首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The Jabali Zn–Pb–Ag deposit is located about 110 km east of Sana'a, the capital of Yemen, along the western border of the Marib-Al-Jawf/Sab'atayn basin. The economic mineralization at Jabali is a nonsulfide deposit, consisting of 8.7 million tons at an average grade of 9.2% zinc, derived from the oxidation of primary sulfides. The rock hosting both primary and secondary ores is a strongly dolomitized carbonate platform limestone of the Jurassic Shuqra Formation (Amran Group). The primary sulfides consist of sphalerite, galena and pyrite/marcasite. Smithsonite is the most abundant economic mineral in the secondary deposit, and is associated with minor hydrozincite, hemimorphite, acanthite and greenockite. Smithsonite occurs as two main generations: smithsonite 1, which replaces both host dolomite and sphalerite, and smithsonite 2, occurring as concretions and vein fillings in the host rock. At the boundary between smithsonite 1 and host dolomite, the latter is widely replaced by broad, irregular bands of Zn-bearing dolomite, where Zn has substituted for Mg. The secondary mineralization evolved through different stages: 1) alteration of original sulfides (sphalerite, pyrite and galena), and release of metals in acid solutions; 2) alteration of dolomite host rock and formation of Zn-bearing dolomite; 3) partial dissolution of dolomite by metal-carrying acid fluids and replacement of dolomite and Zn-bearing dolomite by a first smithsonite phase (smithsonite 1). To this stage also belong the direct replacement of sphalerite and galena by secondary minerals (smithsonite and cerussite); 4) precipitation of a later smithsonite phase (smithsonite 2) in veins and cavities, together with Ag- and Cd-sulfides.The δ18O composition of Jabali smithsonite is generally lower than in other known supergene smithsonites, whereas the carbon isotope composition is in the same range of the negative δ13C values recorded in most supergene nonsulfide ores. Considering that the groundwaters and paleo-groundwaters in this area of Yemen have negative δ18O values, it can be assumed that the Jabali smithsonite precipitated in different stages from a combination of fluids, possibly consisting of local groundwaters variably mixed with low-temperature hydrothermal waters. The carbon isotope composition is interpreted as a result of mixing between carbon from host rock carbonates and soil/atmospheric CO2.The most favorable setting for the development of the Jabali secondary deposit could be placed in the early Miocene (~ 17 Ma), when supergene weathering was favored by major uplift and exhumation resulting from the main phase of Red Sea extension. Low-temperature hydrothermal fluids may have also circulated at the same time, through the magmatically-induced geothermal activity in the area.  相似文献   

2.
Flotation tests for sphalerite, smithsonite and dolomite were carried out in a Hallimond tube at various pH values and two concentrations of collector.Adsorption of 5-alkylsalicylaldoximes on the surface of minerals was examined and isotherms for 5-butylsalicylaldoxime plotted.It was shown that sorption intensity of 5-alkylsalicylaldoximes on the surface of minerals decreased in the order: smithsonite, sphalerite and dolomite.Relationship between length of aliphatic chain and collecting activity of 5-alkylsalicylaldoximes was investigated in microflotation tests in a Hallimond tube.5-Propylsalicylaldoxime proved to have the best selectivity in flotation for the range of parameters studied, taking the difference in flotation rates of smithsonite and dolomite as a criterion.It was found that modifications of pH value resulted in changes in both adsorption and flotation.  相似文献   

3.
One of the main effects of supergene alteration of ore-bearing hydrothermal dolomite in areas surrounding secondary zinc orebodies (Calamine-type nonsulfides) in southwestern Sardinia (Italy) is the formation of a broad halo of Zn dolomite. The characteristics of supergene Zn dolomite have been investigated using scanning electron microscopy and qualitative energy-dispersive X-ray spectroscopy, thermodifferential analysis, and stable isotope geochemistry. The supergene Zn dolomite is characterized by variable amounts of Zn, and low contents of Pb and Cd in the crystal lattice. It is generally depleted in Fe and Mn relative to precursor hydrothermal dolomite (Dolomia Geodica), which occurs in two phases (stoichiometric dolomite followed by Fe-Mn-Zn-rich dolomite), well distinct in geochemistry. Mg-rich smithsonite is commonly associated to Zn dolomite. Characterization of Zn-bearing dolomite using differential thermal analysis shows a drop in temperature of the first endothermic reaction of dolomite decomposition with increasing Zn contents in dolomite. The supergene Zn dolomites have higher δ18O but lower δ13C values than hydrothermal dolomite. In comparison with smithsonite-hydrozincite, the supergene Zn dolomites have higher δ18O, but comparable δ13C values. Formation of Zn dolomite from meteoric waters is indicated by low δ13C values, suggesting the influence of soil-gas CO2 in near-surface environments. The replacement of the dolomite host by supergene Zn dolomite is interpreted as part of a multistep process, starting with a progressive “zincitization” of the dolomite crystals, followed by a patchy dedolomitization s.s. and potentially concluded by the complete replacement of dolomite by smithsonite.  相似文献   

4.
The Silesia–Cracow district in Poland has been one of the world’s principal sources of zinc from nonsulfide zinc ore (Polish: galman). The still remaining nonsulfide ore resources can be estimated at 57 Mt at 5.6% Zn and 1.4% Pb. Nonsulfide mineralization is mainly hosted by Lower Muschelkalk (Triassic) limestone and is associated with different generations of the hydrothermal ore-bearing dolomite (OBD I, II, III). A fundamental ore control is believed to have been exerted by the basement faults, which were repeatedly reactivated during the Alpine tectonic cycle, leading to the formation of horst-and-graben structures: these dislocations may have caused short periods of emersion and the circulation of meteoric waters during the Cenozoic. Nonsulfide ores show a wide range of morphological characteristics and textures. They occur as earthy masses, crystalline aggregates, and concretions in cavities. Breccia and replacement textures are also very common. The most important mineral phases are: smithsonite, Fe–smithsonite, Zn–dolomite, goethite, and Fe–Mn(hydr)oxides. Minor hemimorphite and hydrozincite have also been detected. Two distinct nonsulfide ore types occur: the predominant red galman and the rare white galman. In the white galman, Fe–smithsonite and Zn–dolomite are particularly abundant. This ore type is commonly considered as a peripheral hydrothermal alteration product related to the same fluids that precipitated both the OBD II–III and the sulfides. In contrast, a supergene origin is commonly assumed for the red galman. Evidence of the petrographic and mineralogical difference between white and red galman is also found in stable isotope data. Smithsonite from red galman shows a limited range of δ 13CVPDB values (−10.1 to −11.4‰), and δ 18OVSMOW values (25.3‰ to 28.5‰, mean 26.8 ± 0.3‰). The uniform and low carbon isotope values of red galman smithsonite are unusual for supergene carbonate-hosted deposits and indicate the predominance of a single organic carbon source. Smithsonite from white galman has a more variable, slightly more positive carbon isotope (−2.9‰ to −7.4‰), but broadly similar oxygen isotope composition (26.8‰ to 28.9‰). The relationship of the white galman ore with the hydrothermal system responsible for OBD II and sulfide generation is still uncertain. The most important paleoweathering events took place in both Lower and Upper Silesia during Late Cretaceous up to Paleogene and early Neogene time. During this period, several short-lasting emersions and intense weathering episodes facilitated the formation of sinkholes in the Triassic carbonate rocks and the oxidation of sulfide orebodies through percolating meteoric waters. These phenomena may have lasted until the Middle Miocene.  相似文献   

5.
In situ Atomic Force Microscopy (AFM) and Lateral Force Microscopy (LFM) studies on dolomite (101?4) were performed during exposure to supersaturated aqueous solutions (supersaturated in dolomite, calcite, aragonite, vaterite, huntite and magnesite) at pH = 9 at various Ca2+/Mg2+ aqueous ion activity ratios. At high saturation ratios, rapid growth of a single layer (∼3 Å thick) of a carbonate followed by much slower growth of a second layer was observed. Growth of the second layer was highly inhibited, suggesting that the first layer was essentially self-limited, and inhibited further layer-by-layer growth. The growth of the first layer was observed over a wide range of Ca2+/Mg2+ ratios, suggesting that the dolomite surface is favorable to formation of a range of Ca-Mg carbonates. LFM data revealed contrast in the tip-surface frictional forces on the first grown layer, but this contrast was only observed in layers grown from middle to high Ca2+/Mg2+ solutions. Thus, LFM may have detected or responded to differences in the structure and/or composition between the first layer relative and the dolomite substrate. Dissolution of the first layer occurred from significantly supersaturated solutions relative to ordered stoichiometric dolomite permitting an estimate of the excess interfacial strain energy of up to 10 mJ/m2.  相似文献   

6.
The re-vegetation of soils contaminated by potentially harmful metals is generally considered a suitable option to reduce the metal dispersion in surrounding environments. A continuous flow experiment was conducted to quantitatively assess the effect of Italian ryegrass (Lolium multiflorum Lam.) root activity on the weathering of smithsonite (ZnCO3), a common Zn mineral. At the end of the experiment (10 days), the total amount of Zn released by smithsonite was increased by a factor of 2.25 in the presence of plants. This increase was due not only to plant uptake but also to the enhancement of the Zn release into leachates. The rate of Zn release from smithsonite to leachates was 2.9 × 10−4 μg g−1 s−1 and 1.5 × 10−4 μg g−1 s−1 in the presence and the absence of plants, respectively. The strong correlation (= 0.95; < 0.001) between concentrations of Zn and dissolved organic C (DOC) produced by the rhizosphere activity in leachates indicated that organic root exudates and secretions were closely involved in smithsonite weathering. Although the results are derived from laboratory study, and further in situ investigations over the long term are needed, they clearly highlighted that plants can enhance metal release into the environment by accelerating mineral weathering. Therefore, it is suggested that the ability of plants to alter metal phases in soils should be further taken into account when re-vegetation strategies are proposed for the rehabilitation of metal-polluted soils.  相似文献   

7.
The data given in the literature for the infra-red identification of carbonate minerals is summarised, and a technique is described which may be used to identify magnesite, smithsonite, dolomite, rhodochrosite, calcite, aragonite, strontianite, cerussite and witherite by means of their infra-red absorption bands. Two quantitative applications of the use of infra-red spectroscopy are considered and techniques are outlined for the determination of calcite-dolomite ratios in carbonate rocks, and calcite-aragonite ratios in shell material.  相似文献   

8.
This paper reports a study of the flocculation and dispersion of suspensions of dolomite by acrylate polymers of various molecular weights.The mechanism by which dispersion of dolomite occurs is interpreted on the basis of experimental results of dispersion tests, zeta potential and polymer adsorption measurements. From these data, it is concluded that electrostatic effects must not be ignored in explaining the behaviour of mineral suspensions.In the specific case of dolomite, the electric charge interactions appear to play a fundamental role and to be mainly responsible for the dispersion effect observed with polymers of low molecular weight (± 10,000). At high pH values (between 9.5 and 11.2), dolomite slimes can be dispersed, although the coverage of the mineral surface by the polymer is limited to 25%. On the other hand, when a polymer of high molecular weight (about 1,000,000) is used, this factor reaches values above 50%.  相似文献   

9.
Estuarine systems are complex environments where seasonal and spatial variations occur in concentrations of suspended particulate matter, in primary constituents, and in organic matter content. This study investigated in the laboratory the flocculation potential of estuarine-suspended particulate matter throughout the year in order to better identify the controlling factors and their hierarchy. Kinetic experiments were performed in the lab with a “video in lab” device, based on a jar test technique, using suspended sediments sampled every 2 months over a 14-month period at three stations in the Seine estuary (France). These sampling stations are representative of (1) the upper estuary, dominated by freshwater, and (2) the middle estuary, characterized by a strong salinity gradient and the presence of an estuarine turbidity maximum. Experiments were performed at a constant low turbulent shear stress characteristic of slack water periods (i.e., a Kolmogorov microscale >1,000 μm). Flocculation processes were estimated using three parameters: flocculation efficiency, flocculation speed, and flocculation time. Results showed that the flocculation that occurred at the three stations was mainly influenced by the concentration of the suspended particulate matter: maximum floc size was observed for concentrations above 0.1 g l−1 while no flocculation was observed for concentrations below 0.004 g l−1. Diatom blooms strongly enhanced flocculation speed and, to a lesser extent, flocculation efficiency. During this period, the maximum flocculation speed of 6 μm min−1 corresponded to a flocculation time of less than 20 min. Salinity did not appear to automatically enhance flocculation, which depended on the constituents of suspended sediments and on the content and concentration of organic matter. Examination of the variability of 2D fractal dimension during flocculation experiments revealed restructuring of flocs during aggregation. This was observed as a rapid decrease in the floc fractal dimension from 2 to 1.4 during the first minutes of the flocculation stage, followed by a slight increase up to 1.8. Deflocculation experiments enabled determination of the influence of turbulent structures on flocculation processes and confirmed that turbulent intensity is one of the main determining factors of maximum floc size.  相似文献   

10.
Many Broken Hill (New South Wales) specimens labelled ‘zinco‐calcite’ in museum and private collections are snow‐white, globular forms with a sparkling appearance, on a coronadite or limonite matrix. X‐ray diffraction and microprobe analyses show the globules have a core of nearly pure calcite, overlain by colourless, drusy zincian dolomite with up to 4 mol % ZnCO3 and up to 7 mol % excess CaCO3. Although Zn is abundant in the Broken Hill orebody, it apparently entered carbonate, mainly as smithsonite, only during formation of the oxidised zone.  相似文献   

11.
Hypogene Zn carbonate ores in the Angouran deposit,NW Iran   总被引:1,自引:0,他引:1  
The world-class Angouran nonsulfide Zn–Pb deposit is one of the major Zn producers in Iran, with resources estimated at about 18 Mt at 28% Zn, mainly in the form of the Zn carbonate smithsonite. This study aims to characterize these carbonate ores by means of their mineralogy and geochemistry, which has also been extended to the host rocks of mineralization and other local carbonate rock types, including the prominent travertines in the Angouran district, as well as to the local spring waters. Petrographical, chemical, and stable isotope (O, H, C, Sr) data indicate that the genesis of the Zn carbonate ores at Angouran is fairly distinct from that of other “classical” nonsulfide Zn deposits that formed entirely by supergene processes. Mineralization occurred during two successive stages, with the zinc being derived from a preexisting sulfide ore body. A first, main stage of Zn carbonates (stage I carbonate ore) is associated with both preexisting and subordinate newly formed sulfides, whereas a second stage is characterized by supergene carbonates (Zn and minor Pb) coexisting with oxides and hydroxides (stage II carbonate ore). The coprecipitation of smithsonite with galena, pyrite and arsenopyrite, as well as the absence of Fe- and Mn-oxides/hydroxides and of any discernible oxidation or dissolution of the sphalerite-rich primary sulfide ore, shows that the fluids responsible for the main, stage I carbonate ores were relatively reduced and close to neutral to slightly basic pH with high fCO2. Smithsonite δ18OVSMOW values from stage I carbonate ore range from 18.3 to 23.6‰, while those of stage II carbonate ore show a much smaller range between 24.3 and 24.9‰. The δ13C values are fairly constant in smithsonite of stage I carbonate ore (3.2–6.0‰) but show a considerable spread towards lower δ13CVPDB values (4.6 to −11.2‰) in stage II carbonate ore. This suggests a hypogene formation of stage I carbonate ore at Angouran from low-temperature hydrothermal fluids, probably mobilized during the waning stages of Tertiary–Quaternary volcanic activity in an environment characterized by abundant travertine systems throughout the whole region. Conversely, stage II carbonate ore is unambiguously related to supergene weathering, as evidenced by the absence of sulfides, the presence of Fe-Mn-oxides and arsenates, and by high δ18O values found in smithsonite II. The variable, but still relatively heavy carbon isotope values of supergene smithsonite II, suggests only a very minor contribution by organic soil carbon, as is generally the case in supergene nonsulfide deposits.  相似文献   

12.
The Late Jurassic-early Senonian Cehennemdere Formation extending in an E-W direction in a wide area at the south of the Bolkar Mountains (Central Taurides, Turkey) is composed of platform carbonates. The formation was deposited in an environment that was being transformed from a shallow carbonate platform to an open shelf and a continental slope, and was buried until late Paleocene uplift. The formation, with a thickness of about 360 m, was chiefly developed as textures consisting of mudstone and wackestone and has been commonly dolomitized. Based on petrographic and geochemical properties, four types of replacement dolomites and two types of dolomite cements were distinguished. Replacement dolomite (RD), which is cut by low-amplitude stylolites developed as (1) fine crystalline planar-s dolomite (RD1); (2) medium crystalline planar-s dolomite (RD2); (3) medium-coarse crystalline planar-e dolomite (RD3) and; (4) coarse crystalline planar-s (e) dolomite (RD4). Two types of dolomite cements (CD) observed in low abundance and overlie low-amplitude stylolites: (1) coarse crystalline dolomite cement (CD1) filling dissolution voids and fractures in RD1 dolomites, and; (2) rim dolomite cement (CD2) that commonly develops on the space-facing surfaces of RD4 dolomite. Replacement dolomites are non-stoichiometric (Ca54–59Mg41–46), have similar geochemical properties, and are generally dull red/non luminescent in appearance. Replacement dolomite is represented by δ18O values from −4.5 to −0.5‰ VPDB, δ13C values of −0.7 to 2.7‰ VPDB, and 87Sr/86Sr ratios ranging from 0.707178 to 0.707692. Petrographic and geochemical data indicate that replacement dolomite (particularly RD2, RD3, and RD4 dolomite) was formed at shallow-intermediate burial depths during the Late Jurassic-Early Cretaceous, from seawater and/or from slightly modified seawater. The replacement dolomite (RD) was then recrystallized at increased burial depths and temperatures. Dolomite cements are similar to replacement dolomites in that they are non-stoichiometric (Ca55Mg45) and have similar trace element compositions. CD1 dolomite, which cuts low-amplitude stylolites, was formed during intermediate to deep burial following stylolite development. CD2 dolomite was precipitated in intercrystal pores in association with RD4 dolomite. Remaining pore space was filled with bitumen.  相似文献   

13.
The carbonate-hosted Kabwe Pb–Zn deposit, Central Zambia, has produced at least 2.6 Mt of Zn and Pb metal as well as minor amounts of V, Cd, Ag and Cu. The deposit consists of four main epigenetic, pipe-like orebodies, structurally controlled along NE–SW faults. Sphalerite, galena, pyrite, minor chalcopyrite, and accessory Ge-sulphides of briartite and renierite constitute the primary ore mineral assemblage. Cores of massive sulphide orebodies are surrounded by oxide zones of silicate ore (willemite) and mineralized jasperoid that consists largely of quartz, willemite, cerussite, smithsonite, goethite and hematite, as well as numerous other secondary minerals, including vanadates, phosphates and carbonates of Zn, Pb, V and Cu.Galena, sphalerite and pyrite from the Pb–Zn rich massive orebodies have homogeneous, negative sulphur isotope ratios with mean δ34SCDT permil (‰) values of − 17.75 ± 0.28 (1σ), − 16.54 ± 0.0.27 and − 15.82 ± 0.25, respectively. The Zn-rich and Pb-poor No. 2 orebody shows slightly heavier ratios of − 11.70 ± 0.5‰ δ34S for sphalerite and of − 11.91 ± 0.71‰ δ34S for pyrite. The negative sulphur isotope ratios are considered to be typical of sedimentary sulphides produced through bacterial reduction of seawater sulphate and suggest a sedimentary source for the sulphur.Carbon and oxygen isotope ratios of the host dolomite have mean δ13CPDB and δ18OSMOW values of 2.89‰ and 27.68‰, respectively, which are typical of marine carbonates. The oxygen isotope ratios of dolomite correlate negatively to the SiO2 content introduced during silicification of the host dolomite. The depletion in 18O in dolomite indicates high temperature fluid/rock interaction, involving a silica- and 18O-rich hydrothermal solution.Two types of secondary fluid inclusions in dolomite, both of which are thought to be related to ore deposition, indicate temperatures of ore deposition in the range of 257 to 385 and 98 to 178 °C, respectively. The high temperature fluid inclusions contain liquid + vapour + solid phases and have salinities of 15 to 31 eq. wt.% NaCl, whereas the low temperature inclusions consist of liquid + vapour with a salinity of 11.5 eq. wt.% NaCl.Fluid transport may have been caused by tectonic movements associated with the early stages of the Pan-African Lufilian orogeny, whereas ore deposition within favourable structures occurred due to changes in pressure, temperature and pH in the ore solution during metasomatic replacement of the host dolomite. The termination of the Kabwe orebodies at the Mine Club fault zone and observed deformation textures of the ore sulphides as well as analysis of joint structures in the host dolomite, indicate that ore emplacement occurred prior to the latest deformation phase of the Neoproterozoic Lufilian orogeny.  相似文献   

14.
We clarified three stages of dolomitization and secondary changes by studying the petrology and geochemistry characteristics of dolomite from the Ma55–Ma510 sub-members of the Ordovician Majiagou Formation in the Jingxi area in the Ordos Basin: (1) Syngenetic microbial dolomitization is characterized by formation of dolomite with a mainly micrite structure and horse tooth-shape dolomite cements. (2) Seepage reflux dolomitization during the penecontemporaneous period superposed adjustment functions such as recrystallization and stabilization in the middle-deep burial stage, forming dolomites mainly consisting of micro crystal and powder crystal structure. (3) Powder dolomite, fine dolomite, and medium-coarse crystalline dolomite formed in pores and fractures in the middle-deep burial stage. The secondary concussive transgression-regression under a regressive background is an important condition for the occurrence of many stages of dolomitization in the study area. The basin was an occlusive epicontinental sea environment in the Ma5 member of the Ordovician Majiagou Formation sedimentary period. In the sediments, sulfate content was high, which is conducive to the preservation of microbial activity and microbial dolomitization. Micritic dolomite formed by microbial dolomitization provides good migration pathways for seepage reflux dolomitization. Affected by evaporation seawater with increased Mg/Ca ratio, seepage reflux dolomitization was widely developed and formed large-scale dolomite, and underwater uplifts and slopes are favorable areas for dolomite. In the middle-deep burial stage, dolomitizing fluid in the stratum recrystallized or stabilized the previous dolomite and formed a small amount of euhedral dolomite in the pores and fractures.  相似文献   

15.
Dolomite [Ca,Mg(CO3)2] precipitation from supersaturated ionic solutions at Earth surface temperatures is considered kinetically inhibited because of the difficulties experienced in experimentally reproducing such a process. Nevertheless, recent dolomite is observed to form in hypersaline and alkaline environments. Such recent dolomite precipitation is commonly attributed to microbial mediation because dolomite has been demonstrated to form in vitro in microbial cultures. The mechanism of microbially mediated dolomite precipitation is, however, poorly understood and it remains unclear what role microbial mediation plays in natural environments. In the study presented here, simple geochemical methods were used to assess the limitations and controls of dolomite formation in Deep Springs Lake, a highly alkaline playa lake in eastern California showing ongoing dolomite authigenesis. The sediments of Deep Springs Lake consist of unlithified, clay‐fraction dolomite ooze. Based on δ18O equilibria and textural observations, dolomite precipitates from oxygenated and agitated surface brine. The Na‐SO4‐dominated brine contains up to 500 mm dissolved inorganic carbon whereas Mg2+ and Ca2+ concentrations are ca 1 and 0·3 mm , respectively. Precipitation in the subsurface probably is not significant because of the lack of Ca2+ (below 0·01 mm ). Under such highly alkaline conditions, the effect of microbial metabolism on supersaturation by pH and alkalinity increase is negligible. A putative microbial effect could, however, support dolomite nucleation or support crystal growth by overcoming a kinetic barrier. An essential limitation on crystal growth rates imposed by the low Ca2+ and Mg2+ concentrations could favour the thermodynamically more stable carbonate phase (which is dolomite) to precipitate. This mode of unlithified dolomite ooze formation showing δ13C values near to equilibrium with atmospheric CO2 (ca 3‰) contrasts the formation of isotopically light (organically derived), hard‐lithified dolomite layers in the subsurface of some less alkaline environments. Inferred physicochemical controls on dolomite formation under highly alkaline conditions observed in Deep Springs Lake may shed light on conditions that favoured extensive dolomite formation in alkaline Precambrian oceans, as opposed to modern oceans where dolomites only form diagenetically in organic C‐rich sediments.  相似文献   

16.
The styles and mechanisms of deformation associated with many variably dolomitized limestone shear systems are strongly controlled by strain partitioning between dolomite and calcite. Here, we present experimental results from the deformation of four composite materials designed to address the role of dolomite on the strength of limestone. Composites were synthesized by hot isostatic pressing mixtures of dolomite (Dm) and calcite powders (% Dm: 25%-Dm, 35%-Dm, 51%-Dm, and 75%-Dm). In all composites, calcite is finer grained than dolomite. The synthesized materials were deformed in torsion at constant strain rate (3 × 10−4 and 1 × 10−4 s−1), high effective pressure (262 MPa), and high temperature (750 °C) to variable finite shear strains. Mechanical data show an increase in yield strength with increasing dolomite content. Composites with <75% dolomite (the remaining being calcite), accommodate significant shear strain at much lower shear stresses than pure dolomite but have significantly higher yield strengths than anticipated for 100% calcite. The microstructure of the fine-grained calcite suggests grain boundary sliding, accommodated by diffusion creep and dislocation glide. At low dolomite concentrations (i.e. 25%), the presence of coarse-grained dolomite in a micritic calcite matrix has a profound effect on the strength of composite materials as dolomite grains inhibit the superplastic flow of calcite aggregates. In high (>50%) dolomite content samples, the addition of 25% fine-grained calcite significantly weakens dolomite, such that strain can be partially localized along narrow ribbons of fine-grained calcite. Deformation of dolomite grains by shear fracture is observed; there is no intracrystalline deformation in dolomite irrespective of its relative abundance and finite shear strain.  相似文献   

17.
塔里木盆地寒武系盐下白云岩作为重要的战略接替区已成为近年来的研究热点。前人主要集中对寒武系白云岩的形成机制和膏盐岩的封盖作用进行了研究,而关于膏盐岩对白云岩储层的影响则少有涉及。本文总结了塔里木盆地寒武系白云岩储层特征,同时探讨了膏盐岩对白云岩储层的影响机制,以期为寒武系盐下白云岩勘探提供指导。塔里木盆地寒武系白云岩主要分为结晶白云岩和微生物白云岩两大类,其中结晶白云岩又可分为泥微晶白云岩、晶粒白云岩和颗粒白云岩,微生物白云岩又可分为凝块石白云岩、叠层石白云岩和泡沫绵石白云岩。受膏盐岩影响的白云岩储层类型可划分为膏溶孔型白云岩储层、晶间孔型白云岩储层和溶蚀孔型白云岩储层。蒸发潮坪环境中,膏盐岩的沉淀有利于克服白云石化的Mg2+的动力学障碍而形成白云岩,同时,微生物作用下SO24-的还原会促进白云石的沉淀。膏盐岩对白云岩储层孔隙的影响主要体现在:含硬石膏结核泥粉晶白云岩易于形成膏溶孔型白云岩储层;膏盐层较高的热导率有利于倒退溶蚀作用的发生;近地表低温条件下硫酸盐的溶解有利于白云石的沉淀;热化学硫酸盐还原作用形成酸性气体有利于深埋溶蚀作用,形成溶蚀孔型白云岩储层。  相似文献   

18.
Dolomite [CaMg(CO3)2] is abundant in sedimentary rocks throughout the geological record, but it is rarely found in modern sediments. Also, it cannot be precipitated under low‐temperature conditions in the laboratory without microbial mediation and, as a result, its origin remains a long‐standing enigma. This study reports biologically mediated dolomite precipitation in ancient microbial mats and biofilms from the Cambrian Tarim Basin. The ambient temperature at the time of dolomite precipitation was estimated from δ18O values from early diagenetic dolomite, and the presence of structures associated with extracellular polymeric substances (EPS), is composed of fibres arranged in a reticular pattern, would favour epitaxial crystallization of dolomite on an organic substrate. In addition, poorly crystallized dolomite formed nanocrystal aggregates that strongly resemble the morphology and size distribution observed in microbial culture experiments. These lines of evidence confirm that microbial structures can be preserved in ancient dolomite and validate their use as biosignatures.  相似文献   

19.
The Precambrian Dengying Formation is a set of large-scale, extensively dolomitized, carbonate reservoirs occurring within the Sichuan Basin. Petrographic and geochemical studies reveal dolomitization was a direct result of precipitation by chemically distinct fluids occurring at different times and at different intensities. Based on this evidence, dolomitization and multiple fluid flow events are analyzed, and three types of fluid evolution models are proposed. Results of analysis show that Precambrian Dengying Formation carbonates were deposited in a restricted peritidal environment(630–542 Ma). A high temperature and high Mg~(2+) concentration seawater was a direct result of dolomitization for the micrite matrix, and for fibrous aragonite in primary pores. Geochemical evidence shows low δ~(18)O values of micritic dolomite varying from-1.29‰ to-4.52‰ PDB, abundant light rare earth elements(REEs), and low dolomite order degrees. Microbes and meteoric water significantly altered dolomite original chemical signatures, resulting in algal micritic dolomite and the fine-grained, granular, dolosparite dolomite having very negative δ~(18)O values. Finely crystalline cement dolomite(536.3–280 Ma) and coarsely crystalline cement dolomite have a higher crystallization degree and higher order degree. The diagenetic sequence and fluid inclusion evidence imply a linear correlation between their burial depth and homogenization temperatures, which closely resemble the temperature of generated hydrocarbon. Compared with finely crystalline dolomite, precipitation of coarsely crystalline dolomite was more affected by restricted basinal fluids. In addition, there is a trend toward a more negative δ~(18)O value, higher salinity, higher Fe and Mn concentrations, REE-rich. Two periods of hydrothermal fluids are identified, as the exceptionally high temperatures as opposed to the temperatures of burial history, in addition to the presence of high salinity fluid inclusions. The early hydrothermal fluid flow event was characterized by hot magnesium-and silicon-rich fluids, as demonstrated by the recrystallized matrix dolomite that is intimately associated with flint, opal, and microcrystalline quartz in intergranular or intercrystalline pores. This event was likely the result of a seafloor hydrothermal chimney eruption during Episode I of the Tongwan Movement(536.3±5.5 Ma). In contrast, later hydrothermal fluids, which caused precipitation of saddle dolomite, were characterized by high salinity(15–16.05 wt% NaCl equivalent) and homogenization temperatures(250 to 265°C), δ~(18)O values that were more enriched, and REE signatures. Geochemical data and the paragenetic sequence indicate that this hydrothermal fluid was related to extensive Permian large igneous province activity(360–280 Ma). This study demonstrates the presence of complicated dolomitization processes occurring during various paleoclimates, tectonic cycles, and basinal fluids flow; results are a useful reference for these dolomitized Precambrian carbonates reservoirs.  相似文献   

20.
Lacustrine dolomite nucleation commonly occurs in modern and Neogene evaporitic alkaline lakes. As a result, ancient lacustrine microcrystalline dolomite has been conventionally interpreted to be formed in evaporitic environments. This study, however, suggests a non-evaporitic origin of dolomite precipitated in a volcanic–hydrothermal lake, where hydrothermal and volcanic processes interacted. The dolomite occurs in lacustrine fine-grained sedimentary rocks in the middle Permian Lucaogou Formation in the Santanghu intracontinental rift basin, north-west China. Dolostones are composed mainly of nano-sized to micron-sized dolomite with a euhedral to subhedral shape and a low degree of cation ordering, and are interlaminated and intercalated with tuffaceous shale. Non-dolomite minerals, including quartz, alkaline feldspars, smectite and magnesite mix with the dolomite in various proportions. The 87Sr/86Sr ratios (0.704528 to 0.705372, average = 0.705004) and δ26Mg values (−0.89 to −0.24‰, average = −0.55‰) of dolostones are similar to those of mantle rocks, indicating that the precipitates mainly originated from fluids that migrated upward from the mantle and were subject to water–rock reactions at a great depth. The δ18O values (−3.1 to −22.7‰, average = −14.0‰) of the dolostones indicate hydrothermal influence. The trace and rare earth element concentrations suggest a saline, anoxic and volcanic–hydrothermally-influenced subaqueous environment. In this subaqueous environment of Lucaogou lake, locally high temperatures and a supply of abundant Mg2+ from a deep source induced by volcanic–hydrothermal activity formed favourable chemical conditions for direct precipitation of primary dolomite. This study's findings deepen the understanding of the origin and processes of lacustrine primary dolomite formation and provide an alternative possibility for environmental interpretations of ancient dolostones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号