首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Ni-Co-(PGE) sulfide deposits of the Thompson Nickel Belt (TNB) in Northern Manitoba, Canada are part of the fifth largest nickel camp in the world based on contained nickel; past production from the TNB deposits is 2500 kt Ni. The Thompson Deposit is located on the eastern and southern flanks of the Thompson Dome structure, which is a re-folded nappe structure formed during collision of the Trans-Hudson Orogen with the Canadian Shield at 1.9–1.7 Ga. The Thompson Deposit is almost entirely hosted by P2 member sulfidic metasedimentary rocks of the Paleoproterozoic Ospwagan Group. Variably serpentinised and altered dunites, peridotites and pyroxenites contain disseminated sulfides and have a spatial association with sediment-hosted Ni sulfides which comprise the bulk of the ore types. These rocks formed from rift-related komatiitic magmas that were emplaced at 1.88 Ga, and subsequently deformed by boudinage, thinning, folding, and stacking.Disseminated sulfide mineralization in the large serpentinised peridotite and dunite intrusions that host the Birchtree and Pipe Ni-Co sulfide deposits typically has 4–6 wt% Ni in 100% sulfide. The disseminated sulfides in the less abundant and much smaller boudinaged serpentinised peridotite and dunite bodies associated with the Thompson Deposit have 7–10 wt% Ni in 100% sulfide. The majority of Thompson Mine sulfides are hosted in the P2 member of the Pipe Formation which is a sulfidic schist developed from a shale prololith; the mineralization in the schist includes both low Ni tenor (<1 wt% Ni in sulfide) and barren sulfide (<200 ppm Ni) and a Ni-enriched sulfide with 1–18 wt% Ni in 100% sulfide. The semi-massive and massive sulfide ores show a similar range in Ni tenor to the metasediment-hosted mineralization, but there are discrete populations with maximum Ni tenors of ∼8, 11 and 13 wt% Ni in 100% sulfide. The variations in Ni tenor are related to the Ni/Co ratio (high Ni/Co correlates with high Ni tenor sulfide) and this relationship is produced by the different Ni/Co ratios in sulfides with a range in proportions of pyrrhotite and pentlandite. Geological models of the ore deposit, host rocks, and sulfide geochemical data in three dimensions reveal that the Thompson Deposit forms an anastomosing domain on the south and east flanks of a first order D3 structure which is the Thompson Dome. In detail, a series of second order doubly-plunging folds on the eastern and southern flank control the geometry of the mineral zones. The position of these folds on the flank of the Thompson Dome is a response to the anisotropy of the host rocks during deformation; ultramafic boudins and layers of massive quartzite in ductile metasedimentary rocks control the geometry of the doubly-plunging F3 structures. The envelope of mineralization is almost entirely contained within the P2 member of the Pipe formation, so the deposit is clearly folded by the first order and second order D3 structures. The sulfides with highest Ni tenor (typically >13 wt% Ni in sulfide) define a systematic trend that mirrors the configuration of the second order doubly-plunging F3 structures on the flanks of the Dome. Although moderate to high Ni tenor mineralization is sometimes localized in fold hinges, more typically the highest Ni tenor mineralization is located on the flanks of the fold structures.There is no indication of the mineralogical and geochemical signatures of sedimentary exhalative or hydrothermal processes in the genesis of the Thompson ores. The primary origin of the mineralization is undoubtedly magmatic and this was a critical stage in the development of economic mineralization. Variations in metal tenor in disseminated sulfides contained in ultramafic rock indicate a higher magma/sulfide ratio in the Thompson parental magma relative to Birchtree and Pipe. The variation in Ni tenor of the semi-massive and massive sulfide broadly supports this conclusion, but the variations in metal tenor in the Thompson ores was likely created partly during deformation. The sequence of rocks was modified by burial and loading of the crust (D2 events) to a peak temperature of 750 °C and pressure of 7.5 kbar. The third major phase of deformation (D3) was a sinistral transpression (D3 event) which generated the dome and basin configuration of the TNB. These conditions allowed for progressive deformation and reformation of pyrrhotite and pentlandite into monosulfide solid solution as pressure and temperature increased; this process is termed sulfide kinesis. Separation of the ductile monosulfide solid solution from granular pentlandite would result in an effective separation of Ni during metamorphism, and the monosulfide solid solution would likely be spread out in the stratigraphy to form a broad halo around the main deposit to produce the low Ni tenor sulfide. Reformation of pentlandite and pyrrhotite after the peak D2 event would explain the broad footprint of the mineral system. The effect of the D3 event at lower pressure and temperature would have been to locally redistribute, deform, and repeat the lenses of sulfide.The understanding of the relationships between petrology, stratigraphy, structure, and geochemistry has assisted in formulating a predictive exploration model that has triggered new discoveries to the north and south of the mine, and provides a framework for understanding ore genesis in deformed terrains and the future exploration of the Thompson Nickel Belt.  相似文献   

2.
The Huangshannan magmatic Ni-Cu sulfide deposit is one of a group of Permian magmatic Ni-Cu deposits located in the southern Central Asian Orogenic belt in the Eastern Tianshan, northwest China. It is characterized by elevated Ni tenor (concentrations in recalculated 100% sulfide) in sulfide within ultramafic rocks (9–19 wt%), with values much higher than other deposits in the region. Sulfides of the Huangshannan deposit are composed of pentlandite, chalcopyrite, and pyrrhotite and the host rock is relatively fresh, indicating that the high-Ni tenor is a primary magmatic feature rather than formed by alteration processes. It is shown that sulfides with high-Ni tenor can be generated by sulfide-olivine equilibrium at an oxygen fugacity of QFM +0.5, for magmas containing 450 ppm Ni and 20% olivine. Ores with >10 wt% sulfur have relatively low PGE and Ni tenors compared to other ores, R factor (mass ratio of silicate to sulfide liquid) modeling of Ni indicates that they formed at moderate R values (150–600). Based on this constraint on R values, ores with <10 wt% sulfides in the Huangshannan deposit can be segregated from a similar parental magma with 0.05 ppb Os, 0.023 ppb Ir, and 0.5 ppb Pd at R values between 600 and 3000. This, coupled with the supra-cotectic proportions of sulfide liquid to cumulus silicates in the Huangshannan ores imply mechanical transport and deposition of sulfide liquid in a magma pathway or conduit, in which sulfides must have interacted with large volumes of silicate magma. Platinum and Pd depletion relative to other platinum group elements (PGEs) are observed in fresh and sulfide-rich samples (S > 4.5 wt%). As sulfide-rich samples are also depleted in Cu, and as interstitial sulfides in those samples are physically interconnected at a scale of several cms, the low Pt and Pd anomalies are attributed to solid Pt and Pd phases crystallization and retention with the monosulfide solid solution (MSS) and Cu-rich sulfide liquid percolation during MSS fractionation. This finding indicates that Pt anomalies in sulfide-rich rocks from magmatic Ni-Cu deposits in the Eastern Tianshan are the result of sulfide fractionation rather than a hydrothermal effect. 187Os/188Os(278Ma) values of the lherzolite samples vary from 0.27 to 0.37 and γOs(278Ma) values vary from 110 to 189, indicating significant magma interaction with crustal sulfides, rich in radiogenic Os. Well constrained γOs values and δ34S values (−0.4 to 0.8‰) indicate that crustal contamination occurred at depth before the arrival of the magma in the Huangshannan chamber. Regionally, deposits with high-Ni tenor have not been reported other than the Huangshannan deposit; however, many intrusions with high-Ni contents in olivine are present in NW China, such as the Erhongwa, Poyi and Poshi intrusions. Those intrusions are capable of forming high-Ni tenor sulfides due to olivine-sulfide-silicate equilibrium and relative high-Ni content in parent magma, making them attractive exploration targets.  相似文献   

3.
Understanding the geochemical behavior of chalcophile elements in magmatic processes is hindered by the limited partition coefficients between sulfide phases and silicate melt, in particular at conditions relevant to partial melting of the hydrated, metasomatized upper mantle. In this study, the partitioning of elements Co, Ni, Cu, Zn, As, Mo, Ag, and Pb between sulfide liquid, monosulfide solid solution (MSS), and hydrous mantle melt has been investigated at 1200 °C/1.5 GPa and oxygen fugacity ranging from FMQ−2 to FMQ+1 in a piston-cylinder apparatus. The determined partition coefficients between sulfide liquid and hydrous mantle melt are: 750–1500 for Cu; 600–1200 for Ni; 35–42 for Co; 35–53 for Pb; and 1–2 for Zn, As, and Mo. The partition coefficients between MSS and hydrous mantle melt are: 380–500 for Cu; 520–750 for Ni; ∼50 for Co; <0.5 for Zn; 0.3–6 for Pb; 0.1–2 for As; 1–2 for Mo; and >34 for Ag. The variation of the data is primarily due to differences in oxygen fugacity. These partitioning data in conjunction with previous data are applied to partial melting of the upper mantle and the formation of magmatic-hydrothermal Cu–Au deposits and magmatic sulfide deposits.I show that the metasomatized arc mantle may no longer contain sulfide after >10–14% melt extraction but is still capable of producing the Cu concentrations in the primitive arc basalts, and that the comparable Cu concentrations in primitive arc basalts and in MORB do not necessarily imply similar oxidation states in their source regions.Previous models proposed for producing Cu- and/or Au-rich magmas have been reassessed, with the conclusions summarized as follows. (1) Partial melting of the oxidized (fO2 > FMQ), metasomatized arc mantle with sulfide exhaustion at degrees >10–14% may not generate Cu-rich, primitive arc basalts. (2) Partial melting of sulfide-bearing cumulates in the root of thickened lower continental crust or lithospheric mantle does not typically generate Cu- and/or Au-rich magmas, but they do have equivalent potential as normal arc magmas in forming magmatic-hydrothermal Cu–Au deposits in terms of their Cu–Au contents. (3) It is not clear whether partial melting of subducting metabasalts generates Cu-rich adakitic magmas, however adakitic magmas may extract Cu and Au via interaction with mantle peridotite. Furthermore, partial melting of sulfide-bearing cumulates in the deep oceanic crust may be able to generate Cu- and Au-rich magmas. (4) The stabilization of MSS during partial melting may explain the genetic link between Au-Cu mineralization and the metasomatized lithospheric mantle.The chalcophile element tonnage, ratio, and distribution in magmatic sulfide deposits depend on a series of factors. This study reveals that oxygen fugacity also plays an important role in controlling Cu and Ni tonnage and Cu/Ni ratio in magmatic sulfide deposits. Cobalt, Zn, As, Sn, Sb, Mo, Ag, Pb, and Bi concentrations and their ratios in sulfide, due to their different partitioning behavior between sulfide liquid and MSS, can be useful indices for the distribution of platinum-group elements and Au in magmatic sulfide deposits.  相似文献   

4.
The Duolong district in central Tibet hosts a number of porphyry as well as high sulfidation epithermal copper–gold deposits and prospects, associated with voluminous calc-alkaline volcanism and plutonism. In this study, we present new geochronological, geochemical, isotopic and mineralogical data for both economically mineralized and barren porphyritic intrusions from the Duobuza and Naruo porphyry Cu–Au deposits. Zircon U–Pb analyses suggest the emplacement of economically mineralized granodiorite porphyry and barren granodiorite porphyry at Naruo deposit took place at 119.8 ± 1.4 Ma and 117.2 ± 0.5 Ma, respectively. Four molybdenite samples from the Naruo deposit yield an isochron Re–Os age of 119.5 ± 3.2 Ma, indicating mineralization occurred synchronously with the emplacement of the early granodiorite porphyry. At Duobuza deposit, the barren quartz diorite porphyry intruded at 119.5 ± 0.7 Ma, and two economically mineralized intrusions intruded at 118.5 ± 1.2 Ma (granodiorite porphyry) and 117.5 ± 1.2 Ma (quartz diorite porphyry), respectively. Petrographic investigations and geochemical data indicate that all of the porphyritic intrusions were oxidized, water rich, and subduction-related calc-alkaline magmas. Zircons from the porphyritic intrusions have a wide range in the εHf (0–11.1) indicating that they were sourced from mixing of mantle-derived mafic, and crust-derived felsic melts. Moreover, the variation of trace element content of plagioclase phenocrysts indicates that the magma chambers were recharged by mafic magmas.Comparison of the composition of amphibole phenocrysts indicates the porphyry copper–gold mineralization at Duolong was generated in magma chambers at low crystallization temperatures and pressures (754° to 791 °C, 59 M to 73 MPa, n = 8), and under highly oxidizing conditions (ΔNNO 2.2 to 2.7, n = 8). In contrast, barren intrusions were sourced from the magma chambers with higher crystallization temperatures and pressures (816° to 892 °C, 111 to 232 MPa, n = 22) that were less oxidizing (ΔNNO 0.6 to 1.6, n = 22). The requirement for a thermal contrast is supported by the declining of Ti content in magnetite crystals in barren intrusions (12,550 to 34,200 ppm) versus those from economically mineralized intrusions (600 to 3400 ppm). Moreover, the V content in magnetite crystals from economically mineralized intrusions (990 to 2510 ppm) is lower than those recorded from barren intrusions (2610 to 3510 ppm), which might reflect the variation in oxidation state of the magma. The calculated water solubility of the magma forming the economically mineralized intrusions (3.2–3.7 wt%) is lower than that of magma forming the barren intrusions (4.6–6.4 wt%). Based on the chemical–physical characteristics of economically mineralized magma, our study suggests that the development of porphyry Cu–Au mineralization at Duolong was initiated by shallow-level emplacement of a magma that crystallized at lower temperatures and pressures. Experimental studies show that copper and water solubilities in silicate melts decrease with falling temperatures and pressures, indicating metals and ore-forming fluids are more likely to be released from a magma reservoir emplaced at shallow crustal levels. We propose the magnetite might be a convenient exploration tool in the search for porphyry copper mineralization because the variations in Ti and V content of mineral concentrates and rock samples are indicative of barren versus mineralized intrusions.  相似文献   

5.
《Lithos》2007,93(1-2):175-198
The Neoproterozoic (∼ 820 Ma) Aries micaceous kimberlite intrudes the central Kimberley Basin, northern Western Australia, and has yielded a suite of 27 serpentinised ultramafic xenoliths, including spinel-bearing and rare, metasomatised, phlogopite–biotite and rutile-bearing types, along with minor granite xenoliths. Proton-microprobe trace-element analysis of pyrope and chromian spinel grains derived from heavy mineral concentrates from the kimberlite has been used to define a ∼ 35–40 mW/m2 Proterozoic geotherm for the central Kimberley Craton. Lherzolitic chromian pyrope highly depleted in Zr and Y, and Cr-rich magnesiochromite xenocrysts (class 1), probably were derived from depleted garnet peridotite mantle at ∼ 150 km depth. Sampling of shallower levels of the lithospheric mantle by kimberlite magmas in the north and north-extension lobes entrained high-Fe chromite xenocrysts (class 2), and aluminous spinel-bearing xenoliths, where both spinel compositions are anomalously Fe-rich for spinels from mantle xenoliths. This Fe-enrichment may have resulted from Fe–Mg exchange with olivine during slow cooling of the peridotite host rocks. Fine exsolution rods of aluminous spinel in diopside and zircon in rutile grains in spinel- and rutile-bearing serpentinised ultramafic xenoliths, respectively, suggest nearly isobaric cooling of host rocks in the lithospheric mantle, and indicate that at least some aluminous spinel in spinel-facies peridotites formed through exsolution from chromian diopside. Fe–Ti-rich metasomatism in the spinel-facies Kimberley mantle probably produced high-Ti phlogopite–biotite + rutile and Ti, V, Zn, Ni-enriched aluminous spinel ± ilmenite associations in several ultramafic xenoliths. U–Pb SHRIMP 207Pb/206Pb zircon ages for one granite (1851 ± 10 Ma) and two serpentinised ultramafic xenoliths (1845 ± 30 Ma; 1861 ± 31 Ma) indicate that the granitic basement and lower crust beneath the central Kimberley Basin are at least Palaeoproterozoic in age. However, Hf-isotope analyses of the zircons in the ultramafic xenoliths suggest that the underlying lithospheric mantle is at least late Archean in age.  相似文献   

6.
The skarn type copper deposits are widespread in the Jiurui district in the Middle-Lower Yangtze River metallogenic belt. This paper reports a detailed study on mineral chemistry, and H, O, S and Pb isotopic compositions on skarn silicate and sulfide minerals in the three major skarn dominant deposits (Wushan, Dongleiwan and Dengjiashan). The Wushan skarn deposit is characterized with prograde garnet-dominated and clinopyroxene limited skarns with average andradite content of 83% and hedenbergite content of 10%, whereas the Dongleiwan and Dengjiashan deposits are featured with retrograde skarn alteration with abundant hydrous minerals such as epidote and chlorite. The garnet and clinopyroxene compositions show 59% andradite and 15% hedenbergite for the Dongleiwan skarns, and 43% and 22% for the Dengjiashan skarns respectively. The pistacite components (Ps value) defined as Fe3 +/(Fe3 ++ Al) and Fe3 +/Fe2 + value of epidote are 0.12 and 1.63 for the Wushan skarns, 0.30 and 32.73 for the Dongleiwan skarns, and 0.17 and 42.85 for the Dengjiashan skarns. It is suggested that the prograde skarn mineralization in the three deposits was all formed in a relatively oxidizing environment, with the Wushan showing the highest oxidation potential and the Dengjiashan having the least oxidation potential. However, in the retrograde skarns, the Dongleiwan and Dengjiashan deposits show higher oxidation potential than that of Wushan. The three deposits show similar sulfur isotopic compositions of − 2.9 to + 1.4‰ and similar lead isotopic compositions with 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of 17.900 to 18.205, 15.538 to 15.649 and 38.170 to 39.025, respectively. All the three deposits should have similar magmatic origin for the ore-forming materials based on their S and Pb isotopes. The oxygen isotopic compositions of the prograde and retrograde fluids in the three deposits show some differences, with δ18OFluid values of + 8.13‰ and + 7.81‰ for the Wushan, + 6.47‰ and + 2.33‰ for the Dongleiwan, and + 8.27‰ and + 4.43‰ for the Dengjiashan. But the hydrogen isotopic compositions are similar for the prograde (− 65 to − 31‰) and retrograde (− 64 to − 33‰) fluids. Therefore, the fluid origins and evolution may be different in each deposit. The hydrothermal fluids for the prograde skarns in all three deposits were likely derived from magmatic–hydrothermal sources, but the Dongleiwan and Dengjiashan show a higher proportion of meteoric water input in the retrograde stage. Considering the similar average prograde temperatures (574 to 560 °C) as calculated from coexisting garnet–clinopyroxene pairs, and similar retrograde temperatures (281 to 246 °C) as calculated from chlorite chemistry for the three deposits, we suggest that the trigger for deposition of sulfide ores in the Wushan garnet-dominated skarn deposit was mainly caused by system cooling with temperature drop along with magmatic intrusion and crystallization process. The Dongleiwan and Dengjiashan skarn deposits constitute a well developed retrograde skarn system with abundant epidote, chlorite, quartz and calcite, which probably caused by fluid mixing of high-temperature saline magmatic–hydrothermal fluids with cooler, oxidizing and dilute meteoric water.  相似文献   

7.
A detailed study of apatite and biotite compositions in multiple intrusive phases from five composite plutons in the northern Canadian Cordillera was undertaken with the aim of determining the composition of magmatic fluids relative to F:Cl:OH for several plutons―both barren and mineralizing―and for specific intrusive phases from each pluton that may be related to nearby tungsten skarns. Magmatic apatite and biotite compositions are consistent with a crustal source of magma, either derived from predominantly supracrustal rocks, and (or) derived from predominantly infracrustal rocks and fractionated to felsic compositions. Increasing MnO (± FeO and XF:XCl) with decreasing CaO in apatite broadly correlates with an increasing degree of magmatic differentiation, although Fe# vs. total aluminum in biotite is a better indicator of inter- and intra-plutonic differentiation. Anomalously iron-rich biotites occur in highly fractionated and (or) wallrock-contaminated phases of plutons associated with tungsten skarns.Estimates of magmatic fluid composition―calculated as the activity ratios log[aHCl / aHF] and log[aHOH / aHF] from apatite and biotite compositions―show several trends with respect to magmatic differentiation. Two barren plutons demonstrate that fluids in silicic magmas become HF enriched relative to HCl with increasing differentiation, although re-equilibration with late-stage sub-solidus or hydrothermal fluids may obscure this trend. The three intrusions with associated tungsten skarn mineralization, including the world-class Cantung deposit, also become HF-enriched with magmatic evolution. However, magmatic apatite and biotite in individual intrusive phases that are the most closely associated with mineralization have equilibrated with compositionally distinct fluids. In these particular intrusive phases, apatite appears to have equilibrated with an earlier HCl- and H2O-rich magmatic fluid, and biotite appears to have equilibrated with a later HCl- and (a particularly) H2O-rich magmatic fluid. The fluid in these magmas apparently evolved to a H2O-rich (or less saline) composition as the temperature of the magma decreased. None of the other intrusive phases, from either the barren or tungsten-associated plutons, have apatite and biotite activity ratios that are suggestive of equilibration with such an HCl/HF- and H2O/HF-rich fluid. Instead, the activity ratios calculated from apatite and biotite in intrusive phases that are not as closely associated with mineralization are well-coupled and unremarkable (although small variations are common), which would suggest that both minerals equilibrated with similar fluids. These intrusive phases do not appear to have produced a large quantity of saline hydrous fluid capable of seggregating and transporting tungsten. The identification of intrusive phases that did produce magmatic fluids that were anomalously enriched in HCl and H2O could, therefore, be a predictor of nearby tungsten skarn mineralization.  相似文献   

8.
Widespread Mesozoic Au and other hydrothermal polymetal (Zn–Pb–Cu–Mo–Ag–W–Fe–REE) deposits or smaller prospects occur in association with ancient mobile belts surrounding and cutting through the North China Carton (NCC). Among these, the gold ores of the Jiaodong Peninsula, Shandong Province, eastern NCC, represent the largest gold district in China. However, the genesis of these important gold mineralizations has remained controversial, notably their relationships to widespread mafic magmatism of alkaline affinity.The ore bodies of the Guocheng gold deposit on the Jiaodong Peninsula are fracture-controlled, sulfide-rich veins and disseminations, formed contemporaneously with abundant dolerite, lamprophyre and monzonite dikes at ca. 120 Ma. Dolerite dikes possess mantle-like major element compositions and alkaline affinity, associated with prominent subduction-type trace element enrichments. The dikes show petrographic and chemical evidence of magma mixing that triggered exsolution of magmatic sulfide and anhydrite crystallization, preserved as primary inclusions in phenocrysts. LA-ICP-MS analysis of magmatic sulfide inclusions demonstrates that metal abundance ratios (Ag, As, Au, Bi, Co, Cu, Mo, Ni, Pb, Sb, Zn) largely correspond to those of both unaltered bulk rock and bulk ore. Together with identical Pb isotope ratios of dolerite and bulk ore, this demonstrates that gold mineralization and dolerite dikes share a common source.Lead isotope signatures of the ore sulfides are much less radiogenic (17.08 < 206Pb/204Pb < 17.25, 15.41 <207Pb/204Pb < 15.45, 37.55 < 208Pb/204Pb < 37.93) relative to the Pb signature of Phanerozoic convecting mantle and plot to the left of the Geochron and above the MORB-source mantle Pb evolution line. Forward Monte Carlo simulations indicate three events for the U–Th–Pb isotope evolution: (1) late Archean formation of juvenile crust is followed by (2) subduction of this aged crust at ca. 1.85 Ga along with the assembly of Jiao–Liao–Ji mobile belt (suture within Columbia supercontinent). This late-Archean subducted crust released fluids with drastically reduced U/Pb that metasomatized the overlying depleted mantle, which formed cratonic lithospheric mantle. This metasomatized lithospheric mantle was (3) tapped in response to early Cretaceous extensional tectonics affecting notably the eastern margin of the NCC to generate mafic magmas and associated gold mineralization at Guocheng. Similarly non-radiogenic uranogenic Pb isotope data characterize the contemporaneous mafic dikes and gold deposits in the entire Jiaodong Peninsula, suggesting that our genetic model applies to the entire Jiaodong gold district.We propose that early Cretaceous melting of subcontinental lithospheric mantle metasomatized by subduction fluids during Paleoproterozoic amalgamation of terranes to the eastern NCC along with Columbia supercontinent assembly generated mafic magmatism and associated gold deposits. Given the conspicuous association of Phanerozoic hydrothermal ore deposits associated with reactivated Paleoproterozoic mobile belts, we envisage that our genetic model, which largely corresponds to that which is proposed for the Bingham porphyry-Cu–Au–Mo deposit, USA, may explain much of the magmatic-hydrothermal activity and associated ore formation all around the NCC.  相似文献   

9.
The composite Meghri–Ordubad and Bargushat plutons of the Zangezur–Ordubad region in the southernmost Lesser Caucasus consist of successive Eocene to Pliocene magmatic pulses, and host two stages of porphyry Cu–Mo deposits. New high-precision TIMS U–Pb zircon ages confirm the magmatic sequence recognized by previous Rb–Sr isochron and whole-rock K–Ar dating. A 44.03 ± 0.02 Ma-old granite and a 48.99 ± 0.07 Ma-old granodiorite belong to an initial Eocene magmatic pulse, which is coeval with the first stage of porphyry Cu–Mo formation at Agarak, Hanqasar, Aygedzor and Dastakert. A subsequent Oligocene magmatic pulse was constrained by U–Pb zircon ages at 31.82 ± 0.02 Ma and 33.49 ± 0.02 Ma for a monzonite and a gabbro, and a late Miocene porphyritic granodioritic and granitic pulse yielded ages between 22.46 ± 0.02 Ma and 22.22 ± 0.01 Ma, respectively. The Oligo-Miocene magmatic evolution broadly coincides with the second porphyry-Cu–Mo ore deposit stage, including the major Kadjaran deposit at 26–27 Ma.Primitive mantle-normalized spider diagrams with negative Nb, Ta and Ti anomalies support a subduction-like nature for all Cenozoic magmatic rocks. Eocene magmatic rocks have a normal arc, calc-alkaline to high-K calc-alkaline composition, early Oligocene magmatic rocks a high-K calc-alkaline to shoshonitic composition, and late Oligocene to Mio-Pliocene rocks are adakitic and have a calc-alkaline to high-K calc-alkaline composition. Radiogenic isotopes reveal a mantle-dominated magmatic source, with the mantle component becoming more predominant during the Neogene. Trace element ratio and concentration patterns (Dy/Yb, Sr/Y, La/Yb, Eu/Eu*, Y contents) correlate with the age of the magmatic rocks. They reveal combined amphibole and plagioclase fractionation during the Eocene and the early Oligocene, and amphibole fractionation in the absence of plagioclase during the late Oligocene and the Mio-Pliocene, consistent with Eocene to Pliocene progressive thickening of the crust or increasing pressure of magma differentiation. Characteristic trace element and isotope systematics (Ba vs. Nb/Y, Th/Yb vs. Ba/La, 206Pb/204Pb vs. Th/Nb, Th/Nb vs. δ18O, REE) indicate that Eocene magmatism was dominated by fluid-mobile components, whereas Oligocene and Mio-Pliocene magmatism was dominated by a depleted mantle, compositionally modified by subducted sediments.A two-stage magmatic and metallogenic evolution is proposed for the Zangezur–Ordubad region. Eocene normal arc, calc-alkaline to high-K calc-alkaline magmatism was coeval with extensive Eocene magmatism in Iran attributed to Neotethys subduction. Eocene subduction resulted in the emplacement of small tonnage porphyry Cu–Mo deposits. Subsequent Oligocene and Miocene high-K calc-alkaline and shoshonitic to adakitic magmatism, and the second porphyry Cu–Mo deposit stage coincided with Arabia–Eurasia collision to post-collision tectonics. Magmatism and ore formation are linked to asthenospheric upwelling along translithospheric, transpressional regional faults between the Gondwana-derived South Armenian block and the Eurasian margin, resulting in decompression melting of lithospheric mantle, metasomatised by sediment components added to the mantle during the previous Eocene subduction event.  相似文献   

10.
The Wulaga gold deposit, located in Heilongjiang province, NE China, is a subvolcanic rock-hosted, low-sulfidation epithermal gold deposit, and has an Au reserve of about 84 tons. The gold mineralization occurs in a crypto-explosive breccia, and is spatially and temporally associated with an Early Cretaceous granodioritic porphyry. Three individual stages of mineralization have been identified in the Wulaga gold deposit: an early white quartz-euhedral vein stage, a fine-grained pyrite–marcasite–stibnite–chalcedony stage, and a late calcite–pyrite stage. The sulfur isotopic values of sulfide minerals vary in a wide range from − 4 to 4.9‰, but are concentrated in the range of − 3 to 0‰, implying that sulfur in the hydrothermal fluids was derived from magmatic volatiles. Lead isotopic results of the granodioritic porphyry (206Pb/204Pb = 18.341–18.395, 207Pb/204Pb = 15.507–15.523, 208Pb/204Pb = 38.174–38.251) and sulfide minerals (206Pb/204Pb = 18.172–18.378, 207Pb/204Pb = 15.536–15.600, 208Pb/204Pb = 38.172–38.339) are comparatively consistent and clustered together between the orogenic and upper mantle lines, indicating the lead in the ores is closely related to the parent magma of the granodioritic porphyry. The REE patterns of fluid inclusions trapped in sulfides are similar to those of the granodioritic porphyry, which confirms the magmatic origin of the REE in the hydrothermal fluids. The characteristics of S and Pb isotopes and REE suggest that the ore-forming materials of the Wulaga gold deposit are partly magmatic in origin, and related to a high-level hydrous granodioritic magma.  相似文献   

11.
Ti-in-zircon thermometry with SHRIMP II multi-collector has been applied to two well-documented Archean igneous and metamorphic samples from southern West Greenland. Zircons from 2.71 Ga partial melt segregation G03/38 formed in a small (< 1 m3), closed system within a mafic rock under high pressure granulite facies conditions. Results of 14 Ti analyses present a mean apparent zircon crystallization temperature of 679 ± 11 °C, underestimating independent garnet-clinopyroxene thermometry by 20–50 °C but consistent with reduced aTiO2 in this system. 36 spot analysis on 15 zircons from 3.81 Ga meta-tonalite G97/18, with an estimated magmatic temperature > 1000 °C, yield a low-temperature focused normal distribution with a mean of 683 ± 32 °C, further demonstrated by high resolution Ti mapping of two individual grains. This distribution is interpreted to represent the temperature of the residual magma at zircon saturation, late in the crystallization history of the tonalite. Hypothetically, Ti-in-zircon thermometry on Eoarchaean detrital zircons sourced from such a high temperature tonalite would present a low-temperature biased image of the host magma, which could be misconstrued as being a minimum melt granite. Multiple analyses from individual zircons can yield complex Ti distributions and associated apparent temperature patterns, reflecting cooling history and local chemical environments in large magma chambers. In addition to inclusions and crystal imperfections, which can yield apparent high temperature anomalies, zircon surfaces can also record extreme (> 1000 °C) apparent Ti temperatures. In our studies these were traced to 49Ti (or a molecular isobaric interference) contamination derived from the double sided adhesive tape used in sample preparation, and should not be assigned geological significance.  相似文献   

12.
During its storage or ascent, basaltic magma inevitably interacts with the surrounding rocks. In this study, schist xenoliths incorporated within ascending basalt are examined. Heating of the xenoliths combined with decompression effect of rapid magma uprise led to dehydration melting of hydrous minerals producing hercynitic spinel, melt, sillimanite and FeTi oxides. The melt is rhyolitic, strongly peraluminous (1.77 < A/CNK < 2.35) and corundum normative. It may contain up to 8 wt%FeOt. It occurs between the foliation planes and in the intragranular environment. Dehydration melting of micas in the schist is probably related to combined effects of heating by basaltic magma and decompression due to the rapid rise. Melting of xenoliths was a progressive process at low pressure. To cite this article: H. Bayhan et al., C. R. Geoscience 338 (2006).  相似文献   

13.
The W Horizon, Marathon Cu-Pd deposit in the Mesoproterozoic Midcontinent rift is one of the highest grade PGE repositories in magmatic ore deposits world-wide. The textural relationships and compositions of diverse platinum-group mineral (PGM) and sulfide assemblages in the extremely enriched ores (>100 ppm Pd-Pt-Au over 2 m) of the W Horizon have been investigated in mineral concentrates with ∼10,000 PGM grains and in situ using scanning electron microprobe and microprobe analyses.Here we show, from ore samples with concentrations up to 23.1 Pd ppm, 8.9 Pt ppm, 1.4 Au ppm and 0.73 Rh ppm, the diversity of minerals (n = 52) including several significant unknown minerals and three new mineral species marathonite (Pd25Ge9; McDonald et al., 2016), palladogermanide (Pd2Ge; IMA 2016-086, McDonald et al., 2017), kravtsovite (PdAg2S, IMA No 2016-092, Vymazalová et al., 2017). The PGM are distributed as PG-, sulfides (52 vol%), -arsenides (34 vol%), -intermetallics of Au-Ag-Pd-Cu and Pd-Ge(10 vol%) and -bismuthides and tellurides (4 vol%). The discovery of abundant (>330 grains) large unknown sulfide minerals with Rh allows us to present analyses three significant potentially new minerals (WUK-1, WUK-2, WUK-3) that are all clearly enriched in Rh (averaging 4.2, 8.5 and 28.21 wt% Rh respectively). Several examples of paragenetic sequences and mineral chemical changes for enrichment of Cu, Pd and Rh with time are revealed in the PGM and base-metal sulfides. We suggest this enhanced metal enrichment formed in response to increasing fO2 causing the oxidation of Fe2+ to Fe3+ and to a lesser extent, S.Phase relations in the Ag-Pd-S, Rh-Ni-Fe-S, Pd-Ge, Au-Pd-Cu-Ag, Pd-Ag-Te systems help constrain the crystallization temperatures of the majority of ore minerals in the W Horizon at ∼500 °C or moderate to high subsolidus temperatures (400–600 °C). Local transport by aqueous fluids becomes evident as minerals recrystallize down to <300 °C. The PGE-enriched W Horizon ores exhibit a complex post-magmatic history dominated by the effects of oxidation during cooling of a Cu-PGE enriched magma source from a deep reservoir.  相似文献   

14.
This study examines the major element composition of mantle-derived garnets recovered from heavy mineral concentrates of several Proterozoic kimberlites of the diamondiferous Wajrakarur Kimberlite Field (WKF) and the almost barren Narayanpet Kimberlite Field (NKF) in the Eastern Dharwar Craton of southern India. Concentrate garnets are abundant in the WKF kimberlites, and notably rare in the NKF kimberlites. Chemical characteristics of the pyropes indicate that the lithology of the sub-continental lithospheric mantle (SCLM) beneath both the kimberlite fields was mainly lherzolitic at the time of kimberlite eruption. A subset of green pyropes from the WKF is marked by high CaO and Cr2O3 contents, which imply contribution from a wehrlitic source. The lithological information on SCLM, when studied alongside geobarometry of lherzolite and harzburgite xenoliths, indicates that there are thin layers of harzburgite within a dominantly lherzolitic mantle in the depth interval of 115–190 km beneath the WKF. In addition, wehrlite and olivine clinopyroxenite occur locally in the depth range of 120–130 km. Mantle geotherm derived from xenoliths constrains the depth of graphite–diamond transition to 155 km beneath the kimberlite fields. Diamond in the WKF thus could have been derived from both lherzolitic and harzburgitic lithologies below this depth. The rarity of diamond and garnet xenocrysts in the NKF strongly suggest sampling of shallower (<155 km depth) mantle, and possibly a shallower source of kimberlite magma than at the WKF.  相似文献   

15.
Olivine, clinopyroxene and orthopyroxene in variably metasomatised peridotite xenoliths from three lithospheric mantle sections beneath the East African Rift in Tanzania (Lashaine, Olmani, Labait) show systematic differences in their average Li concentrations (2.4 ppm, 2.0 ppm and 1.5 ppm, respectively) and intermineral isotopic fractionations, with olivine being heaviest (δ7Li = + 2.3 to + 13.9‰, average + 5.0‰), followed by orthopyroxene (? 4.1 to + 6.5‰, average + 0.8‰) and clinopyroxene (? 6.7 to + 4.1‰, average ? 1.6‰). These features are ascribed to the effects of kinetic Li isotope fractionation combined with different Li diffusivities in mantle minerals.Two main mechanisms likely generate diffusion-driven kinetic Li isotope fractionation in mantle xenoliths (1) Li diffusion from grain boundary melt into minerals during recent metasomatism or entrainment in the host magma and (2) subsolidus intermineral Li-redistribution. The latter can produce both isotopically light (Li-addition) and heavy (Li-loss) minerals and may occur in response to changes in pressure and/or temperature.Modelling shows that non-mantle-like δ7Li in clinopyroxene (< + 2‰), combined with apparent equilibrium olivine-clinopyroxene elemental partitioning in most peridotite xenoliths from all three Tanzanian localities probably reflects incipient Li addition during interaction with the host magma. Low δ7Li (< ? 3‰), combined with high Li concentrations (> 3 ppm) in some clinopyroxene may require very recent (minutes) Li ingress from a Li-rich melt (100s of ppm) having mantle-like δ7Li. This might happen during late fragmentation of some mantle xenoliths caused by a volatile- (and Li-) rich component exsolved from the host basalt. In contrast, high Li concentrations (> 2 ppm) and δ7Li (> 4‰) in olivine from many Labait and Olmani samples are attributed to an older, pre-entrainment enrichment event during which isotopic equilibrium was attained and whose signature was not corrupted during xenolith entrainment. Low Li concentrations and mantle-like isotopic composition of olivine from most Lashaine xenoliths indicate limited metasomatic Li addition.Thus, Li concentrations and isotope compositions of mantle peridotites worldwide may reflect two processes, with olivine mainly preserving a signature of depletion in refractory samples (low Li contents and δ7Li) or of older (precursory) melt addition in metasomatised samples (high Li contents and δ7Li), while non mantle-like, low δ7Li in almost all clinopyroxene can be due to Li ingress during transport in the host magma and/or slow cooling, if the samples were erupted in lavas. In Tanzania, the peridotites experienced rift-related heating prior to entrainment and were quenched upon eruption, so Li ingress is the most likely process responsible for the isotopically light clinopyroxene here.  相似文献   

16.
A comprehensive synthesis of U–Pb geochronology and Hf isotopes of zircons from granulite/pyroxenite xenoliths entrained in Phanerozoic magmatic rocks and inherited xenocrysts from the associated lower crust rocks from various domains of the North China Craton (NCC) provides new insights into understanding the Phanerozoic evolution of the lower crust in this craton. Episodic widespread magma underplating into the ancient lower crust during Phanerozoic has been identified throughout the NCC from early Paleozoic to Cenozoic, broadly corresponding to the Caledonian, Hercynian, Indosinian, Yanshanian, and Himalayan orogenies on the circum-craton mobile belts. The early Paleozoic (410–490 Ma) ages come from xenoliths in the northern and southern margins as well as the central domain of the Eastern Block of the craton which mark the first phase of Phanerozoic magma underplating since the final cratonization of the NCC in the Paleoproterozoic. The magmatism coincided with the northward subduction of the Paleotethysian Ocean in the south and the southward subduction of the Paleoasian Ocean in the north. The subduction not only triggered magma underplating but also led to the emplacement of the diamondiferous kimberlites on the craton, marking the initiation of decratonization. The late Paleozoic event as represented by the 315 Ma garnet pyroxenite and/or lherzolite xenoliths in Hannuoba was restricted to the northern and southern margins of the craton, correlating with the arc magmatism continuous associated with the subduction of the Paleotethysian and Paleoasian Oceans and resulting in the interaction between the melts from subducted slabs and the lithospheric mantle/lower crust. The early Mesozoic event also dominantly occurred in the northern and southern margins and was related with the final closure of the Paleotethysian and Paleoasian Oceans as well as the collisional orogeny between the NCC and the Yangtze Craton. The late Mesozoic (ca. 120 Ma) was a major and widespread magmatic event which manifested throughout the NCC, associated with the geothermal overturn due to the giant south Pacific mantle plume. The Cenozoic magmatism, identified only in the dark clinopyroxenite xenoliths in the Hannuoba, was probably induced by the Himalayan movement in eastern Asia and might also have been influenced by the subduction of the Pacific Ocean to some extent. These widespread and episodic magma underplating or rejuvenation of the ancient lower crust beneath the NCC revealed by U–Pb and Hf isotope data resulted from the corresponding addition of juvenile materials from mantle to lower crust, with a mixing of the old crust with melts. The process inevitably resulted in the compositional modification of the ancient lower crust, similar to the compositional transformation from the refractory lithospheric mantle to a fertile one through the refractory peridotite — infiltrated melt reaction as revealed in the lithospheric mantle beneath the craton.  相似文献   

17.
The Taihe, Baima, Hongge, Panzhihua and Anyi intrusions of the Emeishan Large Igneous Province (ELIP), SW China, contain large magmatic Fe–Ti–(V) oxide ore deposits. Magnetites from these intrusions have extensive trellis or sandwich exsolution lamellae of ilmenite and spinel. Regular electron microprobe analyses are insufficient to obtain the primary compositions of such magnetites. Instead, laser ablation ICP-MS uses large spot sizes (~ 40 μm) and can produce reliable data for magnetites with exsolution lamellae. Although magnetites from these deposits have variable trace element contents, they have similar multi-element variation patterns. Primary controls of trace element variations of magnetite in these deposits include crystallography in terms of the affinity of the ionic radius and the overall charge balance, oxygen fugacity, magma composition and coexisting minerals. Early deposition of chromite or Cr-magnetite can greatly deplete magmas in Cr and thus Cr-poor magnetite crystallized from such magmas. Co-crystallizing minerals, olivine, pyroxenes, plagioclase and apatite, have little influence on trace element contents of magnetite because elements compatible in magnetite are incompatible in these silicate and phosphate minerals. Low contents and bi-modal distribution of the highly compatible trace elements such as V and Cr in magnetite from Fe–Ti oxide ores of the ELIP suggest that magnetite may not form from fractional crystallization, but from relatively homogeneous Fe-rich melts. QUILF equilibrium modeling further indicates that the parental magmas of the Panzhihua and Baima intrusions had high oxygen fugacities and thus crystallized massive and/or net-textured Fe–Ti oxide ores at the bottom of the intrusive bodies. Magnetite of the Taihe, Hongge and Anyi intrusions, on the other hand, crystallized under relatively low oxygen fugacities and, therefore, formed net-textured and/or disseminated Fe–Ti oxides after a lengthy period of silicate fractionation. Plots of Ge vs. Ga + Co can be used as a discrimination diagram to differentiate magnetite of Fe–Ti–(V) oxide-bearing layered intrusions in the ELIP from that of massif anorthosites and magmatic Cu–Ni sulfide deposits. Variable amounts of trace elements of magmatic magnetites from Fe–Ti–(P) oxide ores of the Damiao anorthosite massif (North China) and from Cu–Ni sulfide deposits of Sudbury (Canada) and Huangshandong (northwest China) demonstrate the primary control of magma compositions on major and trace element contents of magnetite.  相似文献   

18.
The Munali Intrusive Complex (MIC) is a flattened tube-shaped, mafic-ultramafic intrusion located close to the southern Congo Craton margin in the Zambezi belt of southern Zambia. It is made up of a Central Gabbro Unit (CGU) core, surrounded by a Marginal Ultramafic-mafic Breccia Unit (MUBU), which contains magmatic Ni sulfide mineralisation. The MIC was emplaced into a sequence of metamorphosed Neoproterozoic rift sediments and is entirely hosted within a unit of marble. Munali has many of the characteristics of craton-margin, conduit-style, dyke-sill complex-hosted magmatic sulfide deposits. Three-dimensional modelling of the MUBU on the southern side of the MIC, where the Munali Nickel Mine is located, reveals a laterally discontinuous body located at the boundary between footwall CGU and hangingwall metasediments. Mapping of underground faces demonstrates the MUBU to have intruded after the CGU and be a highly complex, multi stage megabreccia made up of atypical ultramafic rocks (olivinites, olivine-magnetite rocks, and phoscorites), poikilitic gabbro and olivine basalt/dolerite dykes, brecciated on a millimetre to metre scale by magmatic sulfide. The breccia matrix is largely made up of a sulfide assemblage of pyrrhotite-pentlandite-chalcopyrite-pyrite with varying amounts of magnetite, apatite and carbonate. The sulfides become more massive towards the footwall contact. Late stage, high temperature sulfide-carbonate-magnetite veins cut the rest of the MUBU. The strong carbonate signature is likely due, in part, to contamination from the surrounding marbles, but may also be linked to a carbonatite melt related to the phoscorites. Ductile deformation and shear fabrics are displayed by talc-carbonate altered ultramafic clasts that may represent gas streaming textures by CO2-rich fluids. High precision U-Pb geochronology on zircons give ages of 862.39 ± 0.84 Ma for the poikilitic gabbro and 857.9 ± 1.9 Ma for the ultramafics, highlighting the multi-stage emplacement but placing both mafic and later ultramafic magma emplacement within the Neoproterozoic rifting of the Zambezi Ocean, most likely as sills or sheet-like bodies. Sulfide mineralisation is associated with brecciation of the ultramafics and so is constrained to a maximum age of 858 Ma. The Ni- and Fe-rich nature of the sulfides reflect either early stage sulfide saturation by contamination, or the presence of a fractionated sulfide body with Cu-rich sulfide elsewhere in the system. Munali is an example of a complex conduit-style Ni sulfide deposit affected by multiple stages and sources of magmatism during rifting at a craton margin, subsequent deformation; and where mafic and carbonatitic melts have interacted along deep seated crustal fault systems to produce a mineralogically unusual deposit.  相似文献   

19.
Apparent Re–Os ages of some magmatic sulfide ore deposits are older than the zircon and baddeleyite U–Pb ages which are interpreted as the formation age of the host intrusions. The Jinchuan Ni–Cu–PGE deposit of China, the world's third largest, is such a case. We report apparent Re–Os isochron ages of 1117 ± 67 Ma, 1074 ± 120 Ma and 867 ± 75 Ma with initial 187Os/188Os ratios of 0.120 ± 0.012, 0.162 ±0.017 and 0.235 ± 0.027 for disseminated ores, sulfides from the disseminated ores and massive ores from Jinchuan, respectively. Using these data and Re–Os ages from the literature, we find that the oldest apparent Re–Os age and lowest initial Os isotope ratio are from disseminated ores which contain small amounts of sulfide minerals, the highest initial Os isotope ratios and youngest apparent Re–Os ages, consistent with the zircon and baddeleyite U–Pb ages, are from massive ores containing 90–100 modal% sulfide, and net-textured ores with about 25 modal% sulfides yield apparent Re–Os ages and initial Os ratios intermediate between those of the disseminated and massive ores.Because Os diffusion between sulfides is inhibited by the intervening silicates even at high temperatures, re-equilibration did not occur in the disseminated ore and the samples retained the Os ratios of the contaminated magma, leading to geologically meaningless ages that are older than the formation age of the rocks. While Os-bearing sulfide minerals and magnetite show low closure temperatures of Os diffusion and the sulfide minerals in the massive ore are closely connected with each other, facilitating fast diffusion of Os, re-equilibration of Os was achieved during cooling of the ore from about 850 °C after the segregation to about 400 °C. Thus, an age corresponding to the formation time and an elevated initial Os ratio were yielded by the massive ore. Os isotopes in the net-textured ore behave in the way intermediate between the disseminated and massive ores. Pb isotope data support the Os results. Disseminated ores have heterogeneous Pb isotope ratios whereas Pb in the massive ores is more uniform, consistent with Pb isotopic equilibration in the massive ores, but not in the disseminated ores.  相似文献   

20.
Zinkgruvan, a major stratiform Zn-Pb-Ag deposit in the Paleoproterozoic Bergslagen region, south-central Sweden, was overprinted by polyphase ductile deformation and high-grade metamorphism (including partial melting of the host succession) during the 1.9–1.8 Ga Svecokarelian orogeny. This complex history of post-ore modification has made classification of the deposit difficult. General consensus exists on a syngenetic-exhalative origin, yet the deposit has been variably classified as a volcanogenic massive sulfide (VMS) deposit, a sediment-hosted Zn (SEDEX) deposit, and a Broken Hill-type (BHT) deposit. Since 2010, stratabound, cobaltiferous and nickeliferous Cu ore, comprising schlieren and impregnations of Cu, Co and Ni sulfide minerals in dolomitic marble, is mined from the stratigraphic footwall to the stratiform Zn-Pb-Ag ore. This ore type has not been fully integrated into any of the existing genetic models. Based on a combination of 1) widespread hematite-staining and oxidizing conditions (Fe2O3 > FeO) in the stratigraphic footwall, 2) presence of graphite and reducing conditions (Fe2O3 < FeO) in the ore horizon and hangingwall and 3) intense K-feldspar alteration and lack of feldspar-destructive alteration in the stratigraphic footwall, we suggest that both the stratiform Zn-Pb-Ag and the dolomite-hosted Cu ore can be attributed to the ascent and discharge of an oxidized, saline brine at near neutral pH. Interaction of this brine with organic matter below the seafloor, especially within limestone, formed stratabound, disseminated Cu ore, and exhalation of the brine into a reduced environment on the sea floor produced a brine pool from which the regionally extensive (>5 km) Zn-Pb-Ag ore was precipitated.Both ore types are characterized by significant spread in δ34S, with the sulfur in the Cu ore and associate marble-hosted Zn mineralization on average being somewhat heavier (δ34S = −4.7 to +10.5‰, average 3.9‰) than that in the stratiform Zn-Pb-Ag ore (δ34S = −6 to +17‰, average 2.0‰). The ranges in δ34S are significantly larger than those observed in syn-volcanic massive sulfide deposits in Bergslagen, for which simple magmatic/volcanic sulfur sources have been invoked. Mixing of magmatic-volcanic sulfur leached from underlying volcanic rocks and sulfur sourced from abiotic or bacterial sulfate reduction in a mixing zone at the seafloor could explain the range observed at Zinkgruvan.A distinct discontinuity in the stratigraphy, at which key stratigraphic units stop abruptly, is interpreted as a syn-sedimentary fault. Metal zonation in the stratiform ore (decreasing Zn/Pb from distal to proximal) and the spatial distribution of Cu mineralization in underlying dolomitic marble suggest that this fault was a major feeder to the mineralization. Our interpretation of ore-forming fluid composition and a dominant redox trap rather than a pH and/or temperature trap differs from most VMS models, with Selwyn-type SEDEX models, and most BHT models. Zinkgruvan has similarities to both McArthur-type SEDEX deposits and sediment-hosted Cu deposits in terms of the inferred ore fluid chemistry, yet the basinal setting has more similarities to BHT and felsic-bimodal VMS districts. We speculate that besides an oxidized footwall stratigraphy, regionally extensive banded iron formations and limestone horizons in the Bergslagen stratigraphy may have aided in buffering ore-forming brines to oxidized, near-neutral conditions. In terms of fluid chemistry, Zinkgruvan could comprise one of the oldest known manifestations of Zn and Cu ore-forming systems involving oxidized near-neutral brines following oxygenation of the Earth’s atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号