首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The newly discovered Fuxing porphyry Cu deposit is located in the Dananhu–Tousuquan arc, adjacent to the Tuwu–Yandong Cu deposits of Eastern Tianshan, in the southern Central Asian Orogenic Belt. The Fuxing deposit is hosted by volcanic rocks (basalt and dacite) in the Early Carboniferous Qi'eshan Group and Carboniferous felsic intrusions (plagiogranite porphyry, monzogranite, and quartz diorite). New SIMS zircon U–Pb dating indicates that the plagiogranite porphyry and monzogranite emplaced at 332.1 ± 2.2 Ma and 328.4 ± 3.4 Ma, respectively. The basalts are characterized by low SiO2 contents (47.47–54.90 wt.%), a lack of Eu anomalies, strong depletion of Na, Ta, and Ti elements but positive Sr, U, and Pb anomalies, high Y (20.8–28.2 ppm) and HREE concentrations (Yb = 2.23–3.06 ppm), and relatively low (La/Yb)N (2.20–3.92) values; the dacite samples have high SiO2 contents (66.13–76.93 wt.%), clearly negative Eu anomalies, high Mg# values (36–51), and high Y (41.8–54.9 ppm) and Yb (5.76–8.98 ppm) concentrations. The basalts and dacites exhibit similar signatures as normal arc rocks, and were considered to be derived from partial melting of mantle-wedge peridotite that was previously metasomatized by slab melts. In contrast, the plagiogranite porphyry, monzogranite, and quartz diorite show the same geochemical affinity with modern adakites, which are characterized by high SiO2 contents (67.55–79.00 wt.%), minor negative to positive Eu anomalies, strong depletion of heavy rare earth elements (Yb = 0.17–1.19 ppm) and Y (1.86–10.1 ppm), positive K, Rb, Sr, and Ba but negative Nb, Ta, Th, and Ti anomalies, and high (La/Yb)N ratios and Mg# values. Moreover, these adakitic felsic intrusions display relatively high positive zircon εHf(t) values (+ 11.4 to + 18.3), low 87Sr/86Sr (0.706080–0.711239), high 143Nd/144Nd (0.512692–0.512922) ratios, and consistent zircon δ18O values (4.41‰–5.48‰), suggesting that their parental magma were most likely derived from partial melting of the subducted oceanic crust followed by mantle peridotite interaction. Based on the whole-rock geochemical and Sr–Nd–Hf–O isotopic data, as well as detailed petrographic analyses, we further suggest that the Fuxing igneous rocks and associated porphyry Cu mineralization were generated by the northward subduction of the paleo-Tianshan oceanic plate beneath the Dananhu–Tousuquan island arc during the Early Carboniferous.  相似文献   

2.
Continental subduction and its interaction with overlying mantle wedge are recognized as fundamental solid earth processes, yet the dynamics of this system remains ambiguous. In order to get an insight into crust–mantle interaction triggered by partial melting of subudcted continental crust during its exhumation, we carried out a combined study of the Shidao alkaline complex from the Sulu ultrahigh pressure (UHP) terrane. The alkaline complex is composed of shoshonitic to ultrapotassic (K2O: 3.4–9.3 wt.%) gabbro, pyroxene syenite, amphibole syenite, quartz syenite, and granite. Field studies suggest that the mafic rocks are earlier than the felsic ones in sequence. LA-ICPMS zircon U–Pb dating on them gives Late Triassic ages of 214 ± 2 to 200 ± 3 Ma from mafic to felsic rocks. These ages are slightly younger than the Late Triassic ages (225–210 Ma) of the felsic melts from partial melting of the Sulu UHP terrane during exhumation. The alkaline rocks have wide ranges of SiO2 (49.7–76.7 wt.%), MgO (8.25–0.03 wt.%), Ni (126.0–0.07 ppm), and Cr (182.0–0.45 ppm) contents. The contents of MgO, total Fe2O3, CaO, TiO2 and P2O5 decrease with increasing SiO2 contents. The contents of Na2O, K2O, and Al2O3 increase from gabbro to amphibole syenite, and decrease from amphibole syenite to granite, respectively. The alkaline rocks have characteristics of an arc-like pattern in trace element distribution, e.g., enrichment of LREE, LILE (Rb and Ba), Th and U, depletion of HFSE (Nb, Ta, P and Ti), and positive Pb anomalies. From the mafic rocks to the felsic rocks, the (La/Yb)N ratios and the contents of the total REE, Sr and Ba decrease but the Rb contents increase. The alkaline rocks with high SiO2 contents also display features of an A2-type granitoids, e.g., high contents of total alkalis, Zr and Nb and high ratios of Fe2O3T/MgO, Ga/Al, Yb/Ta and Y/Nb, suggesting a post-collisional magmatism during exhumation of the Sulu UHP terrane. The alkaline rocks have homogeneous initial 87Sr/86Sr ratios (0.7058–0.7093) and negative εNd(t) values (− 18.6 to − 15.0) for whole-rock. The Sr–Nd isotopic data remain almost unchanged with varying SiO2 and MgO contents, suggesting a fractional crystallization (FC) process from the same parental magma. Our studies suggest a crust–mantle interaction in continental subduction interface as follows: (1) hydrous felsic melts from partial melting of subducted continental crust during its exhumation metasomatized the overlying mantle wedge to form a K-rich and amphibole-bearing mantle; (2) partial melting of the enriched lithospheric mantle generated the Late Triassic alkaline complex under a post-collisional setting; and (3) the alkaline magma experienced subsequent fractionational crystallization mainly dominated by olivine, clinopyroxene, plagioclase and alkali feldspar.  相似文献   

3.
The Xincheng deposit is the only large gold deposit with a proven reserve of >200 t gold hosted by the Early Cretaceous granitoids in northwest Jiaodong Peninsula, East China. The granitoids hosting this ore deposit comprise an inner medium- to fine-grained quartz monzonite and an outer medium- to coarse-grained monzogranite with distinctive K-feldspar megacrysts. LA–ICP–MS zircon dating yields U–Pb ages of 128 ± 1 to 132 ± 1 Ma and 127 ± 2 to 129 ± 1 Ma, for the quartz monzonite and the monzogranite, respectively. The Early Cretaceous ages obtained in our study are comparable with the 126–130 Ma age range reported for the Guojialing granitic suite. The monzogranites, typical high Ba–Sr granites, possess high SiO2 (70.89–73.35%), K2O (3.85–4.32%), total alkalis (K2O + Na2O = 8.08–8.68%), Sr (634–888 ppm), Ba (1395–2111 ppm) and LREE (59.43–145.88), with low HREE and HFSE contents and insignificant Eu anomalies. The rocks display markedly high Sr/Y (114–297) and (La/Yb)N (20–79) ratios. They have low MgO (0.23–0.62%), Cr (0.4–8.33 ppm) and Ni (0.47–2.92 ppm) contents. The typical high Ba–Sr signatures of the outer acidic monzogranites are also shared by the inner intermediate-acidic quartz monzonites, with a relatively higher abundance of these elements. The plagioclases in the quartz monzonites and monzogranites are oligoclase–andesine with An contents of 11.7–44.5%, and oligoclase with An contents of 12.9–29.3%, respectively, which both show the reverse zoning texture. The quartz monzonites have zircon εHf(t) values of −21.3 to −13.9 (average −18.7), which are less negative and show larger variations than those of the monzogranites (εHf(t) = −24.7 to −18.1, average −19.5). Detailed elemental, mineralogical and isotopic data suggest that the high Ba–Sr quartz monzonites and monzogranites were most likely generated by partial melting of the basement rocks of the Jiaobei terrane accompanied by crustal assimilation, with minor addition of the intermediate magma derived from the partial melting of juvenile mafic lower crust formed by the earlier underplating of mantle magma, and the quartz monzonites may represent the path of intermediate magma inputting into felsic magma. In combination with previous investigations, we suggest subduction of the paleo-Pacific slab beneath the North China Craton (NCC) and associated asthenosphere upwelling were most likely the mechanism associated with the generation of the high Ba–Sr granites.  相似文献   

4.
《Gondwana Research》2014,25(3-4):1152-1171
Many Cu–Mo–Au deposits are considered to be related to adakitic porphyries formed in non-arc settings, e.g., in collisional orogenic zones and intra-plate environments, but their genesis is still under discussion. The Aolunhua porphyry complex and its related Mo–Cu deposit from the eastern Central Asian Orogenic Belt (CAOB) provide important insights into this issue. The porphyries are characterized by high Sr (496–705 ppm) and Sr/Y and La/Yb ratios similar to those of typical adakitic rocks, and low ISr ratios (0.7049–0.7052) and positive εNd(t) (+ 0.5 to + 1.4) and εHf(t) (+ 3.5 to + 9.8) values. These features, along with the occurrence of mafic microgranular enclaves (MMEs), compositional and textural disequilibrium of plagioclase phenocrysts and relatively high Mg# values (45–52), indicate that they were derived from mixing of felsic magma from partial melting of a juvenile arc-type lower crust and mafic magma from a lithospheric mantle previously metasomatized by subduction zone fluids/melts. High Sr/Y and La/Yb ratios are indicative of contribution from enriched mantle-derived materials (with high LILEs; e.g., Sr, La), which were strengthened by subsequent fractionation of ferromagnesian phases such as pyroxene and hornblende. MMEs hosted by the ore-bearing porphyry have zircon U–Pb ages of ca. 132 Ma, similar to those of the host rocks. The enclaves have elevated Mg# (56–63), LILEs (e.g., Sr = 660–891 ppm), LREE (LaN = 68–150, (La/Sm)N = 3.0–4.0, (La/Yb)N = 12.0–19.6) and ratios of radiogenic isotopes of Nd- and Hf (εNd = + 0.7 to + 1.6; εHf = + 3.3 to + 10.9), suggesting that their parental magmas were derived from the metasomatized mantle source. The Mo–Cu mineralization was probably related to the high water content, high oxygen and sulfur fugacity of hybrid magma. Formation of the adakitic porphyries and related Mo–Cu deposits of the eastern CAOB could be related to the Early Cretaceous lithospheric extension, caused by the subduction of the Paleo-Pacific plate and its induced reactivation of juvenile arc-type lower crust.  相似文献   

5.
《Gondwana Research》2014,25(3-4):1108-1126
Detailed petrology and zircon U–Pb dating data indicate that the Wulong pluton is a zoned granitic intrusive, formed from successive increments of magmas. An age range of at least 30 Ma is recorded from the 225–235 Ma quartz diorite on the pluton margin, the ca. 218 Ma granodiorite in the intermediate zone, and the ca. 207 Ma monzogranite at the pluton center. All the granitoids display evolved Sr–Nd–Pb isotopic compositions, with 87Sr/86Sr(i) of 0.7044–0.7062, unradiogenic Nd (εNd(t) values of − 6.1 to − 3.0, Nd model ages of 1.1–1.3 Ga, and moderately radiogenic Pb compositions (206Pb/204Pb(i) = 17.500–17.872, 207Pb/204Pb(i) = 15.513–15.549, 208Pb/204Pb(i) = 37.743–38.001), in combination with variations in zircon Hf isotopic compositions (with εHf(t) values in each stage span 12 units) and the Hf isotopic model ages of 800–1600 Ma. These features suggest that the granitoids might have been derived from the reworking of an old lower crust, mixed with Paleozoic and Proterozoic materials. The rocks also display an adakitic affinity with Sr (479–973 ppm), high Sr/Y ratios (mostly > 60) and negligible Eu anomalies (Eu/Eu* = 0.78–0.97) but low Rb/Sr ratios, low Y (4.6–17 ppm), HREE (Yb = 0.95–1.7 ppm), Yb/Lu (6–7) and Dy/Yb (1.9–2.4) ratios, suggesting the absence of plagioclase and presence of garnet + amphibole in their residue. Considering a large gap among their crystallization ages, we propose that the geochemical evolution from pluton margin to center was controlled mainly by melting conditions and source compositions rather than fractional crystallization. Mafic enclaves that were hosted in the quartz diorite and granodiorite are mainly syenogabbroic to syenodioritic in composition, and are metaluminous and enriched in LREE and LILEs, but are depleted in HFSE, and display an evolved Sr–Nd–Pb isotopic composition, suggesting that they may have been derived from the partial melting of an enriched mantle lithosphere, which was metasomatized by adakitic melts and fluids from a subducted continental crust.In combination with the results of the Triassic ultra-high pressure metamorphic rocks in the Dabie orogenic belt, we apply a model involving the exhumation of subducted continental crust to explain the formation of the Wulong pluton. At the first stage, a dense and refractory mafic lower crust that was trapped at mantle depth by continental subduction witnessed melting under high temperature conditions to produce the quartz diorite magma, characterized by low SiO2 (60.65–63.98 wt.%) and high TiO2 (0.39–0.86 wt.%). The magma subsequently interacted with mantle peridotite, leading to high Mg# (57–67) and the metasomatism of the overriding mantle wedge. At the second stage, an asthenosphere upwelling that was probably caused by slab break-off at ca. 220 Ma melted the enriched sub-continental lithospheric mantle (SCLM) to produce mafic magmas, represented by the mafic enclaves that are hosted in the quartz and granodiorite, resulting in the partial melting of the shallower subducted crust, and generating the granodiorite that is distinguished by high SiO2 (69.16–70.82 wt.%), high Al2O3 (15.33–16.22 wt.%) and A/CNK values (mostly > 1.05). At the third stage, the final collapse of the Triassic Qinling–Dabie Orogenic Belt at ca. 215–205 Ma caused extensive partial melting of the thickened orogenic lower crust to produce the monzogranite, which is characterized by high SiO2 (67.68–70.29 wt.%), low TiO2 (mostly < 0.35 wt.%) and high Sr/Y ratios of 86–151.  相似文献   

6.
Generally, arc-related or subduction-related mafic magmas are formed during or slightly postdate subduction, and characterized by depletion in high field strength elements (HFSEs) relative to the large ion lithophile elements (LILEs) and light rare-earth elements (LREEs). Combining with mineral chemistry and Sr–Nd isotopes, these geochemical characteristics were usually used to define an arc setting, especially for some ancient arcs that had been strongly modified by later tectonic activities. However, we report an exceptional case from the northern part of the Triassic Yidun Arc Belt, eastern Tibetan Plateau. The Ganluogou gabbro (∼152 Ma) occurs as several intrusive bodies. Its mineral assemblage is olivine (chrysolite), plagioclase (anorthite), clinopyroxene (diopside), amphibole (edenite and pargasite) and phlogopite. Whole rock geochemistry shows low SiO2 (42.87–46.99 wt.%), total rear earth elements (ΣREE = 22.8–28.4 ppm), Na2O + K2O (0.92–1.34 wt.%), and high Al2O3, MgO and FeO contents. It has small variations of initial 87Sr/86Sr ((87Sr/86Sr)i = 0.7053–0.7055) and εNd(t) values (−4.8 to −1.8). All the samples exhibit enrichment in LILEs including Th and U, but strongly depleted in HFSEs, including Nb, Ta, Zr and Hf. For the mineral chemistry, there are two type amphiboles. Amp(I) show higher V, Sc, Cr, Sr, Nb and Zr contents, but lower Th and U contents than those of Amp(II). Their REE patterns range from convex shape without Eu anomaly to LREE-enriched pattern with weak positive Eu anomaly. We suggest that Amp(I) was crystallized from a liquid that was mainly buffered by olivine, clinopyroxene and plagioclase, while Amp(II) crystallized from later melt that was mainly buffered by olivine. Based on clinopyroxene chemistry, compositions of coexisting olivine and plagioclase, and whole rock Sr–Nd isotopes, the parental magma of the Ganluogou gabbro is interpreted as a tholeiitic arc-affinity magma, which might be derived from an N-MORB mantle that had been metasomatised by slab-derived melts in the late Triassic (237–206 Ma). Thus, the Ganluogou gabbro provides an example that magmas exhibiting arc-affinity could in fact be formed in a post-orogenic extensional setting.  相似文献   

7.
Zircon U–Pb ages, geochemical and Sr–Nd isotopic data are presented for the late Carboniferous Baoligaomiao Formation (BG Fm.) and Delewula Formation (DW Fm.) volcanic rocks, widely distributed in northern Inner Mongolia, in the northern part of the Xing'an–Mongolia Orogenic Belt (XMOB). The BG Fm. rocks mainly consist of basaltic andesites and andesites while the DW Fm. rocks include dacites, trachytes, rhyolites, pyroclastic rocks and minor andesites. New LA-ICPMS zircon U–Pb analyses constrain their eruption to late Carboniferous (317–322 Ma and 300–310 Ma, respectively). The BG Fm. volcanic rocks are characterized by enriched large ion lithophile elements (LILE) and depleted high field strength elements (HFSE), with initial 87Sr/86Sr ratios of 0.70854–0.70869 and negative εNd(t) (− 2.1 to − 2.4) values. They have low La/Ba (0.03–0.05), high La/Nb (2.05–3.70) ratios and variable Ba/Th (59.5–211) ratios. Such features suggest that they are derived from melting of heterogeneous sources including a metasomatized mantle wedge and Precambrian crustal material. The DW Fm. volcanic rocks are more depleted in HFSE with significant Nb, Ta, P, Ti anomalies. They have high initial 87Sr/86Sr ratios (0.72037–0.72234) and strong negative εNd(t) (− 11 to − 11.6) values which indicate those igneous rocks were mainly derived from reworking of the Paleoproterozoic crust. The late Carboniferous volcanic rocks have geochemical characteristics similar to those of the continental arc rocks which indicate the northward subduction of the Paleo Asian Ocean may have continued to the late Carboniferous. The volcanic association of this study together with the early Permian post-collisional magmatic rocks suggests that a tectonic transition from subduction-related continental margin arc volcanism to post-collisional magmatism occurred in the northern XMOB between the late Carboniferous and the early Permian.  相似文献   

8.
《Precambrian Research》2007,152(1-2):27-47
Metasomatism above subduction zones is an important process that produces heterogeneous mantle and thus a diversity of igneous rocks. In the Panzhihua district, on the western margin of the Yangtze Block (SW China), two Neoproterozoic mafic intrusions, one olivine gabbro and one hornblende gabbro, have identical ages of 746 ± 10 and 738 ± 23 Ma. Both of the gabbros are tholeiitic in composition and have arc-like geochemical compositions. The hornblende gabbros have K2O concentrations ranging from 0.70 to 1.69 wt.% and show enrichment of Rb, Ba, U, Th and Pb and depletion of Nb,Ta and Ti. They have variable 87Sr/86Sr ratios (0.7045–0.7070) with constant ɛNd(t) values (−0.12 to −0.93). The olivine gabbros have relatively low K2O (0.19–0.43 wt.%), are depleted in Rb and Th relative to Ba and U, and have obvious negative Nb–Ta and Zr–Hf anomalies on primitive mantle-normalized trace element diagrams. Their ɛNd(t) values range from −0.64 to −1.73 and initial 87Sr/86Sr ratios from 0.7070 to 0.7075. Both types of gabbro experienced fractional crystallization of clinopyroxene, plagioclase, amphibole and minor Fe–Ti oxide. The parental magmas of the olivine and hornblende gabbros were formed by about 20% partial melting of garnet–spinel lherzolite and spinel lherzolite, respectively. According to trace elemental ratios, the hornblende gabbros were probably derived from a source strongly modified by subducted slab fluids, whereas the olivine gabbros came from a mantle source modified by subducted slab melts. The close association of the olivine gabbros and hornblende gabbros suggests that a steep subduction zone existed along the western margin of the Yangtze Block during Neoproterozoic time. Thus, the giant Neoproterozoic magmatic event in South China was subduction-related.  相似文献   

9.
The Kuh-e Dom Pluton is located along the central northeastern margin of the Urumieh–Dokhtar Magmatic Arc, spanning a wide range of compositions from felsic rocks, including granite, granodiorite, and quartz monzonite, through to intermediate-mafic rocks comprising monzonite, monzodiorite, diorite, monzogabbro, and gabbro. The Urumieh–Dokhtar Magmatic Arc forms a distinct linear magmatic complex that is aligned parallel with the orogenic suture of the Zagros fold-thrust belt. Most samples display characteristics of metaluminous, high-K calc-alkaline, I-type granitoids. The initial isotopic signatures range from εNd (47 Ma) = −4.77 to −5.89 and 87Sr/86Sr(i) = 0.7069 to 0.7074 for felsic rocks and εNd (47 Ma) = −3.04 to −4.06 and 87Sr/86Sr(i) = 0.7063 to 0.7067 for intermediate to mafic rocks. This geochemical and isotopic evidence support a mixed origin for the Kuh-e Dom hybrid granitoid with a range of contributions of both the crust and mantle, most probably by the interaction between lower crust- and mantle-derived magmas. It is seem, the felsic rocks incorporate about 56–74% lower crust-derived magma and about 26–44% of the enriched mantle-derived mafic magma. In contrast, 66–84% of the enriched mantle-derived mafic magma incorporates 16–34% of lower crust-derived magma to generate the intermediate-mafic rocks. According to the differences in chemical composition, the felsic rocks contain a higher proportion of crustal material than the intermediate to mafic ones. Enrichment in LILEs and depletion in HFSEs with marked negative Nb, Ba, and Ti anomalies are consistent with subduction-related magmatism in an active continental margin arc environment. This suggestion is consistent with the interpretation of the Urumieh–Dokhtar Magmatic Arc as an active continental margin during subduction of the Neotethys oceanic crust beneath the Central Iranian microcontinent.  相似文献   

10.
Late Silurian–early Devonian magmatism of the NW Junggar region in the Central Asian Orogenic Belt provides a critical geological record that is important for unraveling regional tectonic history and constraining geodynamic processes. In this study, we report results of Zircon U–Pb ages and systematic geochemical data for late Silurian–early Devonian largely granitic rocks in NW Junggar, aiming to constrain their emplacement ages, origin and geodynamic significance. The magmatism consists of a variety of mafic to felsic intrusions and volcanic rocks, e.g. adakitic granodiorite, K-feldspar granite, syenitic granite, gabbro and rhyrolite. U–Pb zircon ages suggest that the granitoids and gabbros were emplaced in the late Silurian–early Devonian (420–405 Ma). Adakitic granodiorites are calc-alkaline, characterized by high Sr (407–532 ppm), low Y (12.2–14.7 ppm), Yb (1.53–1.77 ppm), Cr (mostly < 8.00 ppm), Co (mostly < 11.0 ppm) and Ni (mostly < 4.10 ppm) and relatively high Sr/Y (31–42) ratios, analogous to those of modern adakites. K-feldspar granites and rhyolites are characterized by alkali- and Fe-enriched, with high Zr, Nb and Ga/Al ratios, geochemically similar to those of A-type granites. Syenitic granites show high alkaline (Na2O + K2O = 8.39–9.34 wt.%) contents, low Fe# values (0.73–0.80) and are weakly peraluminous (A/CNK = 1.00–1.07). Gabbros are characterized by low MgO (6.86–7.15 wt.%), Mg# (52–53), Cr (124–133 ppm) and Ni (84.7–86.6 ppm) contents. The geochemical characteristics of the gabbroic samples show affinity to both MORB- and arc-like sources. All granitoids have positive εNd(t) (+ 3.9 to + 6.9) and zircon εHf(t) (+ 9.8 to + 15.2) values and low initial 87Sr/86Sr ratios (0.7035–0.7043), with young TDM(Nd) (605–791 Ma) and TDM(Hf) (425–773 Ma) ages, suggesting significant addition of juvenile material. The adakitic granodiorites probably resulted from partial melting of mafic lower crust, leaving an amphibolite and garnet residue. The K-feldspar granites, rhyolites and syenitic granites probably formed from partial melting of the Xiemisitai mid-lower crust, while the gabbroic intrusion was probably generated by interactions between asthenospheric and metasomatized lithospheric mantle. Voluminous plutons of various types (adakites, A-type granites, I-type granites, and gabbros) formed during 420–405 Ma, and their isotopic data suggest significant additions of juvenile material. We propose that a slab roll-back model can account for the 420–405 Ma magmatic “flare up” in NW Junggar as well as an extensional setting.  相似文献   

11.
The Hongshan Cu-polymetallic deposit is located in the southern Yidun arc in southwestern China, where both subduction-related (Late Triassic) and post-collisional (Late Cretaceous) porphyry–skarn–epithermal mineralization systems have been previously recognized. In this study, two distinct magmatic events, represented by diorite porphyry and quartz monzonite porphyry, have been revealed in the Hongshan deposit, with zircon SHRIMP U–Pb ages of 214 ± 2 Ma and 73.4 ± 0.7 Ma, respectively. The 73 Ma age is comparable to the Re–Os ages of 77 to 80 Ma of ore minerals from the Hongshan deposit, indicating that the mineralization is related to the Late Cretaceous quartz monzonite porphyries rather than Late Triassic diorite porphyries. The Late Triassic diorite porphyries belong to the high-K calc-alkaline series and show arc magmatic geochemical characteristics such as enrichment in Rb, Ba, Th and U and depletion in HFSEs, indicating that they were formed during the westward subduction of the Garzê–Litang Ocean. In contrast, the Late Cretaceous quartz monzonite porphyries show shoshonitic I-type geochemical characteristics, with high SiO2, K2O, LILE, low HREE, Y and Yb contents, and high LREE/HREE and La/Yb ratios. These geochemical characteristics, together with the Sr–Nd–Pb isotopic compositions (average (87Sr/86Sr)i = 0.7085; εNd(t) =  6.0; 206Pb/204Pb = 19.064, 207Pb/204Pb = 15.738, 208Pb/204Pb = 39.733) suggest that the quartz monzonite porphyries originated from the partial melting of the ancient lower crust in response to underplating of mafic magma from subduction metasomatized mantle lithosphere, possibly triggered by regional extension in the post-collisional tectonic stage. The S isotopic compositions (δ34SV-CDT = 3.81‰ to 5.80‰) and Pb isotopic compositions (206Pb/204Pb = 18.014 to 18.809, 207Pb/204Pb = 15.550 to 15.785, and 208Pb/204Pb = 38.057 to 39.468) of ore sulfides indicate that the sulfur and metals were derived from mixed mantle and crustal sources. It is proposed that although the Late Triassic magmatic event is not directly related to mineralization, it contributed to the Late Cretaceous mineralization system through the storage of large amounts of sulfur and metals as well as water in the cumulate zone in the mantle lithosphere through subduction metasomatism. Re-melting of the mantle lithosphere including the hydrous cumulate zone and ancient lower crust during the post-collisional stage produced fertile magmas, which ascended to shallow depths to form quartz monzonite porphyries. Hydrothermal fluids released from the intrusions resulted in porphyry-type Mo–Cu ores in and near the intrusions, skarn-type Cu–Mo ores in the country rocks above the intrusions, and hydrothermal Pb–Zn ores in the periphery.  相似文献   

12.
The Central Anatolian Volcanic Province (CAVP), one of four major volcanic provinces in Turkey, plays a significant role in the interpretation of the tectonic evolution of Central Anatolia. The CAVP developed within a complex collisional system involving the African, Arabian and Eurasian plates during the Miocene. The volcanism exhibits complicated variations in mineralogical, petrological and geochemical compositions resulting from post-collisional lithospheric dynamics. The Incesu ignimbrite has 5–20 m thick and covers an area of ~7800 km2. It is composed of three stratigraphic levels. The lower level (LL) shows blackish brown and glassy welded structure. The middle level (ML) is a well-welded, reddish pink in color and has large amounts of fiamme. The upper level (UL) is grayish pink, weakly welded and has rock fragments of different compositions. The Incesu ignimbrite is composed of plagioclase (oligoclase, andesine) + pyroxene (augite, clinoenstatite) + opaque minerals and low amount of amphibole, biotite and quartz. Eutaxitic texture is dominant in ML and LL samples; these levels are more strongly and contain more flattened pumice fragments and volcanic glass shards than in the UL. A sharp color contrast defines the contact between LL and ML.Major, trace and rare earth element of the Incesu ignimbrite, characterized by their rhyolite, rhyodacite–dacite composition, medium–high K, calcalkaline and peraluminous nature, show fractional crystallization primarily controlled by plagioclase, clinopyroxene, magnetite, ilmenite and titanomagnetite. Sr and Nd isotopic ratios of Incesu ignimbrite display isotopic variations between the ignimbrite levels; they exhibit a limited range in 87Sr/86Sr (0.7043–0.7049) and 143Nd/144Nd (0.512716–0.512760). The Sr–Nd isotopic ratio of Incesu ignimbrite reveals an age of 3 Ma. The ignimbrite evolved through fractional crystallization and crystal contamination of the parent magma derived from Ocean Island Basalt (OIB) like magma. This suggestion is supported by the AFC modeling based on the trace elements and Sr isotope data.Variation of several major oxide concentrations (Fe2O3, TiO2, CaO and K2O), trace element concetrations (V, Sr, Cs and Rb) and trace element ratios (Ba/Rb, Sr/, K/Sr, K/Nb, Rb/Sr, Rb/Y and Rb/Nb) versus SiO2 concentration show the magma chamber that generated the Incesu ignimbrite was compositionally zoned. All geochemical and Sr–Nd isotpic datas can be interepreted to be the result of a subduction related source.  相似文献   

13.
The Karoo volcanic sequence in the southern Lebombo monocline in Mozambique contains different silicic units in the form of pyroclastic rocks, and two different basalt types. The silicic units in the lower part of the Lebombo sequence are formed by a lower unit of dacites and rhyolites (67–80 wt.% SiO2) with high Ba (990–2500 ppm), Zr (800–1100 ppm) and Y (130–240 ppm), which are part of the Jozini–Mbuluzi Formation, followed by a second unit, interlayered with the Movene basalts, of high-SiO2 rhyolites (76–78 wt.%; the Sica Beds Formation), with low Sr (19–54 ppm), Zr (340–480 ppm) and Ba (330–850 ppm) plus rare quartz-trachytes (64–66 wt.% SiO2), with high Nb and Rb contents (240–250 and 370–381 ppm, respectively), and relatively low Zr (450–460 ppm). The mafic rocks found at the top of the sequence are basalts and ferrobasalts belonging to the Movene Formation. The basalts have roughly flat mantle-normalized incompatible element patterns, with abundances of the most incompatible elements not higher than 25 times primitive mantle. The ferrobasalt has TiO2  4.7 wt.%, Fe2O3t = 16 wt.%, and high Y (100 ppm), Zr (420 ppm) and Ba (1000 ppm). The Movene basalts have initial (at 180 Ma) 87Sr/86Sr = 0.7052–0.7054 and 143Nd/144Nd = 0.51232, and the Movene ferrobasalt has even lower 87Sr/86Sr (0.70377) and higher 143Nd/144Nd (0.51259). The silicic rocks show a modest range of initial Sr-(87Sr/86Sr = 0.70470–0.70648) and Nd-(143Nd/144Nd = 0.51223–0.51243) isotope ratios. The less evolved dacites could have been formed after crystal fractionation of oxide-rich gabbroic cumulates from mafic parental magmas, whereas the most silica-rich rhyolites could have been formed after fractional crystallization of feldspars, pyroxenes, oxides, zircon and apatite from a parental dacite magma. The composition of the Movene basalts imply different feeding systems from those of the underlying Sabie River basalts.  相似文献   

14.
Ore-forming porphyries and barren granitoids from porphyry Cu deposits differ in many ways, particularly with respect to their adakitic affinity and calc-alkaline characteristics. In this study, zircon U–Pb and molybdenite Re–Os dating, whole rock geochemistry, whole rock Sr–Nd–Pb and zircon O–Hf isotopic analyses were carried out on the ore-forming granitoids from the Kounrad, Borly and Sayak deposits, and also on pre-ore and post-ore granitoids in adjacent regions of Central Kazakhstan. Geochronology results indicate that pre-ore magmatism occurred in the Late Devonian to Early Carboniferous (361.3–339.4 Ma), followed by large scale Cu mineralization (325.0–327.3 Ma at Kounrad, 311.4–315.2 Ma at Borly and 309.5–311.4 Ma at Sayak), and finally, emplacement of the Late Carboniferous post-ore barren granitoids (305.0 Ma). The geochemistry of these rocks is consistent with calc-alkaline arc magmatism characterized by strong depletions in Nb, Ta and Ti and enrichments in light rare earth elements and large ion lithophile elements, suggesting a supra-subduction zone setting. However, the ore-forming rocks at Kounrad and Sayak show adakitic characteristics with high Sr (517.5–785.3 ppm), Sr/Y (50.60–79.26), (La/Yb)N (9.37–19.62) but low Y (6.94–11.54 ppm) and Yb (0.57–1.07 ppm), whereas ore-forming rocks at Borly and barren rocks from northwest of Borly and Sayak have normal arc magma geochemical features. The Sr–Nd–Hf–O isotopic compositions show three different signatures: (1) Sayak granitoids have very young juvenile lower crust-derived compositions ((87Sr/86Sr)i = 0.70384 to 0.70451, ɛNd (t) = + 4.9 to + 6.0; TDM2 (Nd) = 580 to 670 Ma, ɛHf (t) = + 11.3 to + 15.5; TDMC (Hf) = 330 to 600 Ma, δ18O = 6.0 to 8.1‰), and were probably generated from depleted mantle-derived magma with 5–15% sediment melt addition in the magma source; (2) the Kt-1 granite from northwest of Sayak shows extremely enriched Sr–Nd isotopic compositions ((87Sr/86Sr)i = 0.71050, ɛNd (t) =  7.8, TDM2 (Nd) = 1700 Ma), likely derived from partial melting of ancient continental crust; (3) other granitoids have transitional Sr–Nd compositions between the Sayak and Kt-1 samples, indicating a juvenile lower crust source with the addition of 10–30% of ancient crustal material. The pre-ore magmatism was probably related to partial melting of juvenile lower crust due to northward subduction of the Junggar–Balkhash Ocean, whereas the ore-forming adakitic rocks at Aktogai, Kounrad and Sayak formed by partial melting of thickened lower crust which subsequently delaminated. The ore-forming rocks at Borly, and the later post-ore barren granites, formed by partial melting of juvenile lower crust with normal thickness. This tectonic setting supports the existence of an Andean-type magmatic arc in the Devonian to the Late Carboniferous, resulting from the subduction of the Junggar–Balkhash oceanic plate. The link between whole rock geochemistry and scale of mineralization suggests a higher metallogenic potential for adakitic rocks than for normal arc magmatism.  相似文献   

15.
Pillow lavas in Bompoka island of the Andaman–Nicobar islands, forming a part of Sunda–Burmese forearc, are composed of plagioclase and clinopyroxene microphenocrysts in a fine-grained ferruginous groundmass along with glass. They are also characterized by several quench plagioclase and clinopyroxene morphologies. Zr/TiO2 versus Nb/Y relationship of these pillow lavas show that these are tholeiitic basalts in composition. These basalts have low MgO (5.19–6.12 wt%), Ni (84–118 ppm), and Cr (144–175 ppm) abundance and high FeO(T)/MgO (1.71–1.92) ratios, reflecting their fractionated nature. In Th/Yb versus Nb/Yb and Ti/Yb versus Nb/Yb binary diagrams, they show N-MORB affinity. However, La/Nb–Y and Ce/Nb–Th/Nb relationships along with a slight LREE depleted (LaN/YbN = 0.75–0.82) pattern and high Ba/Zr (0.28–0.40) ratios and LILE (K, Rb, Ba, Sr and Th) enrichment relative to N-MORB, suggest their back-arc basin basalt affinity. It is inferred that these pillow basalts have been derived from a metasomatised N-MORB-like mantle source in a trench-distal (wider) back-arc basin, probably near the leading edge of the Eurasian continent during Early to Late Cretaceous times, prior to the currently active Andaman–Java subduction system.  相似文献   

16.
Small Islands south off Hahajima, the southernmost of the Ogasawara Archipelago, consist of primitive basalts (<12 wt.% MgO) to dacite erupted during the transitional stage immediately following boninite volcanism on the incipient arc to sustained typical oceanic arc. Strombolian to Hawaiian fissure eruptions occurring on independent volcanic centers for the individual islands under a shallow sea produced magnesian basalt to dacite fall-out tephras, hyaloclastite and a small volume of pillow lava, which were intruded by NE-trending dikes. These volcanic strata are correlated to the upper part (<40 Ma) of the Hahajima main island. Volcanic rock samples have slightly lower FeO*/MgO ratios than the present volcanic front lavas, and are divided into three types with high, medium and low La/Yb ratios. Basalt to dacite of high- and medium-La/Yb types show both tholeiitic (TH) and calc-alkaline (CA) differentiation trends. Low-La/Yb type belongs only to TH basalt. The multiple magma types are coexistence on the each island. TH basalts have phenocrysts of olivine, clinopyroxene and plagioclase, while CA basalts are free from plagioclase phenocrysts.  相似文献   

17.
LA–ICP–MS zircon U–Pb ages, geochemical and Sr–Nd–Pb isotope data are presented for mafic–ultramafic complexes from the southern Liaoning–southern Jilin area with the aim of determining the nature of the Mesozoic lithospheric mantle and to further constrain the spatial extent of destruction of the North China Craton (NCC). The complexes consist of olivine-websterite, gabbro, dolerite, and gabbro-diorite. Zircons from the complexes show typical zoning absorption, are euhedral–subhedral in shape, and yield high Th/U ratios (1.23–2.87), indicating a magmatic origin. Zircon U–Pb age data indicate that they formed in the Early Cretaceous (129–137 Ma). Geochemically, they have SiO2 = 44.3–49.8%, MgO = 6.8–26.5%, Cr = 102–3578 ppm, and Ni = 31–1308 ppm, and are characterized by enrichment in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs) and heavy rare earth elements (HREEs), as well as a wide range of Sr–Nd–Pb isotopic compositions [(87Sr/86Sr)i = 0.70557–0.71119; εNd (t) = ?5.4 to ?20.1; (206Pb/204Pb)i = 15.13–17.85; Δ7/4 = ?11.49 to 16.00; Δ8/4 = 102.64–203.48]. Compared with the southern Liaoning mafic–ultramafic rocks, the southern Jilin mafic–ultramafic rocks have high TiO2 and Al2O3 contents, high εNd (t) values, low (La/Yb)N values, low initial 87Sr/86Sr ratios, and low radiogenic Pb isotopic compositions. These findings indicate that the primary magmas of the southern Jilin complexes were derived from lithospheric mantle that was previously metasomatized by a melt derived from the delaminated ancient lower crust, whereas the primary magmas of the southern Liaoning complexes originated from partial melting of a lithospheric mantle source that was previously modified by melt derived from the broken-off Yangtze slab. Therefore, the lateral extent of the NCC destruction should include the southern Liaoning–southern Jilin area.  相似文献   

18.
Copper and iron skarn deposits are economically important types of skarn deposits throughout the world, especially in China, but the differences between Cu and Fe skarn deposits are poorly constrained. The Edong ore district in southeastern Hubei Province, Middle–Lower Yangtze River metallogenic belt, China, contains numerous Fe and Cu–Fe skarn deposits. In this contribution, variations in skarn mineralogy, mineralization-related intrusions and sulfur isotope values between these Cu–Fe and Fe skarn deposits are discussed.The garnets and pyroxenes of the Cu–Fe and Fe skarn deposits in the Edong ore district share similar compositions, i.e., dominantly andradite (Ad29–100Gr0–68) and diopside (Di54–100Hd0–38), respectively. This feature indicates that the mineral compositions of skarn silicate mineral assemblages were not the critical controlling factors for variations between the Cu–Fe and Fe skarn deposits. Intrusions associated with skarn Fe deposits in the Edong ore district differ from those Cu–Fe skarn deposits in petrology, geochemistry and Sr–Nd isotope. Intrusions associated with Fe deposits have large variations in their (La/Yb)N ratios (3.84–24.6) and Eu anomalies (δEu = 0.32–1.65), and have relatively low Sr/Y ratios (4.2–44.0) and high Yb contents (1.20–11.8 ppm), as well as radiogenic Sr–Nd isotopes (εNd(t) =  12.5 to − 9.2) and (87Sr/86Sr)i = 0.7067 to 0.7086. In contrast, intrusions associated with Cu–Fe deposits are characterized by relatively high Sr/Y (35.0–81.3) and (La/Yb)N (15.0–31.6) ratios, low Yb contents (1.00–1.62 ppm) without obvious Eu anomalies (δEu = 0.67–0.97), as well as (87Sr/86Sr)i = 0.7055 to 0.7068 and εNd(t) =  7.9 to − 3.4. Geochemical evidence indicates a greater contribution from the crust in intrusions associated with Fe skarn deposits than in intrusions associated with Cu–Fe skarn deposits. In the Edong ore district, the sulfides and sulfates in the Cu–Fe skarn deposits have sulfur isotope signatures that differ from those of Fe skarn deposits. The Cu–Fe skarn deposits have a narrow range of δ34S values from − 6.2‰ to + 8.7‰ in sulfides, and + 13.2‰ to + 15.2‰ in anhydrite, while the Fe skarn deposits have a wide range of δ34S values from + 10.3‰ to + 20.0‰ in pyrite and + 18.9‰ to + 30.8‰ in anhydrite. Sulfur isotope data for anhydrite and sedimentary country rocks suggest that the formation of skarns in the Edong district involved the interaction between magmatic fluids and variable amounts of evaporites in host rocks.  相似文献   

19.
The Baoligaomiao Formation, within the Hegenshan ophiolite-arc-accretion complex is an important segment to understand the tectonic evolution of the Central Asian Orogenic Belt (CAOB), world's largest Phanerozoic orogenic belt. In this study, we present an integrated study of zircon U-Pb isotopic ages, whole rock major-trace elements, and Sr-Nd-Pb isotopic data from the volcanic succession in the Baoligaomiao Formation. The volcanic succession can be divided into the lower sequence with zircon U-Pb ages in the range of 326.3 Ma–307.4 Ma and the upper sequence of 305.3 Ma. The succession belongs to two suites: calc-alkaline volcanics and high-Si rhyolites. The calc-alkaline volcanic rocks include basaltic andesite through andesite and dacite to rhyolite and their pyroclastic equivalents. These rocks exhibit a well-defined compositional trend from basaltic to rhyolitic magma, reflecting continuous fractional crystallization. These rocks show obvious enrichment in LILEs and LREEs and relative depletion of HFSEs, typical of subduction-related magma. The calc-alkaline rocks have low initial 87Sr/86Sr (0.7023–0.7052), positive ɛNd(t) values (2.75–4.80), and their initial Pb isotopic compositions are 17.875–18.485 of 206Pb/204Pb, 15.481–15.520 of 207Pb/204Pb and 37.467–37.764 of 208Pb/204Pb, respectively. Geochemical and isotopic results suggest that the volcanic succession represents Carboniferous subduction-related, mature, continental arc volcanism. The outcrops of high-Si rhyolites are restricted to the northern edge of the continental arc, marking a transition zone between volcanic arc and back-arc basin, where they are interbedded with the calc-alkaline rocks in the lower sequence, and the upper sequence is composed only of high-Si rhyolites. The high-Si rhyolites have high SiO2 (71.12–81.76 wt%) and varied total alkali contents (K2O + Na2O = 5.46–10.58 wt%), low TiO2 (0.06–0.27 wt%), MgO (0.09–0.89 wt%) and CaO (0.08–0.72 wt%). Based on the presence of mafic alkali phenocrysts, such as arfvedsonite and siderophyllite, high Zr/Nb ratios (> 10) and peralkalinity index (PI) near unity, the high-Si rhyolites can be classified as peralkaline comendites. The high-Si rhyolites are characterized by unusually low Sr and Ba, and high abundance of Zr, Th, Nb, HREEs and Y. They show geochemical characteristics similar to those of typical A2-type granites including their high K2O + Na2O, Nb, Zr and Y, and high ratios of FeOT/MgO, Ga/Al and Y/Nb. Our study suggests that the high-Si rhyolites were derived from discrete trachytic parent magma with fractional crystallization within shallow magma reservoirs. Their Nd-Pb isotopic characteristics are similar to those of the calc-alkaline arc rocks and are compatible with partial melting of pre-existing juvenile continental arc crust. We observe that the widespread eruptions of A2-rhyolitic magmas (305.3 Ma–303.4 Ma) following a short period of magmatic quiescence was temporally and spatially associated with voluminous intrusion of the bimodal magmas (304.3 Ma–299.3 Ma) in the pre-existing arc volcanic-plutonic belt (329 Ma–307 Ma). We envisage northward subduction and slab breakoff process resulting in an obvious change of the regional stress field to extensional setting within the Carboniferous continental arc running E-W for thousands of kilometers. Therefore, we propose the existence of an east-west-trending Carboniferous continental arc in the Hegenshan ophiolite-arc-accretion complex, with the slab breakoff event suggesting that the age of the upper sequence (305.3 ± 5.5 Ma) likely indicates the maximum age for the cessation of the northward subduction of the Hegenshan oceanic lithosphere.  相似文献   

20.
Porphyry systems are known to form in magmatic arc environment and commonly include porphyry Cu, epithermal Pb–Zn–Au–Ag, skarn polymetallic mineralization, etc. The systems are rarely reported in collisional zones, such as the Gangdese belt in southern Tibet where many postcollisional porphyry copper deposits occurred. In addition, other types of mineral systems are rarely present except porphyry copper mineralization in the Gangdese belt. In this study, we present Pb–Zn-bearing quartz veins at Luobuzhen in the western Gangdese belt. The Luobuzhen Pb–Zn veins cross-cut dacite of the Linzizong Group with zircon U–Pb age of 50.1 ± 0.2 Ma and monzogranite with zircon U–Pb age of 17.1 ± 0.1 Ma. Ore minerals include sphalerite, galena, chalcopyrite, and pyrite; gangue minerals are quartz with minor chlorite and sericite. Primary fluid inclusions of quartz are liquid-rich, aqueous, and two-phase inclusions. The homogenization temperatures of these primary inclusions are moderate to high (267–400 °C), and salinities range from 8.9 to 18.4 wt.% NaCl equiv. Quartz has δ18OSMOW values of 6.2–9.3‰, while sulfides have δ34SV-CDT values of −5.1‰ to 0.1‰, 206Pb/204Pb of 18.722–18.849, 207Pb/204Pb of 15.640–15.785, and 208Pb/204Pb of 39.068–39.560. These data suggest that magmatic fluids with contribution from meteoric water, magmatic sulfur, and lead derived from upper crust and metasomatized mantle by Indian continental materials would be critical for the Luobuzhen base metal mineralization.The Dongshibu area, located at ∼2 km east of the Luobuzhen, is characterized by high concentrations of Cu (up to 1450 ppm) and Mo (up to 130 ppm) of stream sediments, which is quite different from high concentrations in Pb, Zn, Ag, and Au shown in the Luobuzhen area. In addition, porphyry copper mineralization-related alteration and veins/veinlets occur in the Miocene monzogranite at Dongshibu. The monzogranite is characterized by high Sr/Y ratios, which are also shown on ore-forming intrusions in the Gangdese postcollisional porphyry copper deposits, and shows similar zircon Hf isotopes to the ore-related high Sr/Y intrusions from the Zhunuo porphyry copper deposit which is located ∼20 km northeast of the Luobuzhen-Dongshibu. A comprehensive analysis allows us to infer that the base metal veins at Luobuzhen are components of a porphyry Cu system with porphyry Cu mineralization likely present at Dongshibu and epithermal Au–Ag veins possibly occurring at Luobuzhen, which are indicative of the existence of porphyry copper systems in collisional zones. The potential porphyry Cu mineralization and epithermal Au–Ag veins should be targeted in future exploration at Luobuzhen-Dongshibu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号