首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater radon anomalies associated with earthquakes   总被引:6,自引:0,他引:6  
G. Igarashi  H. Wakita 《Tectonophysics》1990,180(2-4):237-254
Earthquake-related changes in groundwater radon have been detected at a sensitive observation site located right on a major active fault in Northeast Japan. A time-series analysis based on Bayesian statistics was successfully applied to remove background variations from the observed radon data, enabling us to examine the earthquake-related changes in detail.

We set a simple criterion of amplitude and duration for an anomaly observed in our radon data; we define an anomaly as a radon change that kept its level beyond 2σ (a standard deviation over the whole observation period) during a period longer than one day. We have observed 20 radon anomalies that satisfied this criterion from January 1984 to December 1988. Most of these anomalies have turned out to be related to large earthquakes that occurred in East Japan and its surrounding area; we have identified 12 post-seismic and 2-pre-seismic radon anomalies out of a total of 30 earthquakes with magnitude M 6.0 and hypocentral distance D 1000 km.

The typical pattern of the post-seismic anomalies is a radon decrease which started just after an earthquake, lasting for periods ranging from a few days to more than one week. The amplitude of the post-seismic anomalies depends on both magnitude and hypocentral distance, and can, in general, be expressed by a simple magnitude-distance relationships.

A possible pre-seismic anomaly was observed about one week before the largest earthquake that occurred in this region during the observation period (March 6, 1984; M = 7.9, D = 1000 km). Another possible pre-seismic anomaly was observed about three days before two nearby large earthquakes that occurred at almost the same place in a time interval of 53 min (February 6, 1987; M = 6.4 and M = 6.7, D = 130 km).  相似文献   


2.
为了研究芦山地震的孕震过程和震源区的长期构造过程以及解释实测的震后形变和重力资料, 采用分层介质模型, 利用数值模拟的方法, 考虑区域流变系数, 计算了地震引起的地表同震、震后的形变和重力变化以及区域内部分GPS与重力连续观测台站的震后形变和重力变化的时间序列.结果表明: 芦山地震的地表同震形变显示出发震断层明显的逆冲特性; 粘弹性松弛效应引起的震后地表形变和重力变化比同震形变和重力变化的范围明显扩大, 但随着粘滞系数的增加, 变化量明显减小; 观测台站的震后变化时变曲线显示震后形变和重力变化在震后50 a间变化显著, 100 a后基本平缓, 趋于稳定; 模拟计算的GPS台站中除了MEIG台和MYAN台以外, 其余台站的震后观测必须考虑粘弹性松弛的影响.   相似文献   

3.
The 26th January 2001 Bhuj earthquake occurred in the Kachchh Rift Basin which has a long history of major earthquakes. Great Triangulation Survey points (GTS) were first installed in the area in 1856–60 and some of these were measured using Global Positioning System (GPS) in the months of February and July 2001. Despite uncertainties associated with repairs and possible reconstruction of points in the past century, the re-measurements reveal pre-seismic, co-seismic and post-seismic deformation related to Bhuj earthquake. More than 25 Μ-strain contraction north of the epicenter appears to have occurred in the past 140 years corresponding to a linear convergence rate of approximately 10 mm/yr across the Rann of Kachchh. Motion of a single point at Jamnagar 150 km south of the epicenter in the 4 years prior to the earthquake, and GTS-GPS displacements in Kathiawar suggests that pre-seismic strain south of the epicenter was small and differs insignificantly from that measured elsewhere in India. Of the 20 points measured within 150 km of the epicenter, 12 were made at existing GTS points which revealed epicentral displacements of up to 1 m, and strain changes exceeding 30 Μ-strain. Observed displacements are consistent with reverse co-seismic slip. Re-measurements in July 2001 of one GTS point (Hathria) and eight new points established in February reveal post-seismic deformation consistent with continued slip on the Bhuj rupture zone.  相似文献   

4.
A. Lin  T. Ouchi  A. Chen  T. Maruyama   《Tectonophysics》2001,330(3-4):225-244
A nearly 100-km-long surface rupture zone, called Chelungpu surface rupture zone, occurred mostly along the pre-existing Chelungpu fault on the northwestern side of Taiwan, accompanying the 1999 Chi-Chi Ms 7.6 earthquake. The Chelungpu surface rupture zone can be divided into four segments based on the characteristics of co-seismic displacements, geometry of the surface ruptures and geological structures. These segments generally show a right-step en echelon form and strike NE–SW to N–S, and dip to the east with angles ranging from 50 to 85°. The co-seismic flexural-slip folding structures commonly occurred in or near the surface rupture zone from a few meters to a few hundreds of meters in width, which have an orientation in fold axes parallel or oblique to the surface rupture zone. The displacements measured in the southern three segments are approximately 1.0–3.0 m horizontally and 2.0–4.0 m vertically. The largest displacements were measured in the northern segment, 11.1 m horizontally and 7.5 m vertically, respectively. The amount of co-seismic horizontal shortening caused by flexural-slip folding and reverse faulting in the surface rupture zone is generally less than 3 m. It is evident that the co-seismic displacements of the surface rupture zone are a quantitative surface indicator of the faulting process in the earthquake source fault. The relations between the geometry and geomorphology of the surface rupture zone, dips of the co-seismic faulting planes and the striations on the main fault planes generated during the co-seismic displacement, show that the Chelungpu surface rupture zone is a reverse fault zone with a large left-lateral component.  相似文献   

5.
Gravity Recovery and Climate Experiment(GRACE) observations have been used to de-tect the co-seismic and post-seismic gravity field variations due to the Mw=9.3 Sumatra-Andaman earthquake that occurred on December 26,2004.This article focuses on investigating some gravita-tional effects caused by this huge earthquake.We computed the geoid height changes,the equivalent water height(EWH) changes,and the gravity changes using the GRACE Level-2 monthly spherical harmonic(SH) solutions released by University of ...  相似文献   

6.
The Chi-Chi 1999 earthquake ruptured the out-of-sequence Chelungpu Thrust Fault (CTF) in the fold-and-thrust belt in Western Central Taiwan. An important feature of this rupture is that the calculated slip increases approximately linearly in the SE–NW convergence plate direction from very little at its deeper edge to a maximum near the surface. We propose here a new explanation for this co-seismic slip distribution based on the study of both stress and displacement over the long-term as well as over a seismic cycle. Over the last 0.5 My, the convergence rate in the mountain front belt is accommodated by the frontal Changhua Fault (Ch.F), the CTF and the Shuangtung Fault (Sh.F). Based on previously published balanced cross sections, we estimate that the long-term slip of the Ch.F and of the CTF accommodate 5–30% and 30–55% of the convergence rate, respectively. This long-term partitioning of the convergence rate and the modeling of inter-seismic and post-seismic displacements suggest that the peculiar linear co-seismic slip distribution is accounted for by a combination of the effect of the obliquity of the CTF to the direction of inter-seismic loading, and of increasing aseismic creep on the deeper part of the Ch.F and CTF. Many previous interpretations of this slip distribution have been done including the effects of material properties, lubrication, site effect, fault geometry and dynamic waves. The importance of these processes with respect to the effects proposed here is still unknown. Taking into account the dip angle of the CTF, asperity dynamic models have been proposed to explain the general features of co-seismic slip distribution. In particular, recent works show the importance of heterogeneous spatial distribution of stress prior to the Chi-Chi earthquake. Our analysis of seismicity shows that previous large historic earthquakes cannot explain the amplitude of this heterogeneity. Based on our approach, we rather think that the high stress in the northern part of the CTF proposed by Oglesby and Day [Oglesby, D.D., Day, S.M., 2001. Fault geometry and the dynamics of the 1999 Chi-Chi (Taiwan) earthquake. Bull. Seismol. Soc. Am. 91, 1099–1111] reflects the latitudinal variation of inter-seismic coupling due to the obliquity of the CTF.  相似文献   

7.
Strong earthquakes in mountainous areas can trigger a large number of landslides that generate deposits of loose and unconsolidated debris across the landscape. These deposits can be easily remobilised by rainfalls, with their movement frequently evolving into catastrophic debris flows and avalanches. This has been the fate of many of the 200,000 co-seismic deposits generated by the 2008 Mw 7.9 Wenchuan earthquake in Sichuan, China. Here we present one of the first studies on the post-seismic patterns of landsliding through a detailed multi-temporal inventory that covers a large portion of the epicentral area (462.5 km2). We quantify changes of size-frequency distribution, active volumes and type of movement. We analyse the possible factors controlling landslide activity and we discuss the significance of mapping uncertainties. We observe that the total number of active landslides decreased with time significantly (from 9189 in 2008 to 221 in 2015), and that post-seismic remobilisations soon after the earthquake (2008–2011) occurred stochastically with respect to the size of the co-seismic deposits. Subsequently (2013–2015), landslide rates remained higher in larger deposits than in smaller ones, particularly in proximity to the drainage network, with channelised flows becoming comparatively more frequent than hillslope slides. However, most of the co-seismic debris remained along the hillslopes and are largely stabilised, urging to rethink the way we believe that seismic activity affects the erosion patterns in mountain ranges.  相似文献   

8.
There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts.and the other in the front of Longmen Mts.The length of which is more than 270 km and about 80 km respectively.The co-seismic fault shows a reverse flexure belt with strike of N45°-60°E in the ground,which caused uplift at its northwest side and subsidence at the southeast.The fault face dips to the northwest with a dip angle ranging from 50°to 60°.The...  相似文献   

9.
Water level fluctuations in twenty-one observation wells have been monitored for the last 10 years around the seismically active Koyna–Warna region, western India where earthquakes continue to occur even after four decades of the initiation of the seismic activity in the region. Fourteen of the observation wells act as volume strain meters as their water levels show earth tidal signals. Our analysis suggests three types of response of the well water levels to seismo-tectonic effects, i) one to local earthquakes, ii) to regional and teleseismic events, and iii) to local fluctuations in rock strain on regional scale. We observed five cases of co-seismic step-like well water level changes, of the order of few centimeters in amplitude, related to earthquakes in the magnitude range 4.3 ≤ M ≤ 5.2. All these earthquakes occurred within the network of wells drilled for the study and within 25 km distance of the recording wells. In three cases, drop in well levels preceded co-seismic step-like increases, which may be of premonitory nature. The second type of response is observed to be due to the passing of seismic waves from regional and teleseismic earthquakes like the M 7.7 Bhuj event on January 26, 2001 and the M 9.3 December 26, 2004 Sumatra earthquake. The third type is a well level anomaly of centimeter amplitude coherently occurring in several wells. The anomalies are similar in shape and last for several hours to days.From our studies we conclude that the wells in the network appear to respond to regional strain variations and transient changes due to distant earthquakes. The two factors which are important to co-seismic steps due to local earthquakes are the magnitude and epicentral distance. From the limited number of events we found that all local earthquakes exceeding M ≥ 4.3 have produced co-seismic changes. No such changes were observed for earthquakes below this magnitude threshold.  相似文献   

10.
B.K. Rastogi   《Tectonophysics》2004,390(1-4):85-103
This paper presents a study of the damage due to the Mw 7.6–7.7 intraplate Kutch earthquake of 26 January 2001. It was a powerful earthquake with a high stress drop of about 20 MPa. Aftershocks (up to M 4) have continued for 2.5 years. The distribution of early aftershocks indicates a rupture plane of 20–25 km radius at depths of 10–45 km along an E–W-trending and south-dipping hidden fault situated approximately 25 km north of the Kutch Mainland Fault. The moment tensor solution determined from regional broadband data indicates reverse motion along a south-dipping (by 47°) fault. The earthquake is the largest event in India in the last 50 years and the most destructive in the recorded history in terms of socioeconomic losses with 13,819 deaths (including 14 in Pakistan), collapse/severe damage of over a million houses and US$10 billion economic loss. Surface faulting was not observed. However, intense land deformations have been observed in a 40×20-km meizoseismal area. These include lateral spreading, ground uplifts (about a meter), ground slumping and deep cracks. Liquefaction with ejection of sand and copious water was widespread in the Banni grassland, Rann areas (salt plains), along rivers and also in the coastal areas up to 200 km distance from the epicenter in areas of intensity VII to X+. Stray incidences of liquefaction have occurred up to distances of at least 300 km. For the first time in India, multistory buildings have been destroyed/damaged by an earthquake. The maximum acceleration is inferred to be 700 cm/s2 and intensities are 1–3 units higher in soil-covered areas than expected from the decay rate of acceleration for hard rock.  相似文献   

11.
The Zhangjiakou–Penglai seismotectonic zone (ZPSZ) lies in the northern part of North China and extends along the Zhangjiakou–Beijing–Tianjin–Bohai Bay–Penglai–Yellow Sea. It is about 900 km long and some 250 km wide in a northwest direction. The great Sanhe-Pinggu (MS=8.0) earthquake occurred on September 1679 and the Tangshan (MS=7.8) earthquake on July 1976 caused serious economic and life losses. According to some differences in crust structure and regional tectonic stress field, the ZPSZ is divided into western and eastern segment by the 117°E line for study on long-term seismic hazard analysis. An analysis of Gutenberg–Richter's empirical relation of earthquake-frequency and time process of historic and recent earthquakes along the eastern and western segments shows that the earthquake activity obeys a Poisson process, and these calculations indicate that the earthquake occurrence probability of MS=6.0–6.9 is 0.77–0.83 in the eastern segment and the earthquake occurrence probability of MS=7.0–7.9 is 0.78–0.80 in the western segment of the ZPSZ during a period from 2005 to 2015.  相似文献   

12.
The hydrological response of the Choshuishi alluvial fan to the 1999 Chi-Chi earthquake shows that the earthquake did impact the aquifer. The possible earthquake-induced changes in hydrogeological properties were investigated in this study. First, contour maps of the hydrologic anomaly, seismic factors, and vertical ground-surface displacement were compared qualitatively. Bulls eye patterns were found on the contour maps of hydraulic conductivity, coseismic groundwater-level change and vertical ground-surface displacement but did not occur with other seismic factors. The more permeable zones of the aquifer were found to coincide with the locations of greater vertical ground-surface displacement and coseismic groundwater-level change in the 1999 Chi-Chi earthquake. This indicates that the change of the hydrogeologic properties of Choshuishi alluvial fan due to the 1999 Chi-Chi earthquake may have mainly occurred in the highly permeable zones. Fractal, cross semivariogram and cross correlogram analyses were performed to quantitatively measure the persistency, variability and similarity, respectively, of spatial hydrologic response, seismic factors and hydraulic conductivity. The groundwater-level change, earthquake intensity, and vertical ground-surface displacement were found to show antipersistent tendencies while other factors showed the opposite. Higher correlations were found between hydraulic conductivity and groundwater-level change in aquifers 2–1 and 2–2, and between hydraulic conductivity and vertical ground-surface displacement in aquifer 3. Changes in porosities and hydraulic conductivity were evaluated in the main aquifers of the Choshuishi alluvial fan based on the data of hydrologic anomaly and the vertical ground-surface displacement. While both approaches show that the 1999 Chi-Chi earthquake has impacted the Choshuishi alluvial fan by reducing its porosity and hydraulic conductivity, these changes were not significant relative to natural variation in hydraulic conductivity.This revised version was published in May 2005 with correction to the rubric.  相似文献   

13.
Northeastern Brazil is, within the present knowledge of historical and instrumental seismicity, one the most seismic active areas in intraplate South America. Seismic activity in the region has occurred mainly around the Potiguar basin. This seismicity includes earthquake swarms characterized by instrumentally-recorded events ≤ 5.2 mb and paleoseismic events ≥ 7.0. Our study concentrates in the João Câmara (JC) epicentral area, where an earthquake swarm composed of more than 40,000 aftershocks occurred mainly from 1986 to 1990 along the Samambaia fault; 14 of which had mb > 4.0 and two of which had 5.1 and 5.0 mb. We describe and compare this aftershock sequence with the present-day stress field and the tectonic fabric in an attempt to understand fault geometry and local control of seismogenic faulting. Earthquake data indicate that seismicity decreased steadily from 1986 to 1998. We selected 2,746 epicenters, which provided a high-quality and precise dataset. It indicates that the fault trends 37° azimuth, dips 76°–80° to NW, and forms an alignment  27 km long that cuts across the NNE–SSW-trending ductile Precambrian fabric. The depth of these events ranged from  1 km to  9 km. The fault forms an echelon array of three main left-bend segments: one in the northern and two in the southern part of the fault. A low-seismicity zone, which marks a contractional bend, occurs between the northern and southern segments. Focal mechanisms indicate that the area is under an E–W-oriented compression, which led to strike–slip shear along the Samambaia fault with a small normal component. The fault is at 53° to the maximum compression and is severely misoriented for reactivation under the present-day stress field. The seismicity, however, spatially coincides with a brittle fabric composed of quartz veins and silicified-fault zones. We conclude that the Samambaia fault is a discontinuous and reactivated structure marked at the surface by a well-defined brittle fabric, which is associated with silica-rich fluids.  相似文献   

14.
1668年郯城8 1/2 级地震,发震断层南起郯城窑上北到莒县土岭,全长为130 km,由5条北北东走向的活断层段组成。郯城地震断层南段沿沂沭断裂带内的F2断裂分布,倾向南东东,倾角为30°~60°。北段紧邻F1断裂分布,倾向不稳定,倾角较陡(多为70°以上)。南段表现为右行逆冲或逆右行的运动性质,北段则以右行走滑为主。郯城地震断层南、北两段均发育断层泥带、断层角砾带和碎裂带,南段总宽度为几米到十几米,北段总宽度为几十米到近百米,局部发育多条断层泥带。郯城地震断层的排列方式及其几何学特征表明:为老断层复活,而非新生断层。通过断层擦痕的反演同震应力场显示:北段为北东东-南西西向挤压应力场,南段为北东-南西向的挤压应力场,该地震是发生在区域性挤压应力场状态下。这种应力场空间变化可能是地震断层几何学空间变化导致的。其同震应力场与该地区现代区域应力场是一致的,这说明郯城地震并未造成震后应力场调整或震后应力场调整时间较短,未影响到现今应力场。  相似文献   

15.
We analyse the source process and the aftershock distribution of the April 21, 1995, Ventimiglia, ML=4.7 earthquake using the records of permanent high dynamic broad-band seismic stations and a temporary network deployed on land and at sea few hours after the earthquake. This event occurred on the western Mediterranean coast, near the border between Italy and France, at a depth of 9 km, at a point where Alpine tectonic units and Late Oligocene extensional structure overlap and are currently undergoing compressional stress. The focal solutions of the mainshock and three aftershocks depict a dominant reverse faulting with an important strike-slip component, which underlines two nodal planes: a NW–SE-dipping north fault and a NE–SW-dipping south fault. We operate a careful re-location of the aftershocks using a master-event technique and data from the temporal network and obtain a predominant NW–SE alignment. Then, we analyse the rupture process using an empirical Green function approach. We find that the mainshock broke a 0.5 to 1 km fault length and that the rupture propagated during 0.1–0.2 s probably in a SE direction. Those two arguments, together with the recent fault trace that exists close to the epicentre, leads us to propose that this event expresses the reactivation of an old transverse NW–SE structure with a dextral movement. This study thus emphasizes the role of inherited, deep-rooted, transcurrent features in the tectonic reactivation of this passive margin. It also underlines the importance of combining short-period and broad-band seismology to better resolve and understand regional tectonic processes in areas of moderate seismic activity and complex geology.  相似文献   

16.
Seismic investigations to determine the crustal structure in the southwestern part of the Iberian Peninsula have been initiated in 1970. First experiments were carried out during July 1970, when a series of ten shots was fired off Cabo de Sines (Portugal) in shallow water and recorded up to distances of 185 km along a SE-profile towards Huelva (Spain). The profile was reversed in December 1970, when a series of twelve shots was fired off the south coast near Fuzeta (east of Faro) and recorded up to distances of about 260 km along a NW-profile towards Cabo da Roca west of Lisboa. A considerable increase in the seismic efficiency of the explosions could be achieved by generating standing waves in the water.

The structure deduced exhibits some peculiar features. Below the Palaeozoic sediments a fairly high velocity of 6.4 km/sec is found for the dome-shaped basement in that area. The lower crust, which is separated from the upper crust by a distinct velocity inversion (with a minimum velocity of about 5.3–5.6 km/sec), is characterized by a velocity of 7.1 km/sec. From the geological evidence and the sequence of seismic velocities it must be concluded that the upper crustal block in the southwestern part of the Iberian Peninsula has been uplifted by about 2–5 km since Permo-Triassic time, thus emphasizing the significance of vertical movement in tectonic activity.

The top of the upper mantle (8.15 km/sec) was detected at a depth of 30 km close to the Atlantic coast in the west, while near the Algarve coast in the south the depth to the M-discontinuity is about 34–35 km. This result in conjunction with studies of earthquake focal mechanisms confirms the suggestion that the Iberian block is being underthrust under the African plate.  相似文献   


17.
The landslide area along the Tachia River catchment of central Taiwan was investigated using the remote sensing images of various typhoon and earthquake events taken from 1996 to 2004 and the sediment discharge measured at hydrometric stations. Our findings indicate that 88% of the coseismic landslides triggered by the 1999 Chi-Chi earthquake were first-time occurrences. After the Chi-Chi earthquake, 59% of the landslide area was reactivated during typhoon Toraji and 66% during typhoon Mindulle. The landslides prone to reactivation were on the formations with closely spaced discontinuities. It is suggested that further rock-mass defects in the formations were added or opened by the earthquake, and that the landslide areas continued to extend until the end of 2004. Post-1999 rainstorms delivered large amounts of colluvial sediment into the main channel, leading to a 2-fold increase in post-seismic sediment discharge while the precipitation was only half that of the pre-earthquake rate.  相似文献   

18.
Field investigations allow to constrain the co-seismic surface rupture zone of ~400km with a strike-slip up to 16.3 m associated with the 2001Mw 7.8 Central Kunlun earthquake that occurred along the western segment of the Kunlun fault,northern Tibet.The co-seismic rupture structures are almost duplicated on the pre-existing fault traces of the Kunlun fault.The deformational characteristics of the co-seismic surface ruptures reveal that the earthquake had a nearly pure strike-slip mechanism.Theg eologic and topographice vidence clearly shows that spatial distributions of the co-seismic surface ruptures are re-stricted by the pre-existing geological structures of the Kunlun fault.  相似文献   

19.
Hourly monitoring of electrical conductivity (EC) of groundwater along with groundwater levels in the 210 m deep boreholes (specially drilled for pore pressure/earthquake studies) and soil Rn gas at 60 cm below ground level in real time, in the Koyna-Warna region (characterized by basaltic rocks, >1500 m thick, and dotted with several sets of fault systems), western India, provided strong precursory signatures in response to two earthquakes (M 4.7 on 14/11/09, and M 5.1 on 12/12/09) that occurred in the study region. The EC measured in Govare well water showed precursory perturbations about 40 h prior to the M 5.1 earthquake and continued further for about 20 h after the earthquake. In response to the M 4.7 earthquake, there were EC perturbations 8 days after the earthquake. In another well (Koyna) which is located 4 km north of Govare well, no precursory signatures were found for the M 4.7 earthquake, while for M 5.1 earthquake, post-seismic precursors were found 18 days after the earthquake. Increased porosity and reduced pressure head accompanied by mixing of a freshwater component from the top zone due to earthquakes are the suggested mechanisms responsible for the observed anomalies in EC. Another parameter, soil Rn gas showed relatively proportional strength signals corresponding to these two earthquakes. In both the cases, the pre-seismic increase in Rn concentration started about 20 days in advance. The co-seismic drop in Rn levels was less by 30% from its peak value for the M 4.7 earthquake and 50% for the M 5.1 earthquake. The Rn anomalies are attributed to the opening and closing of micro-fractures before and during the earthquake. On line monitoring of these two parameters may be useful to check the entire chemistry change due to earthquake which may help to forecast impending earthquakes.  相似文献   

20.
邵志刚  周朝晖  徐晶  张永久 《地球科学》2014,39(12):1903-1914
通过研究近场强震动记录, 发现汶川Ms8.0地震近场峰值加速度在空间上存在较明显的上盘效应和方向性效应, 与汶川引起的地质灾害空间分布具有较好的一致性.但在所有强震仪所记录的汶川Ms8.0地震同震加速度记录积分所得地壳同震速度中, 有的台站数据存在典型的线性偏移, 有的台站数据除线性偏移外还存在明显的非线性偏移.采用非线性基线改正方法处理汶川Ms8.0强震同震记录, 改正后所得同震位移明显要比线性基线改正更合乎实际情况.以强震动、GPS和InSAR同震位移处理结果做约束, 反演了汶川Ms8.0地震同震位错分布, 对于汶川Ms8.0地震主要同震破裂断裂(北川-映秀断裂), 强震动反演结果不仅较好地刻画了汶川Ms8.0地震同震主断裂上地表破裂空间分布详细变化特征, 同时也较好地反映北端破裂衰减情况, 该结果表明: 强震动资料可以为强震后的救援和灾害评估等工作提供具有参考价值的研究结果; 另一方面, 受数据数量的制约, 用强震动改正后位移反演所得位错分布中仅汉旺断裂南段存在较为明显位错, 强震仪布设时应更多地考虑是否相对均匀地分布在具有发震潜势的断裂周缘, 以期更好地在震后应急救灾中发挥更好的作用.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号