首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
To evaluate the potential of (U–Th)/He geochronometry and thermochronometry of zircon, we measured He diffusion characteristics in zircons from a range of quickly and slowly cooled samples, (U–Th)/He ages of zircons from the quickly cooled Fish Canyon Tuff, and age-paleodepth relationships for samples from 15 to 18 km thick crustal section of the Gold Butte block, Nevada. (U–Th)/He ages of zircons from the Fish Canyon Tuff are consistent with accepted ages for this tuff, indicating that the method can provide accurate ages for quickly cooled samples. Temperature-dependent He release from zircon is not consistent with thermally activated volume diffusion from a single domain. Instead, in most samples apparent He diffusivity decreases and activation energy (Ea) increases as cycled step-heating experiments proceed. This pattern may indicate a range of diffusion domains with distinct sizes and possibly other characteristics. Alternatively, it may be the result of ongoing annealing of radiation damage during the experiment. From these data, we tentatively suggest that the minimum Ea for He diffusion in zircon is about 44 kcal/mol, and the minimum closure temperature (Tc, for a cooling rate of 10 °C/myr) is about 190 °C. Age–paleodepth relationships from the Gold Butte block suggest that the base of the zircon He partial retention zone is at pre-exhumation depths of about 9.5–11 km. Together with constraints from other thermochronometers and a geothermal gradient derived from them in this location, the age–depth profile suggests a He Tc of about 200 °C for zircon, in reasonable agreement with our interpretation of the laboratory measurements. A major unresolved question is how and when radiation damage effects become significant for He loss from this mineral.  相似文献   

2.
Helium diffusion from apatite is a sensitive function of the volume fraction of radiation damage to the crystal, a quantity that varies over the lifetime of the apatite. Using recently published laboratory data we develop and investigate a new kinetic model, the radiation damage accumulation and annealing model (RDAAM), that adopts the effective fission-track density as a proxy for accumulated radiation damage. This proxy incorporates creation of crystal damage proportional to α-production from U and Th decay, and the elimination of that damage governed by the kinetics of fission-track annealing. The RDAAM is a version of the helium trapping model (HeTM; Shuster D. L., Flowers R. M. and Farley K. A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett.249, 148-161), calibrated by helium diffusion data in natural and partially annealed apatites. The chief limitation of the HeTM, now addressed by RDAAM, is its use of He concentration as the radiation damage proxy for circumstances in which radiation damage and He are not accumulated and lost proportionately from the crystal.By incorporating the RDAAM into the HeFTy computer program, we explore its implications for apatite (U-Th)/He thermochronometry. We show how (U-Th)/He dates predicted from the model are sensitive to both effective U concentration (eU) and details of the temperature history. The RDAAM predicts an effective He closure temperature of 62 °C for a 28 ppm eU apatite of 60 μm radius that experienced a 10 °C/Ma monotonic cooling rate; this is 8 °C lower than the 70 °C effective closure temperature predicted using commonly assumed Durango diffusion kinetics. Use of the RDAAM is most important for accurate interpretation of (U-Th)/He data for apatite suites that experienced moderate to slow monotonic cooling (1-0.1 °C/Ma), prolonged residence in the helium partial retention zone, or a duration at temperatures appropriate for radiation damage accumulation followed by reheating and partial helium loss. Under common circumstances the RDAAM predicts (U-Th)/He dates that are older, sometimes much older, than corresponding fission-track dates. Nonlinear positive correlations between apatite (U-Th)/He date and eU in apatites subjected to the same temperature history are a diagnostic signature of the RDAAM for many but not all thermal histories.Observed date-eU correlations in four different localities can be explained with the RDAAM using geologically reasonable thermal histories consistent with independent fission-track datasets. The existence of date-eU correlations not only supports a radiation damage based kinetic model, but can significantly limit the range of acceptable time-temperature paths that account for the data. In contrast, these datasets are inexplicable using the Durango diffusion model. The RDAAM helps reconcile enigmatic data in which apatite (U-Th)/He dates are older than expected using the Durango model when compared with thermal histories based on apatite fission-track data or other geological constraints. It also has the potential to explain at least some cases in which (U-Th)/He dates are actually older than the corresponding fission-track dates.  相似文献   

3.
Weathering geochronology by (U-Th)/He dating of goethite   总被引:3,自引:0,他引:3  
Nine samples of supergene goethite (FeOOH) from Brazil and Australia were selected to test the suitability of this mineral for (U-Th)/He dating. Measured He ages ranged from 61 to 8 Ma and were reproducible to better than a few percent despite very large variations in [U] and [Th]. In all samples with internal stratigraphy or independent age constraints, the He ages corroborated the expected relationships. These data demonstrate that internally consistent He ages can be obtained on goethite, but do not prove quantitative 4He retention. To assess possible diffusive He loss, stepped-heating experiments were performed on two goethite samples that were subjected to proton irradiation to produce a homogeneous distribution of spallogenic 3He. The 3He release pattern indicates the presence of at least two diffusion domains, one with high helium retentivity and the other with very low retentivity at Earth surface conditions. The low retentivity domain, which accounts for ∼ 5% of 3He, contains no natural 4He and may represent poorly crystalline or intergranular material which has lost all radiogenic 4He by diffusion in nature. Diffusive loss of 3He from the high retentivity domain is independent of the macroscopic dimensions of the analyzed polycrystalline aggregate, so probably represents diffusion from individual micrometer-size goethite crystals. The 4He/3He evolution during the incremental heating experiments shows that the high retentivity domain has retained 90%-95% of its radiogenic helium. This degree of retentivity is in excellent agreement with that independently predicted from the helium diffusion coefficients extrapolated to Earth surface temperature and held for the appropriate duration. Considering both the high and low retentivity domains, these data indicate that one of the samples retained 90% of its radiogenic 4He over 47.5 Ma and the other retained 86% over 12.3 Ma. Thus while diffusive-loss corrections to supergene goethite He ages are required, these initial results indicate that the corrections are not extremely large and can be rigorously quantified using the proton-irradiation 4He/3He method.  相似文献   

4.
Zircon fission-track (FT) and U–Pb analyses were performed on zircon extracted from a pseudotachylyte zone and surrounding rocks of the Asuke Shear Zone (ASZ), Aichi Prefecture, Japan. The U–Pb ages of all four samples are  67–76 Ma, which is interpreted as the formation age of Ryoke granitic rocks along the ASZ. The mean zircon FT age of host rock is 73 ± 7 (2σ) Ma, suggesting a time of initial cooling through the zircon closure temperature. The pseudotachylyte zone however, yielded a zircon FT age of 53 ± 9 (2σ) Ma, statistically different from the age of the host rock. Zircon FTs showed reduced mean lengths and intermediate ages for samples adjacent to the pseudotachylyte zone. Coupled with the new zircon U–Pb ages and previous heat conduction modeling, the present FT data are best interpreted as reflecting paleothermal effects of the frictional heating of the fault. The age for the pseudotachylyte coincides with the change in direction of rotation of the Pacific plate from NW to N which can be considered to initialize the NNE–SSW trending sinistral–extensional ASZ before the Miocene clockwise rotation of SW Japan. The present study demonstrates that a history of fault motions in seismically active regions can be reconstructed by dating pseudotachylytes using zircon FT thermochronology.  相似文献   

5.
一种约束盆地低温热历史的裂变径迹技术   总被引:1,自引:0,他引:1  
裂变径迹(FT)技术是根据矿物中铀裂变产生的辐射损伤特性进行分析的低温热年代技术。随着对FT退火行为和实验退火模型研究的深入,使得这一技术成为约束沉积盆地低温热历史的重要手段。Laslett等、Crowley等和Ketcham等先后提出3个重要的磷灰石FT实验退火模型,其中以Ketcham等的退火模型研究最为深入,它分析了磷灰石类型、时间、温度和化学成分对其径迹退火的影响,使用c轴投射径迹长度和Dpar等参数,形成了描述磷灰石FT多元动力学退火的数学模型。锆石FT与U-Th/He技术、Ro值、地表温度和地层年龄等,均是约束磷灰石FT热历史重建的重要约束条件,HeFTy(2009)是进行低温热历史模拟的主要软件之一。  相似文献   

6.
The Song-Kul Basin sits on a plateau at the Northern and Middle Kyrgyz Tien Shan junction. It is a lacustrine basin, occupied by Lake Song-Kul and predominantly developed on igneous basement. This basement was targeted for a multi-method chronological study to identify the different magmatic episodes responsible for basement formation and to constrain the timing of the development of its present-day morphology. Zircon U/Pb dating by LA-ICP-MS revealed four different magmatic episodes: a Late Cambrian (~ 500 Ma) island arc system, a Late Ordovician (~ 450 Ma) subduction related intrusion, an Early Permian (~ 290 Ma) collisional stage, and a Middle to Late Permian (~ 260 Ma) post-collisional magmatic pulse. Middle to Late Triassic (~ 200–230 Ma) titanite fission-track ages and Late Triassic – Early Jurassic (~ 180–210 Ma) apatite fission-track ages and thermal history modeling indicate the Song-Kul basement was already emplaced in the shallow crust at that time. An exhumed fossil apatite fission-track partial annealing zone is recognized in the bordering Song-Kul mountain ranges. The area experienced only minor post-Early Mesozoic denudation. The igneous basement was slowly brought to apatite (U–Th)/He retention temperatures in the Late Cretaceous–Palaeogene. Miocene to present reactivation of the Tien Shan does not manifestly affect this part of the orogen.  相似文献   

7.
New apatite helium and fission-track data from the Otway Basin are consistent with previously published borehole ages, confirming earlier suggestions that existing thermal models for basin evolution should be reevaluated. Analysis of the relationship between helium ages and grain size in newly analyzed samples, as well as in samples previously reported, reveals that grain size variations may contribute to the previously reported scatter in helium ages among aliquots of the same sample. In addition, systematic variations in apatite grain size with borehole depth or temperature may also have a significant effect on the interpretation of borehole helium age data. Incorporation of the observed grain size variations in Otway borehole apatites into forward models based on published thermal histories, principally based on vitrinite reflectance and fission-track data, suggests that existing models for the eastern Otway Basin are broadly consistent with the helium data. In contrast, thermal histories for western basin boreholes, now thought to be at maximum temperatures, predict helium ages that are generally older than the observed ages, implying that basin temperatures were hotter than indicated by the models. This discrepancy is consistent with a Cenozoic heating event in parts of the western Otway Basin similar to that documented for the eastern basin. The relatively wide spread of apparent apatite fission-track (AFT) ages and compositions compared to the restricted age range of helium measurements on coexisting grains, although not conclusive, supports previous suggestions that composition does not appear to affect the sensitivity of the He closure temperature in apatite.  相似文献   

8.
We present a novel age-equation calibration for fission-track age determinations by laser ablation inductively coupled plasma mass spectrometry. This new calibration incorporates the efficiency factor of an internal surface, [ηq]is, which is obtained by measuring the projected fission-track length, allowing the determination of FT ages directly using the recommended spontaneous fission decay constant. Also, the uranium concentrations in apatite samples are determined using a Durango (Dur-2, 7.44 μg/g U) crystal and a Mud Tank (MT-7, 6.88 μg/g U) crystal as uranium reference materials. The use of matrix-matched reference materials allows a reduction in the uncertainty of the uranium measurements to those related to counting statistics, which are ca. 1 % taking into account that no extra source of uncertainty has to be considered. The equations as well as the matrix-matched reference materials are evaluated using well-dated samples from Durango, Fish Canyon Tuff, and Limberg as unknown samples. The results compare well with their respective published ages determined through other dating methods. Additionally, the results agree with traditional fission-track ages using both the zeta approach and the absolute approach, suggesting that the calibration presented in this work can be robustly applied in geological context. Furthermore, considering that fission-track ages can be determined without an age standard sample, the fission-track thermochronology approach presented here is assumed to be a valuable dating tool.  相似文献   

9.
An exhumed crustal section of the Mesozoic Torlesse terrane underlies the Southern Alps collision zone in New Zealand. Since the Late Miocene, oblique horizontal shortening has formed the northeastern–southwestern trending orogen and exhumed the crustal section within it. On the eastern side, rocks are zeolite- to prehnite–pumpellyite-grade greywacke; on the western side rocks, they have the same protolith, but are greenschist to amphibolite facies of the Alpine Schist. Zircon crystals from sediments in east-flowing rivers (hinterland) have pre-orogenic fission-track ages (>80 Ma) and are dominated by pink, radiation-damaged grains (up to 60%). These zircons are derived from the upper 10 km crustal section (unreset FT color zone) that includes the Late Cenozoic zircon partial annealing zone; both fission tracks and color remain intact and unaffected by orogenesis. Many zircon crystals from sediments in west-flowing rivers (foreland) have synorogenic FT ages, and about 80% are colorless due to thermal annealing. They have been derived from rocks that originally lay in the reset FT color zone and the underlying reset FT colorless zone. The reset FT color zone occurs between 250 and 400 °C. In this zone, zircon crystals have color but reset FT ages that reflect the timing of orogenesis.  相似文献   

10.
Apatite fission-track (AFT) dating applied to uplifted Variscan basement blocks of the Bavarian Forest is employed to unravel the low-temperature history of this segment of the Bohemian Massif. Twenty samples were dated and confined track lengths of four samples were measured. Most samples define Cretaceous APT ages between 110 and 82 Ma (Albian to Campanian) and three samples give older ~148–140 Ma (Jurassic–Cretaceous boundary) ages. No discernible regional age variations exist between the areas north-east and south-west of the Pfahl shear zone, but >500 m post-Jurassic and post-Cretaceous vertical offsets along this and other faults can be inferred from elevation profile analyses. The AFT ages clearly postdate the Variscan exhumation history of the Bavarian Forest. Thermal modeling reveals that the ages are best explained by a slight reheating of the basement rocks to temperatures within the apatite partial annealing zone during the middle and late Jurassic and/or by late Cretaceous marine transgression causing burial heating, which affected marginal low-lying areas of the Bohemian Massif and the Bavarian Forest. Late Jurassic period was followed by enhanced cooling through the 120–60 °C temperature interval during the subsequent exhumation phase for which denudation rates of ~100 m myr?1 were calculated. On a regional scale, Jurassic–Cretaceous AFT ages are ubiquitous in marginal structural blocks of the Bohemian Massif and seem to reflect the exhumation of these zones more distinctly compared to central parts.  相似文献   

11.
Zircon fission track (ZFT), apatite fission track (AFT) and (U–Th)/He thermochronometric data are used to reconstruct the Cenozoic exhumation history of the South China continental margin. A south to north sample transect from coast to continental interior yielded ZFT ages between 116.6 ± 4.7 Ma and 87.3 ± 4.0, indicating that by the Late Cretaceous samples were at depths of 5–6 km in the upper crust. Apatite FT ages range between 60.9 ± 3.6 and 37.3 ± 2.3 Ma with mean track lengths between 13.26 ± 0.16 µm and 13.95 ± 0.19 µm whilst AHe ages are marginally younger 47.5 ± 1.9–15.3 ± 0.5 Ma. These results show the sampled rocks resided in the top 1–1.5 km of the crust for most of the Cenozoic. Thermal history modeling of the combined FT and (U–Th)/He datasets reveal a common three stage cooling history which differed systematically in timing inland away from the rifted margin. 1) Initial phase of rapid cooling that youngs to the north, 2) a period of relative (but not perfect) thermal stasis at ~ 70–60 °C which increases in duration from the south to the north; 3) final-stage cooling to surface temperatures that initiated in all samples between 15 and 10 Ma. The timing and pattern of rock uplift and erosion does not fit with conventional passive margin landscape models that require youngest exhumation ages to be concentrated at or close to the rifted margin. The history of South China margin is more complex aided by weakened crust from the active margin period that immediately preceded rifting and opening of the South China Sea. This rheological inheritance created a transition zone of steeply thinned crust that served as a flexural filter disconnecting the northern margin of the South China block and site of active rifting to the south. Consequently whilst the South China margin displays many features of a rifted continental margin its exhumation history does not conform to conventional images of a passive margin.  相似文献   

12.
U-Th rich mineral inclusions in apatite are often held responsible for erroneously old (U-Th)/He ages, because they produce “parentless” He. Three aspects associated with this problem are discussed here. First, simple dimensional considerations indicate that for small mineral inclusions, the parentless helium problem might not be as serious as generally thought. For example, a mineral inclusion that is 10% the length, width and height of its host apatite needs to be a thousand times more concentrated in U and Th to produce an equal amount of He. Therefore, single isolated inclusions smaller than a few μm are unlikely to contribute significant helium. For larger or more abundant inclusions, the parentless helium problem can be solved by dissolution of the apatite and its inclusions in hot HF. Second, besides creating parentless helium, inclusions also complicate α-ejection corrections. Mathematical exploration of this latter problem for spherical geometries reveals that for randomly distributed inclusions, the probability distribution of single-grain ages is predicted to have a sharp mode at the mean age, with tails towards younger and older ages. Multiple-grain measurements will yield accurate and precise age estimates if 10 or more randomly distributed α-emitting mineral inclusions are present in a sample. Third, thermal modeling indicates that mineral inclusions have a non-trivial but minor (<5 °C) effect on the closure temperature. These predictions were tested on apatites from rapidly cooled migmatites of Naxos (Greece) which contain abundant U-rich zircon inclusions. Thirty-seven samples were subjected to two kinds of treatment. The “pooled” age (i.e., the synthetic multi-grain age computed from a number of single-grain analyses) of four inclusion-free samples (13 apatites), prepared in HNO3 is 10.9 Ma, close to apatite and zircon fission-track ages from the same rock. (U-Th)/He ages of 14 inclusion-bearing samples dissolved in HNO3 range between 9 and 45 Ma, with a pooled age of 22.6 Ma. The ages of 19 HF-treated samples range between 5 and 16 Ma, with 10 of 14 single-grain samples between 9 and 13 Ma and a pooled age of 10.9 Ma. These observations agree with the theoretical predictions and support the addition of HF-treated apatite (U-Th)/He dating to the thermochronological toolbox.  相似文献   

13.
(U–Th)/He and fission-track analyses of apatite along deep-seated tunnels crossing high-relief mountain ranges offer the opportunity to investigate climate-tectonic forcing on topographic evolution. In this study, the thermochronologic analysis along the Simplon tunnel (western-central Alps; Italy and Switzerland) constrains in detail the mechanisms controlling the topographic evolution of the Simplon Massif. Cooling rates vary from about 10°C/Ma at about 10 Ma to about 35°C/Ma in the last 3 Ma. Such increase in cooling rates corresponds to the inception of glacial cycles in the northern hemisphere. Age patterns show correlation with faults distribution until 2 Ma, suggesting that tectonics-controlled rocks exhumed up to that age. After 2 Ma thermo-chronometric data show that the Simplon area has experienced primarily erosional exhumation. All age patterns provided are not affected by topographic effects, thus indicating that present-day topography has been carved in the last 2 Ma, most likely controlled by glacial erosion.  相似文献   

14.
To determine the long-term landscape evolution of the Albertine Rift in East Africa, low-temperature thermochronology was applied and the cooling history constrained using thermal history modelling. Acquired results reveal (1) “old” cooling ages, with predominantly Devonian to Carboniferous apatite fission-track ages, Ordovician to Silurian zircon (U–Th)/He ages and Jurassic to Cretaceous apatite (U–Th–Sm)/He ages; (2) protracted cooling histories of the western rift shoulder with major phases of exhumation in mid-Palaeozoic and Palaeogene to Neogene times; (3) low Palaeozoic and Neogene erosion rates. This indicates a long residence time of the analysed samples in the uppermost crust, with the current landscape surface at a near-surface position for hundreds of million years. Apatite He cooling ages and thermal history models indicate moderate reheating in Jurassic to Cretaceous times. Together with the cooling age distribution, a possible Albertine high with a distinct relief can be inferred that might have been a source area for the Congo Basin.  相似文献   

15.
The (U–Th)/He dating method was applied to fluorite of the La Azul fluorspar deposit, Taxco mining district, Mexico. Ages of ten U-rich (4–94 g/g) samples range from 30 to 33 Ma (mean 32±2 Ma, 1). This age range is interpreted as the time of primary fluorite precipitation and is close to the K/Ar age of sericite from a small fluorspar deposit (Los Tréboles) in the same area, and the K/Ar age of the nearby volcanic succession, which is thought to be the main source of fluorine in both deposits. This age is also in concordance with the very few published ages of epithermal deposits in southern Mexico. The dating of fluorite by other methods, particularly for young samples, is a difficult task. We believe that the (U–Th)/He method, which has been applied before to thermochronological studies of apatite, zircon, titanite and hematite, can be used as a tool for direct dating of fluorite with microgram per gram levels of uranium and thorium.Editorial handling: B. Lehmann  相似文献   

16.
Apatite fission-track analyses indicate that the Kazda? Massif in northwestern Anatolia was exhumed above the apatite partial annealing zone between 20 and 10 Ma (i.e. early-middle Miocene), with a cluster of ages at 17–14 Ma. The structural analysis of low-angle shear zones, high-angle normal faults and strike-slip faults, as well as stratigraphic analysis of upper-plate sedimentary successions and previous radiometric ages, point to a two-stage structural evolution of the massif. The first stage -encompassing much of the rapid thermal evolution of the massif- comprised late Oligocene-early Miocene low-angle detachment faulting and the associated development of small supradetachment grabens filled with a mixture of epiclastic, volcaniclastic and volcanic rocks (Küçükkuyu Fm.). The second stage (Plio-Quaternary) has been dominated by (i) strike-slip faulting related to the westward propagation of the North Anatolian fault system and (ii) normal faulting associated with present-day extension. This later stage affected the distribution of fission-track ages but did not have a component of vertical (normal) movement large enough to exhume a new partial annealing zone. The thermochronological data presented here support the notion that Neogene extensional tectonism in the northern Aegean region has been episodic, with accelerated pulses in the early-middle Miocene and Plio-Quaternary.  相似文献   

17.
《Chemical Geology》2006,225(1-2):91-120
Low temperature thermochronologic techniques (e.g. apatite fission track (AFT) thermochronology and (U–Th)/He dating) constrain near-surface Tt paths and are often applied to uplift/denudation and landscape evolution studies. Samples collected in vertical profiles from granitic walls on either side of the Ferrar Glacier, southern Victoria Land, Antarctica were analyzed using AFT thermochronology and apatite (U–Th)/He dating to further constrain the lowest temperature thermal history of this portion of the Transantarctic Mountains. AFT central ages vary systematically with elevation and together with track length information define a multi-stage cooling/denudation history in the Cretaceous and early Tertiary. Apatite (U–Th)/He single grain age variation with elevation is not as systematic with considerable intra-sample age variation. Although many complicating factors (e.g., U- and Th-rich (micro)inclusions, fluid inclusions, variation in crystal size, α-particle ejection correction, zonation and α-particle ejection correction, implantation of He into a crystal or impediment of He diffusion out of a crystal, and 147Sm-derived α-particles) may contribute to age dispersion, we found that variation in single grain ages correlated with cooling rate. Samples that cooled relatively quickly have less variation in single grain ages, whereas samples that cooled relatively slowly (< 3 °C/m.y.) or resided within an (U–Th)/He partial retention zone (HePRZ) prior to more rapid cooling have a comparatively greater variation in ages.Decay of U and Th via α-particle emission creates a 4He concentration profile dependent upon the initial parent [U,Th] within a crystal. Variation of single grain ages for samples with non-homogeneous [U,Th] distributions will be enhanced with long residence time in the partial retention zone (i.e., slow cooling) because of the relative importance of loss via volume diffusion and loss via α-particle ejection with respect to the [U,Th] zonation and the grain boundary. Correction of ages for α-particle ejection (FT correction factor) typically assumes uniform U and Th distribution within the crystal and when applied to a population of crystals with different U and Th distributions will enhance the variation in ages. Most complicating factors (listed above) for apatite (U–Th)/He ages result in ages that are “too old”. We propose that if considerable variation in (U–Th)/He single grain ages exists, that a weighted mean age is determined once outlier single crystal ages are excluded using the criterion of Chauvenet or a similar approach. We suggest that the “true age” or most representative age for that age population lies between the minimum (U–Th)/He age and the weighted mean age. We apply this approach, coupled with composite age profiles to better constrain the Tt history of the profiles along the Ferrar Glacier. Significant intra-sample variation in single crystal apatite (U–Th)/He ages and other minerals dated by the (U–Th)/He method should be expected, especially when the cooling rate is slow. The variation of (U–Th)/He single crystal ages is therefore another parameter that can be used to constrain low-temperature thermal histories.  相似文献   

18.
Fission track (FT) thermochronometry using zircon has widely been applied to the resolution of a variety of geologic problems, for which the understanding of FT annealing behaviour is essential. Thermal annealing experiments were conducted on FTs in natural zircons having different ages (ranging from ~0.6 to ~70 Ma) and radiation damage levels. We measured horizontal confined track lengths on nine zircon concentrates separated from rapidly cooled volcanic rocks, after 1 hr annealing at 400–700°C. As the annealing temperature increases, the observed tracks show a consistent and systematic length reduction in all samples, and the mean track lengths are hardly distinguishable among the nine samples for the same annealing step. Our results suggest that the thermal annealing characteristics at laboratory time‐scale are concordant among the zircons, regardless of their ages, and that identical annealing kinetics may work for Late Mesozoic to Cenozoic zircons.  相似文献   

19.
Recent work [Shuster D. L., Flowers R. M. and Farley K. A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett.249(3-4), 148-161] revealing a correlation between radiogenic 4He concentration and He diffusivity in natural apatites suggests that helium migration is retarded by radiation-induced damage to the crystal structure. If so, the He diffusion kinetics of an apatite is an evolving function of time and the effective uranium concentration in a cooling sample, a fact which must be considered when interpreting apatite (U-Th)/He ages. Here we report the results of experiments designed to investigate and quantify this phenomenon by determining He diffusivities in apatites after systematically adding or removing radiation damage.Radiation damage was added to a suite of synthetic and natural apatites by exposure to between 1 and 100 h of neutron irradiation in a nuclear reactor. The samples were then irradiated with a 220 MeV proton beam and the resulting spallogenic 3He used as a diffusant in step-heating diffusion experiments. In every sample, irradiation increased the activation energy (Ea) and the frequency factor (Do/a2) of diffusion and yielded a higher He closure temperature (Tc) than the starting material. For example, 100 h in the reactor caused the He closure temperature to increase by as much as 36 °C. For a given neutron fluence the magnitude of increase in closure temperature scales negatively with the initial closure temperature. This is consistent with a logarithmic response in which the neutron damage is additive to the initial damage present. In detail, the irradiations introduce correlated increases in Ea and ln(Do/a2) that lie on the same array as found in natural apatites. This strongly suggests that neutron-induced damage mimics the damage produced by U and Th decay in natural apatites.To investigate the potential consequences of annealing of radiation damage, samples of Durango apatite were heated in vacuum to temperatures up to 550 °C for between 1 and 350 h. After this treatment the samples were step-heated using the remaining natural 4He as the diffusant. At temperatures above 290 °C a systematic change in Tc was observed, with values becoming lower with increasing temperature and time. For example, reduction of Tc from the starting value of 71 to ∼52 °C occurred in 1 h at 375 °C or 10 h at 330 °C. The observed variations in Tc are strongly correlated with the fission track length reduction predicted from the initial holding time and temperature. Furthermore, like the neutron irradiated apatites, these samples plot on the same Ea − ln(Do/a2) array as natural samples, suggesting that damage annealing is simply undoing the consequences of damage accumulation in terms of He diffusivity.Taken together these data provide unequivocal evidence that at these levels, radiation damage acts to retard He diffusion in apatite, and that thermal annealing reverses the process. The data provide support for the previously described radiation damage trapping kinetic model of Shuster et al. (2006) and can be used to define a model which fully accommodates damage production and annealing.  相似文献   

20.
In an attempt to elucidate the pre-Variscan evolution history of the various geological units in the Austrian part of the Bohemian Massif, we have analysed zircons from 12 rocks (mainly orthogneisses) by means of SHRIMP, conventional multi-grain and single-grain U–Pb isotope-dilution/mass-spectrometry. Two of the orthogneisses studied represent Cadomian metagranitoids that formed at ca. 610 Ma (Spitz gneiss) and ca. 580 Ma (Bittesch gneiss). A metagranite from the Thaya batholith also gave a Cadomian zircon age (567±5 Ma). Traces of Neoproterozoic zircon growth were also identified in several other samples, underlining the great importance of the Cadomian orogeny for the evolution of crust in the southern Bohemian Massif. However, important magmatic events also occurred in the Early Palaeozoic. A sample of the Gföhl gneiss was recognised as a 488±6 Ma-old granite. A tonalite gneiss from the realm of the South Bohemian batholith was dated at 456±3 Ma, and zircon cores in a Moldanubian metagranitic granulite gave similar ages of 440–450 Ma. This Ordovician phase of magmatism in the Moldanubian unit is tentatively interpreted as related to the rifting and drift of South Armorica from the African Gondwana margin. The oldest inherited zircons, in a migmatite from the South Bohemian batholith, yielded an age of ca. 2.6 Ga, and many zircon cores in both Moravian and Moldanubian meta-granitoid rocks gave ages around 2.0 Ga. However, rocks from the Moldanubian unit show a striking lack of zircon ages between 1.8 and 1.0 Ga, reflecting an ancestry from Armorica and the North African part of Gondwana, respectively, whereas the Moravian Bittesch gneiss contains many inherited zircons with Mesoproterozoic and Early Palaeoproterozoic ages of ca. 1.2, 1.5 and 1.65–1.8 Ga, indicating a derivation from the South American part of Gondwana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号