – fuchsite; and (3) dolomite – calcite – quartz – fine-grained pyrite – realgar – orpiment.Three types of fluid inclusions have been recognized in this study based on petrographic and microthermometric measurements, including pure CO2 and/or CH4 (PC-type), NaCl-H2O (W-type), and NaCl-CO2-H2O (C-type) fluid inclusions. These fluid inclusion types are present in quartz from the Stage 1 and 2 assemblages, whereas the Stage 3 quartz only contains W-type fluid inclusions. The Stage 2 assemblage is associated with the mineralization at the Jianchaling deposit. Fluid inclusions of Stage 1 quartz homogenize mainly between 250° and 360 °C, with salinities up to 15.6 wt.% NaCl equiv., whereas the Stage 3 dolomite with homogenization temperatures of 160° – 220 °C and salinities of 1.1–7.4 wt.% NaCl equiv. This indicates that the ore fluid system evolved from CO2-rich, probably metamorphic hydrothermal to CO2-poor, meteoric fluid. All three types of fluid inclusions can be observed in the Stage 2 quartz, suggesting that this heterogeneous association was trapped from a boiling fluid system. These inclusions homogenized at temperatures of 200°–250 °C and salinities of 1.2–12.4 wt.% NaCl equiv. The estimated trapping pressures of the fluid inclusions are between 117 and 354 MPa in Stage 1, suggesting an alternating lithostatic–hydrostatic fluid system, which was controlled by a fault-valve at the depth of ~ 12 km.Two fuchsite samples collected from the Stage 2 polymetallic-quartz veins yielded well-defined 40Ar/39Ar isotopic plateau ages of 197 ± 2 and 194 ± 2 Ma, and 39Ar/36Ar-40Ar/36Ar normal isochrones of 198 ± 2 and 199 ± 2 Ma. This indicates that the mineralization at Jianchaling is Early Jurassic (ca. 198 Ma) in age. We propose that Jianchaling is an orogenic gold deposit, and formed during continental collision related to the northward subduction of the Mian-Lue oceanic plate during the Early Jurassic. We also conclude that the beginning of the continental collision between the Yangtze and the North China Cratons took place around 200 Ma.  相似文献   

11.
The Laowan metallogenic belt in China is an important metallogenic belt within the Tongbai orogenic belt, and contains the medium-sized Laowan and Shangshanghe gold deposits, the small Huangzhuyuan lead–zinc–silver–gold deposit and some gold and Cu–Pb occurrences. These deposits are hosted in Mesoproterozoic plagioclase amphibolite (or schist) and mica-quartz schist. The gold ores are mainly quartz veins and veinlets and disseminated altered ores. Subordinate ore types include massive sulfides and breccias. The Laowan gold deposit is characterized by three right-stepping en-echelon fracture-controlled alteration zones that dip gently to the south and includes disseminated, sheeted and stockwork ores. These lodes were formed by the interaction of ore-forming fluid with foliated-to laminated cataclasite within the transpressional faults. The Shangshanghe gold deposit is characterized by parallel ore lodes that dip steeply to the north, and includes quartz veins and breccias in addition to ores in altered wallrocks. These lodes were formed by focusing of fluids into transtensional faults. These ore controlling faults displaced early barren quartz veins 10 m horizontally with a dextral sense of motion. The ore-hosting structures at the Laowan and Shangshanghe deposits correspond to the P and R-type shears of a brittle dextral strike-slip fault system, respectively, which make angles of about 15° and − 15° to the Laowan and Songpa boundary faults. The ore-controlling fault system post-dated formation of a ductile shear zone, and peak regional metamorphism. This precludes a genetic relationship between hydrothermal mineralization and regional metamorphism and ductile shear deformation. These gold deposits are not typical orogenic gold deposits. The metallogenic belt displays district-scale-zoning of Mo  Cu–Pb–Zn–Ag  Au relative to Songpa granite porphyry dike zone, suggesting the mineralization may be closely related to the granite porphyry. Measured δ34S of sulfides and δ18O and δD of fluid inclusion waters in auriferous quartz also are consistent with a magmatic source for sulfur and ore fluids. The similarity of Pb isotope ratios between the ores and Yanshanian granitoids suggests a similar source. As the age (139 ± 3 Ma) of granite porphyry obtained by zircon U–Pb isotope overlaps the mineralization age (138 ± 1 Ma: Zhang et al., 2008a), the gold and polymetallic metallogenesis of the Laowan gold belt has close spatial, temporal and possibly genetic relationships with Yanshanian high level magmatism.  相似文献   

12.
Several occurrences of gold-bearing quartz veins are situated along the east–northeast-trending Barramiya–Um Salatit ophiolitic belt in the central Eastern Desert of Egypt. In the Barramiya mine, gold mineralization within carbonaceous, listvenized serpentinite and adjacent to post-tectonic granite stocks points toward a significant role of listvenitization in the ore genesis. The mineralization is related to quartz and quartz–carbonate lodes in silicified/carbonatized wallrocks. Ore minerals, disseminated in the quartz veins and adjacent wallrocks are mainly arsenopyrite, pyrite and trace amounts of chalcopyrite, sphalerite, tetrahedrite, pyrrhotite, galena, gersdorffite and gold. Partial to complete replacement of arsenopyrite by pyrite and/or marcasite is common. Other secondary phases include covellite and goethite. Native gold and gold–silver alloy occur as tiny grains along micro-fractures in the quartz veins. However, the bulk mineralization can be attributed to auriferous arsenopyrite and arsenic-bearing pyrite (with hundreds of ppms of refractory Au), as evident by electron microprobe and LA-ICP-MS analyses.The mineralized quartz veins are characterized by abundant carbonic (CO2 ± CH4 ± H2O) and aqueous-carbonic (H2O–NaCl–CO2 ± CH4) inclusions along intragranular trails, whereas aqueous inclusions (H2O–NaCl ± CO2) are common in secondary sites. Based on the fluid inclusions data combined with thermometry of the auriferous arsenopyrite, the pressure–temperature conditions of the Barramiya gold mineralization range from 1.3 to 2.4 kbar at 325–370 °C, consistent with mesothermal conditions. Based on the measured δ34S values of pyrite and arsenopyrite intimately associated with gold, the calculated δ34SΣs values suggest that circulating magmatic, dilute aqueous-carbonic fluids leached gold and isotopically light sulfur from the ophiolitic sequence. As the ore fluids infiltrated into the sheared listvenite rocks, a sharp decrease in the fluid fO2 via interaction with the carbonaceous wallrocks triggered gold deposition in structurally favorable sites.  相似文献   

13.
The Inata gold deposit is hosted in the Bouroum greenstone belt of northern Burkina Faso and contains ca. 5 Moz of gold resource. The greenstone belt is divided into 4 distinct domains: The Pali West, Pali-Minfo and Fété Kolé domains comprised of variable proportions of mafic to intermediated volcanic, volcaniclastic and sedimentary rocks, and the Sona Basin comprised of feldspathic sandstones and turbidites. Potential Tarkwaian-like conglomerates are rarely observed on the eastern margin of the basin. The stratigraphy is crosscut by a series of intrusions between 2172 ± 15 Ma and 2122 ± 4 Ma. A complex deformation sequence is recorded in the rocks and has been interpreted in a five stage scheme: early syn-depositional basin margin faults reactivated through time and partitioning all subsequent regional deformation (DeB); N–S compression (D1B > 2172 Ma); E-W compression (D2B, < ca 2122 Ma); NW–SE compression (D3B), and a late N–S compression (D4B). D2B-D4B overprint all rocks, including those of the Sona Basin and Tarkwaian-like conglomerates. Peak metamorphism is mid- to upper-greenschist facies.Mineralisation at Inata is hosted in black shales and volcaniclastic rocks of the Pali-Minfo domain and comprises shear-zone hosted quartz-tourmaline-ankerite veins with associated sulphides dominated by pyrite and arsenopyrite. Three generations of pyrite (py1, py2, py3) and one generation of arsenopyrite (apy2) have been identified. Py1 is parallel to bedding and early D1B foliation and not associated with gold. Py2 and apy2 are coeval, contain up to 1 ppm gold and are spatially associated with auriferous quartz veins. Py3 locally overprints previous assemblages and is also associated with Au. Fluid inclusions in quartz indicate H2O to H2O–CO2–NaCl fluids in auriferous quartz veins.Microscopic to macroscopic observation of fabric-mineral-vein crosscutting relationships indicate that mineralisation is syn-D2B, disrupted and remobilised during D3B. All observations and data are consistent with Inata representing an orogenic style of gold mineralisation formed relatively late in the evolution of the host terrane.  相似文献   

14.
The recently discovered Weilasituo Sn-polymetal deposit is located in the southern part of the Great Xing'an Range of Inner Mongolia, NE China, which is belonged to the eastern part of the Central Asian Orogenic Belt (CAOB). Sn-polymetal mineralization is closely related to the emplacement of the Early Cretaceous fine- to medium-grained quartz porphyry. Three types of mineralization have been recognized at Weilasituo with the disseminated and stockwork Sn-polymetal mineralization mainly hosted by the quartz porphyry, the vein-type Sn-polymetal mineralization hosted by NE-trending and WE-trending fractures and faults in the upper and outer part of the porphyry, and breccia mineralization occurred within a steep cryptoexplosive breccia pipe. The ore-related alteration typically consists of Na-Ca-Sr alteration and greisen.In order to understand the petrogenetic link between the Sn-polymetal mineralization and the host quartz porphyry, this paper presents new whole-rock geochemistry for the quartz porphyry, EPMA analysis of ore and gangue minerals, and in situ U-Pb dating of cassiterite. The Laser Abrasion Multiple Collector Inductively Coupled Plasma Mass Spectrometer (LA-MCICP-MS) cassiterite U-Pb dating yields two well-defined isochron ages of 138 ± 6 Ma for disseminated ore and 135 ± 6 Ma for the vein-type ore, which could be regarded as the ore-forming age. The cassiterite U-Pb ages (ca. 138–135 Ma) determined in this study, together with previous data, reveals the close temporal and genetic relationship between the mineralization event and the emplacement of the quartz porphyry.The quartz porphyry is characterized by high SiO2, Na2O, and A/CNK values (1.09–1.21). REE tetrad effect combined with extremely high Rb/Sr, K/Ba ratios and low K/Rb, Zr/Hf, La/Nb, La/Ta and Eu/Eu* ratios indicate that the quartz porphyry is a highly fractionated peraluminous I-type granite that is hydrothermally altered. Low εNd(t) values of 4.27–0.28 and the two-stage depleted mantle Nd model ages (T2DM = ca. 1279–908 Ma) for the quartz porphyry, are similar to granites in Precambrian microcontinents of the eastern part of the Central Asian Orogen (CAOB). This suggests that the quartz porphyry was derived from the remelting of juvenile crust and Precambrian rocks in an extensional setting. Therefore, the highly fractional crystallization and magmatic-hydrothermal interactions of the quartz porphyry have contributed to the formation of the Weilasituo Sn-polymetal deposit.  相似文献   

15.
The Wang'ershan gold deposit, located in the southern Jiaojia goldfield, is currently the largest gold deposit hosted within the subsidiary faults in Jiaodong Peninsula, with a gold reserve of > 60 t gold at a grade of 4.07 g/t Au. It is hosted in the Late Jurassic Linglong biotite granites and controlled by the second-order, N- to NNE-trending Wang'ershan Fault (and its subsidiary faults) which is broadly parallel to the first-order Jiaojia Fault in the goldfield. Gold mineralization occurs as both disseminated- and stockwork-style and quartz–sulfide vein-style ores, mainly within altered cataclasites and breccias, and sericite–quartz and potassic alteration zones, respectively. Mineralization stages can be divided into (1) the pyrite–quartz–sericite stage, (2) the quartz–pyrite stage, (3) the quartz–sulfide stage, and (4) the quartz–carbonate stage.Two sericite samples associated with the main ore-stage pyrites from pyritic phyllic ores of the deposit with weighted mean plateau 40Ar/39Ar age of 120.7 ± 0.6 Ma and 119.2 ± 0.5 Ma, respectively, were selected for 40Ar/39Ar geochronology. On the basis of petrography and microthermometry, three types of primary fluid inclusions related to the ore forming event were identified: type 1 H2O–CO2–NaCl, type 2 aqueous, and type 3 CO2 fluid inclusions (in decreasing abundance). Stage 1 quartz contains all three primary fluid inclusions, while stages 2 and 3 quartz contain both type 1 and 2 inclusions, and stage 4 quartz contains only type 2 inclusions. The contemporaneous trapping, similar salinities and total homogenization temperature ranges, and different homogenization phases of type 1 and type 2 inclusions indicate that fluid immiscibility did take place in stages 1, 2 and 3 ores, with P–T conditions of 190 to 85 MPa and 334 to 300 °C for stage 1 and 200 to 40 MPa and 288 to 230 °C for stages 2 and 3. Combined with the H–O–C–S–Pb isotopic compositions, ore-forming fluids may have a metamorphic-dominant mixed source, which could be associated with the dehydration and decarbonisation of a subducting paleo-Pacific plate and characterized by medium–high temperature (285–350 °C), CO2-bearing (~ 8 mol%) with minor CH4 (1–4% in carbonic phase), and low salinity (3.38–8.45 eq. wt.% NaCl). During mineralization, the fluid finally evolved into a medium–low temperature NaCl–H2O system. Au(HS)2 was the most probable gold-transporting complex at Wang'ershan, due to the low temperature (157–350 °C) and near-neutral to weakly acidic ore fluids. The reaction between gold-bearing fluids and iron-bearing wall-rocks, and fluid-immiscibility processes caused via fluid–pressure cycling during seismic movement along fault zones that host lode-gold orebodies, which led to breakdown of Au(HS)2, are interpreted as the two main precipitation mechanisms of gold deposition.In general, the Wang'ershan deposit and other deposits in the Jiaojia camp have concordant structural system and wall-rock alteration assemblages, nature of orebodies and gold occurrence conditions, as well as the similar geochronology, ore-forming fluids system and stable isotope compositions. Thus gold mineralization in the Jiaojia goldfield was a large-scale unified event, with consistent timing, origin, process and mechanism.  相似文献   

16.
The southern North China craton hosts numerous world-class porphyry Mo and Pb-Zn-Ag vein deposits. Whether or not the Pb-Zn-Ag veins are genetically associated with the porphyry Mo system remains contentious. Here we focus on the genetic relationships between the Sanyuangou Pb-Zn-Ag vein deposit and the world-class Donggou porphyry Mo deposit, and discuss the potential implications from the spatial and temporal relationships between porphyry and vein systems in the southern North China craton.At Sanyuangou, vein-hosted sulfide mineralization mainly comprises pyrite, sphalerite, and galena, with minor chalcopyrite, pyrrhotite, bornite, tetrahedrite, covellite, polybasite and argentite. The mineralization is hosted by a quartz diorite stock, which has a zircon U-Pb age of 1756 ± 9 Ma. However, sericite from alteration selvages of Pb-Zn-Ag sulfide mineralization yields a well-defined 40Ar/39Ar plateau age of 115.9 ± 0.9 Ma. Although nominally younger, the sericite 40Ar/39Ar age is similar to the age of the nearby Donggou porphyry Mo deposit (zircon U-Pb age of 117.8 ± 0.9; molybdenite Re-Os ages of 117.5 ± 0.8 Ma and 116.4 ± 0.6 Ma). Pyrite from Donggou has elevated contents of Mo and Bi, whereas pyrite from Sanyuangou is enriched in Cu, Zn, Pb, Ag, Au, and As. This trace element pattern is consistent with metal zonation typically observed in porphyry related metallogenic systems. Pyrite grains from Sanyuangou have lead isotopes overlapping those from Donggou (17.273–17.495 vs. 17.328–17.517 for 206Pb/204Pb, 15.431–15.566 vs. 15.408–15.551 for 207Pb/204Pb, and 37.991–38.337 vs. 38.080–38.436 for 208Pb/204Pb). Collectively, the geological, geochronological, and geochemical data support a magmatic-hydrothermal origin for the Sanyuangou Pb-Zn-Ag deposit and confirm that the Pb-Zn-Ag veins and the Donggou Mo deposit form a porphyry-related magmatic-hydrothermal system.Given the widespread Pb-Zn-Ag veins and Mo mineralized porphyries in many districts of the southern North China craton, the model derived from this study has broad implications for further exploration of Mo and Pb-Zn-Ag resources in the area.  相似文献   

17.
The Kalatag Cu–Zn–Au district contains a number of economically important Cu deposits in eastern Tianshan in Xinjiang, NW China. Due to the lack of precise mineralization ages, the metallogenesis of this area has long been a matter of debate. In this study, chalcopyrite Re–Os isotope methods are used to date the South Meiling Cu–Zn and Hongshi Cu deposits in the eastern part of Kalatag area.The South Meiling Cu–Zn deposit is hosted in volcanic-sedimentary rocks of the Late Ordovician to Early Silurian Daliugou Formation. The deposit consists of two parts: a concordant massive sulfide ores and discordant vein-type ores located in the footwall strata. The principal ore minerals are pyrite, chalcopyrite, sphalerite, minor tetrahedrite, galena and pyrrhotite. Gangue minerals include quartz, sericite and barite, and minor chlorite, plagioclase and carbonate minerals. The Hongshi Cu deposit represents a hydrothermal vein system hosted in the mafic volcanic rocks of Daliugou Formation. The orebodies are associated with quartz veins and controlled by subsidiary faults of the Kalatag fault. The ore-forming process can be divided into the early, middle and late stages and is characterized by quartz–pyrite, quartz–chalcopyrite–pyrite and quartz–carbonate–gypsum veins, respectively.Re–Os analyses of chalcopyrite from the South Meiling Cu–Zn deposit yield an isochron age of 434.2 ± 3.9 Ma and initial 187Os/188Os ratio of 0.647 ± 0.098 (MSWD = 0.59). Re–Os analyses of chalcopyrite from the Hongshi Cu deposit yield an isochron age of 431.8 ± 2.7 Ma and initial 187Os/188Os ratio of − 0.165 ± 0.075 (MSWD = 0.77). Since chalcopyrite is the primary copper mineral, we interpret these isochron ages as the timing of Cu mineralization, based on field geology and petrographic evidence. These results suggest that the Re–Os ages presented here provide, for the first time, a direct constraint on an early Paleozoic Cu mineralization event of the eastern Tianshan Orogen. The high initial 187Os/188Os ratios (0.647 ± 0.098) ratio of ~ 434 Ma chalcopyrite from the South Meiling deposit suggest that the metal was sourced from a two end-member mixing of crust and mantle materials. Moreover, we propose that the VMS mineral system and hydrothermal vein system of the Kalatag district were related to the south-dipping subduction of the Kalamaili oceanic plate during the Late Ordovician–Silurian.  相似文献   

18.
The Bianjiadayuan Pb–Zn–Ag deposit in the Southern Great Xing'an Range consists of quartz-sulfide vein-type and breccia-type mineralization related to granite. Vein orebodies are localized in NW-trending extensional faults. Hydrothermal alteration is well developed and includes silicification, potassic alteration, chloritization and sericitization. Three stages of mineralization are recognized based on field evidence and petrographic observation and are marked by assemblages of quartz–arsenopyrite–pyrite (stage I), quartz–pyrrhotite–chalcopyrite–sphalerite (stage II) and quartz–galena–silver minerals (stage III). The granite, with a zircon age of 143.2 ± 1.5 Ma (n = 14, MSWD = 0.93), is subalkaline, peraluminous and is classified as A2-type granite originating in a post-orogenic extensional setting during the opening of suture zone between the North China Craton and the Siberia Craton from the Late Jurassic to the Early Cretaceous. The δ34SCDT values of sulfides, ranging from 3.19 to 10.65‰, are not consistent with the majority of magmatic hydrothermal deposits in the SGXR, possibly implying accessory source in addition to magmatic source. Microthermometric measurements show that ore minerals were deposited at intermediate temperatures (347.8–136.4 °C) with moderate salinities (2.9–14.4 wt.% NaCl). Ore-forming fluids were derived largely from magmatic hydrothermal processes, with the addition of meteoric water in late stage. Successive precipitation of Pb, Zn and Ag occurred with changes of physicochemical conditions. Overall considering mineralization features, ore-forming fluids and materials and tectonic setting and comparing with adjacent deposits, the Bianjiadayuan deposit is a mesothermal magmatic hydrothermal vein-type Pb–Zn–Ag deposit controlled by fractures and related to A2-type granite in response to the tectonic/magmatic/hydrothermal activity in late Jurassic. Besides, the explosive breccias in the west area require more attention in future exploration.  相似文献   

19.
The Bepkong gold deposit is located in the Wa–Lawra belt of the Paleoproterozoic Baoulé-Mossi domain of the West African Craton, in NW Ghana. It occurs in pelitic and volcano-sedimentary rocks, metamorphosed to greenschist facies, in genetic association with zones of shear interpreted to form during the regional D3 deformational event, denominated DB1 at the deposit scale. The ore zone forms a corridor-like body composed of multiple quartz ± carbonate veins surrounded by an alteration envelope, characterized by the presence of chlorite, calcite, sericite, quartz and disseminated pyrite, arsenopyrite plus subordinate pyrrhotite and chalcopyrite. The veins contain only small proportions of pyrite, whereas most of the sulphides, particularly arsenopyrite, occur in the altered host rock, next to the veins. Pyrite is also common outside of the ore zone. Gold is found in arsenopyrite, where it occurs as invisible gold and as visible – albeit micron-size – grains in its rims, and as free gold within fractures cross-cutting this sulphide. More rarely, free gold also occurs in the veins, in fractured quartz. In the ore zone, pyrite forms euhedral crystals surrounding arsenopyrite, but does not contain gold, suggesting that it formed at a late stage, from a gold-free hydrothermal fluid.  相似文献   

20.
The Taldybulak Levoberezhny gold deposit, located in the eastern part of the Kyrgyz Northern Tien Shan, is hosted in highly deformed Precambrian schist and gneisses that have undergone intense quartz, carbonate, fuchsite and tourmaline alterations. Gold mineralization is ultimately subdivided into two stages based on the observation of alteration assemblages, orebody geometries, and the occurrences of Au-bearing minerals. Negative thermal ionization mass spectrometry Re–Os isotopic analyses of five Au-rich pyrite samples from the early stage yielded an isochron age of 511 ± 18 Ma. Zircon sensitive high-resolution ion microprobe U–Pb dating of a diorite dike sample postdating the late stage mineralization yielded a wide range of ages from 3055 to 291 Ma, while a weighted mean 206Pb/238U age of 414.6 ± 6.8 Ma is believed to represent the age of dike intrusion and the upper limit on the timing of the late stage quartz–tourmaline–gold formation. The pyrite 187Os/188Os(initial) ratio of 0.132 ± 0.011, together with γOs values varying from 0 to + 14, indicate a major mantle component for the source of Os and by inference ore metals, which may be linked to the ophiolite suite of the Kopurelisai Complex in the Taldybulak Levoberezhny area. Considering the geodynamic setting of the Kyrgyz Northern Tien Shan during the early Paleozoic, we suggest that Cambrian mineralization of the Taldybulak Levoberezhny deposit can be attributed to a subduction-related setting, probably associated with the earliest accretion of the Northern Tien Shan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号