首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
隧洞光面爆破中炮孔堵塞长度的数值分析   总被引:4,自引:1,他引:3  
罗伟  朱传云  祝启虎 《岩土力学》2008,29(9):2487-2491
炮孔堵塞长度是一个直接关系到爆破效果的重要爆破参数。以实际工程为背景,建立不同炮孔堵塞长度的三维有限元模型,运用ANSYS/LS-DANA数值模拟方法,并引入流固耦合方法模拟计算,通过对关键部位的应力进行分析比较,验证了经典爆破理论,获得了最优的堵塞长度,为爆破数值计算提供借鉴,同时为隧洞光面爆破设计提供参考。  相似文献   

2.
单自由面爆破条件下作用在岩体上的最有效破坏力小,而阻碍岩体破坏的作用力很大,使炮孔堵塞长度对爆破振动有较大影响。因此,研究单自由面爆破振动特征的炮孔堵塞长度效应有重要意义。进行了小规模的不同堵塞长度的单自由面爆破试验,并模拟了其爆破过程。研究表明,近距范围内爆破振动速度迅速衰减,中远距离爆破振动速度衰减趋缓;随着堵塞长度的增加,场地系数K不断增加,衰减指数? 总体呈上升趋势;数值模拟振动速度值与实测值误差在15%以内;爆破后不同堵塞长度模型的堵塞物底部空腔半径基本相等,约为装药半径的3倍;试验最优堵塞长度为15~20 cm,相同条件下无堵塞爆破对孔口有效应力场影响较大、对孔底有效应力场影响较小  相似文献   

3.
吴立 《探矿工程》1988,(3):58-60
近年来,随着爆破方法越来越广泛的应用,出现了一些受到人们重视的问题,如起爆方法,装填结构,起爆顺序,炮孔布置,爆破参数,以及炮孔堵塞等。本文仅对炮孔堵塞中的几个关键性问题进行一些分析探讨。  相似文献   

4.
邵红旗 《探矿工程》2019,46(8):56-60
为了防治浅埋近距离煤层群开采时下组煤采出上覆集中倾向煤柱易发生的动力压架灾害,在分析超深孔卸压松动爆破防灾原理基础上,提出了一种超深上仰孔卸压爆破集中煤柱技术,通过理论分析、地面传爆试验及井下工业性试验,解决完善了该技术的3大工艺技术难题:一是利用自主研发的装药装置,解决了超深(最深达110 m)上仰孔(仰角30°)安全快速安装炸药难题;二是根据钻孔爆破裂隙圈半径及煤柱塑性区宽度理论计算结果找到了最佳炮孔布设间距;三是利用地面传爆试验和C-S双液浆凝胶特性试验解决了超长装药段(最长达16 m)炸药安全传爆及炮孔堵塞难题,优化了起爆方法,消除了管道效应,核算了爆破振动安全允许距离,实现了安全、高效封孔。该工艺技术的成功应用表明其具有工程借鉴及推广应用意义。  相似文献   

5.
龚敏  文斌  王德胜 《岩土力学》2012,33(6):1822-1828
穿层抽放是一些高突矿井常用的瓦斯治理手段,在穿层抽放时采用爆破技术已被证明具有良好的抽放效果。以重庆市南桐矿穿层爆破为背景,建立了穿层深孔爆破数学模型;利用数值计算和现场实测抽放数据相结合的方法,分别研究了各爆破孔、控制孔动应力的变化以及爆破应力场强度与抽放效果的关系。研究结果表明,穿层抽放的特点决定了爆破孔与抽放孔的布孔方式。由于炮孔斜穿煤层,煤层各断面动应力场分布极不均匀,药包中心控制孔所受动应力为控制孔中最大。在南桐矿薄煤层试验条件下,药包长度为3.2 m的爆破孔平均破坏半径为0.57 m,较其他两排炮孔大20%以上。炮孔中药包长度是影响瓦斯抽放量的重要因素。爆破孔的平均单孔抽放量较控制孔高55%,爆破钻场较非爆破钻场平均单孔流量大49%。  相似文献   

6.
葛克水  陈庆寿 《现代地质》2000,14(4):489-492
在光缆区附近进行爆破作业 ,为了保证光缆不受任何破坏 ,进行了精心的爆破施工设计。试图通过确定炮孔堵塞长度、装药系数以及与最小抵抗线的最佳关系 ,达到控制飞石的产生及飞石方向的目的。爆破实践证明 ,该设计方案是可行的 ,完全符合施工要求。  相似文献   

7.
运用损伤理论得出了损伤性岩体预裂爆破控制参数-不耦合系数,线装药密度及炮孔间距随损伤因子D变化的规律,并用以优化损伤性岩体的预裂爆破设计参数,为预裂爆破优化设计提供了理论基础。  相似文献   

8.
节理几何特征对预裂爆破效果影响的数值模拟   总被引:1,自引:0,他引:1  
谢冰  李海波  王长柏  刘亚群  夏祥  马国伟 《岩土力学》2011,32(12):3812-3820
运用有限元软件AUTODYN 2D计算爆炸荷载与离散元软件UDEC模拟节理岩体相结合的方法研究了节理几何特征对预裂爆破的影响。通过计算可知,预裂爆破时炮孔间的节理组对预裂成缝的影响明显,当节理法线与炮孔连线夹角在一定范围内时,预裂缝沿炮孔连线方向的平直程度随节理与炮孔连线夹角的增大而逐渐趋于平直,其中当节理组与炮孔连线夹角为90°时成缝效果最好,裂缝与炮孔连线基本重合,与理论分析较一致;节理间距对预裂爆破有较大影响,相同条件下节理间距越小,越难形成连通裂缝,减小炮孔间距有利于小节理间距情况下的预裂缝贯通  相似文献   

9.
刘优平  龚敏  黄刚海 《岩土力学》2012,33(6):1883-1888
针对地下深孔爆破采矿过程中常出现的爆破后冲作用严重以及爆破块度不均匀等若干问题,以南方某铅锌矿实际采用的爆破、炸药和岩石参数为基础,采用ANSYS/LS-DYNA对矿山拟采用的不同装药量、不同耦合系数的6种装药结构建立了数值计算模型。通过分析爆炸仿真过程中的Von Mises有效应力信息,结合爆破破岩机制及Mises屈服理论,确定了深孔爆破的最佳炮孔装药结构。现场试验表明,优化的装药结构爆破块度均匀且爆破后冲作用得到有效控制,基本上解决了矿山深孔侧向爆破存在的问题,研究结果为深孔爆破的优化设计提供理论依据和技术支持。  相似文献   

10.
空气间隔装药爆破机理研究   总被引:3,自引:2,他引:1  
朱红兵  卢文波  吴亮 《岩土力学》2007,28(5):986-990
利用爆轰波理论分析了空气间隔装药炮孔内一维不定常激波的相互作用及其在炮孔堵头、孔底的反射过程,同时分析了孔内各点的压力随时间的变化过程,介绍了空气间隔装药爆破的机理及设计参数。基于此,认为应充分利用空气间隔爆破结构的优势,并在梯段爆破中满足以下两个条件:(1)在设计过程中要尽量使稀疏波及从孔底反射的稀疏波传播过程能在整个孔内每一断面都作用到,即稀疏波到达孔底的时间要比从堵头反射的压力波到达孔底要早;(2)反射压力波应该到达空气与爆生气体接触面的时间比从孔底反射的稀疏波到达空气与爆生气体接触面的时间要早。由此通过计算得到了在梯段爆破工程中合理的空气层长度比例值约为30 %~42 %。计算结论与已有实测成果基本一致。  相似文献   

11.
In blasting, a few or many cracks are driven from the borehole into the rock. But what causes the cracks? The most common theory of breakage consists of two stages; first the shock wave causes radial cracks to form around the hole then the gases penetrate into the cracks, and widen them and make them longer. Another theory presented by Brinkmann suggests that the back damage is primarily controlled by shock and that the gas penetration is the mechanism controlling breakout of the burden. He did his experimental work using blasthole liners. Recent research at SveBeFo has examined this matter further. In a quarry a number of benching holes have been blasted simultaneously. In some of these holes tubular Swellex bolts were inflated and decoupled charges put inside the tubes without stemming. Other holes were identically charged but without the lining. Finally some holes were also stemmed. After blasting the cracks in the remaining rock were studied. There was no difference in crack lengths between holes charged normally (no stemming) and holes where the charges were inside the bolts. On the other hand when stemming was used, the crack lengths increased for some explosives but remained the same for an emulsion explosive. In another set up blasted granite blocks were charged in the same way as above. Then we could also measure the bore hole pressure. The pressure gauge consists of a small carbon resistor inside a steel cylinder. It is called LHM (Location-fixed Hydrodynamic Measuring cup) and is placed at the bottom of the hole. A smaller exit hole from the bottom is drilled for the cables. The paper presents the technique and the results obtained from both the quarry blasting and the blasting of the blocks.  相似文献   

12.
The mechanism by which the explosive energy is transferred to the surrounding rock mass is changed in air-deck blasting. It allows the explosive energy to act repeatedly in pulses on the surrounding rock mass rather than instantly as in the case of concentrated charge blasting. The air-deck acts as a regulator, which first stores energy and then releases it in separate pulses. The release of explosion products in the air gap causes a decrease in the initial bore hole pressure and allows oscillations of shock waves in the air gap. The performance of an air-deck blast is basically derived from the expansion of gaseous products and subsequent multiple interactions between shock waves within an air column, shock waves and stemming base and shock waves and hole bottom. This phenomenon causes repeated loading on the surrounding rock mass by secondary shock fronts for a prolonged period. The length of air column and the rock mass structure are critical to the ultimate results. Several attempts have been made in the past to study the mechanism of air-deck blasting and to investigate its effects on blast performance but a clear understanding of the underlying mechanism and the physical processes to explain its actual effects is yet to emerge. In the absence of any theoretical basis, the air-deck blast designs are invariably carried out by the rules of thumb. The field trials of this technique in different blast environments have demonstrated its effectiveness in routine production blasting, pre-splitting and controlling over break and ground vibrations etc. The air-deck length appropriate to the different rock masses and applications need to be defined more explicitly. It generally ranges between 0.10 and 0.30 times the original charge length. Mid column air-deck is preferred over the top and bottom air-decks. Top air-deck is used especially in situations, which require adequate breakage in the stemming region. The influence of air-deck location within the hole on blast performance also requires further studies. This paper reviews the status of knowledge on the theory and practice of air-deck blasting in mines and surface excavations and brings out the areas for further investigation in this technique of blasting.  相似文献   

13.
A Swedish table of blast damage depths has, in one form or other, been in use since the late-1970s. Its history and the underlying theory are described. New experimental and theoretical findings that point out a number of shortcomings in the table and the underlying theory are presented and discussed. A revised version of the blast damage table was recently introduced in conjunction with new but incomplete recommendations for cautious perimeter blasting. The new table leaves the difficult task of taking into account factory like decoupling, water in the borehole, the rock properties, type of initiation, charge length and the actual bit diameter to the user. This paper discusses different ways of doing this, based on the experimental findings and a recent formula for the prediction of the lengths of radial cracks behind the half-casts. The material presented in this paper is meant to supplement and extend the new Swedish recommendations for cautious perimeter blasting of tunnels, shafts, pits and road cuts.  相似文献   

14.
王伟  李小春 《岩土力学》2009,30(7):1892-1898
依据所分析的无临空面深层岩体爆破增渗的特点,在模型试验相似理论基础上进行无临空面深层岩体爆破增渗模型试验相似律研究。结合内蒙某低渗透砂岩型铀矿工程地质及水文地质实际情况,根据所推导的模型试验相似准则,通过理论分析及试验研究,实现了模型试验的几何条件、边界条件、爆炸荷载及材料的相似,为实施爆破增渗模型试验打下基础。  相似文献   

15.
Airdecking is used in mining for two quite different applications. One is to enhance the fragmentation by amplifying the induced fracturing and the second is for pre-split blasting in which the borehole fracturing is reduced. This paper deals with the first of these effects. A forth coming paper will describe pre-splitting by airdecking. The use of air decks to enhance rock fragmentation and so to reduce explosive costs has been the practice for quite long time. Although a number of studies has been conducted to verify the advantages of blasting with air decks and to investigate the mechanisms involved, the proposed mechanisms still cannot explain clearly the phenomena observed in practice and the design approach adopted for this kind of blasting is still primary based on rules-of-thumb. In this paper, the theory of shock tubes is adopted to (a) investigate the processes of the expanding detonation products, (b) study the interactions between the explosion products and the stemming or bottom of blasthole, and (c) to decide the distribution of the changing pressure of explosion products along blasthole. Numerical simulation and theoretical analyses are then performed to study the physical process of blasting with air decks. Finally, a reasonable value for the airdecking ratio is decided theoretically. It is shown that the pressure-unloading process caused by the propagation of the rarefaction wave and the reflected rarefaction waves in the detonation products plays an important role in the enhanced fragmentation of rock when blasting with air decks. The unloading process can induce tensile stresses of rather high magnitude in the rock mass surrounding blasthole. This favors fracturing of the rock. The reflected shock wave with a magnitude of gas pressure higher than that of the average detonation pressure in a fully charged blasthole acts as the main energy source to break the rock in the air deck and stemming portions. The second and succeeding strain waves induced by the unloading or reloading of the pressurewithin the blasthole also contribute to form the initial fracture network in the rock around the blasthole. It is also revealed that there exists a reasonable range of values for the airdecking ratio. For ANFO, this value varies from 0.13-0.40.  相似文献   

16.
Backbreak is an undesirable side effect of bench blasting operations in open pit mines. A large number of parameters affect backbreak, including controllable parameters (such as blast design parameters and explosive characteristics) and uncontrollable parameters (such as rock and discontinuities properties). The complexity of the backbreak phenomenon and the uncertainty in terms of the impact of various parameters makes its prediction very difficult. The aim of this paper is to determine the suitability of the stochastic modeling approach for the prediction of backbreak and to assess the influence of controllable parameters on the phenomenon. To achieve this, a database containing actual measured backbreak occurrences and the major effective controllable parameters on backbreak (i.e., burden, spacing, stemming length, powder factor, and geometric stiffness ratio) was created from 175 blasting events in the Sungun copper mine, Iran. From this database, first, a new site-specific empirical equation for predicting backbreak was developed using multiple regression analysis. Then, the backbreak phenomenon was simulated by the Monte Carlo (MC) method. The results reveal that stochastic modeling is a good means of modeling and evaluating the effects of the variability of blasting parameters on backbreak. Thus, the developed model is suitable for practical use in the Sungun copper mine. Finally, a sensitivity analysis showed that stemming length is the most important parameter in controlling backbreak.  相似文献   

17.
基于二维斜坡平面滑动失稳力学模型,引入爆破荷载因素,建立了露天爆破荷载作用下岩质边坡失稳的尖点突变理论模型。根据建立的突变模型,探讨了爆破荷载幅值和爆破荷载频率对边坡稳定性的影响规律,导出了边坡的动态自稳临界高度,并提出了失稳的判据条件,结果表明:爆破荷载幅值越大,爆破荷载频率越小,后缘裂缝深度越大,边坡失稳的可能性越高;在爆破荷载作用下,边坡的稳定程度是动态变化的,且随着应力波入射角的增大,边坡失稳破坏的可能性不断提高。以大孤山露天矿内的两处边坡为例,计算了边坡的动安全系数及动态自稳临界高度,利用边坡当前实际的稳定情况验证了提出的边坡失稳判据的合理性,为预防露天矿爆破在开挖过程中边坡岩体的动力失稳提供了一定的理论支持。  相似文献   

18.
Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to complexity of flyrock analysis. Existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict and control flyrock in blasting operation of Sangan iron mine, Iran incorporating rock properties and blast design parameters using artificial neural network (ANN) method. A three-layer feedforward back-propagation neural network having 13 hidden neurons with nine input parameters and one output parameter were trained using 192 experimental blast datasets. It was also observed that in ascending order, blastability index, charge per delay, hole diameter, stemming length, powder factor are the most effective parameters on the flyrock. Reducing charge per delay caused significant reduction in the flyrock from 165 to 25 m in the Sangan iron mine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号