首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Based on a compilation of more than 100 kimberlite age determinations, four broad kimberlite emplacement patterns can be recognized in North America: (1) a northeast Eocambrian/Cambrian Labrador Sea province (Labrador, Québec), (2) an eastern Jurassic province (Ontario, Québec, New York, Pennsylvania), (3) a Cretaceous central corridor (Nunavut, Saskatchewan, central USA), and (4) a western mixed (Cambrian-Eocene) Type 3 kimberlite province (Alberta, Nunavut, Northwest Territories, Colorado/Wyoming). Ten new U–Pb perovskite/mantle zircon and Rb–Sr phlogopite age determinations are reported here for kimberlites from the Slave and Wyoming cratons of western North America. Within the Type 3 Slave craton, at least four kimberlite age domains exist: I-a southwestern Siluro-Ordovician domain (450 Ma), II-a SE Cambrian domain (540 Ma), III-a central Tertiary/Cretaceous domain (48–74 Ma) and IV-a northern mixed domain consisting of Jurassic and Permian kimberlite fields. New U–Pb perovskite results for the 614.5±2.1 Ma Chicken Park and 408.4±2.6 Ma Iron Mountain kimberlites in the State Line field in Colorado and Wyoming confirm the existence of at least two periods of pre-Mesozoic kimberlite magmatism in the Wyoming craton.

A compilation of robust kimberlite emplacement ages from North America, southern Africa and Russia indicates that a high proportion of known kimberlites are Cenozoic/Mesozoic. We conclude that a majority of these kimberlites were generated during enhanced mantle plume activity associated with the rifting and eventual breakup of the supercontinent Gondwanaland. Within this prolific period of kimberlite activity, there is a good correlation between North America and Yakutia for three distinct short-duration (10 my) periods of kimberlite magmatism at 48–60, 95–105 and 150–160 Ma. In contrast, Cenozoic/Mesozoic kimberlite magmatism in southern Africa is dominated by a continuum of activity between 70–95 and 105–120 Ma with additional less-prolific periods of magmatism in the Eocene (50–53 Ma), Jurassic (150–190) and Triassic (235 Ma). Several discrete episodes of pre-Mesozoic kimberlite magmatism variably occur in North America, southern Africa and Yakutia at 590–615, 520–540, 435–450, 400–410 and 345–360 Ma. One of the surprises in the timing of kimberlite magmatism worldwide is the common absence of activity between about 250 and 360 Ma; this period is even longer in southern Africa. This >110 my period of quiescence in kimberlite magmatism is likely linked to relative crustal and mantle stability during the lifetime of the supercontinent Gondwanaland.

Economic diamond deposits in kimberlite occur throughout the Phanerozoic from the Cambrian (Venetia, South Africa; Snap Lake and Kennady Lake, Canada) to the Tertiary (Mwadui, Tanzania; Ekati and Diavik in Lac de Gras, Canada). There are clearly some discrete periods when economic kimberlite-hosted diamond deposits formed globally. In contrast, the Devonian event, which is such an important source of diamonds in Yakutia, is notably absent in the kimberlite record from both southern Africa and North America.  相似文献   


2.
The temporal evolution of North American kimberlites   总被引:1,自引:0,他引:1  
North American kimberlite magmatism spans a period of time in excess of 1 billion years from Mesoproterozoic kimberlites in the Lake Superior and James Bay Lowlands region of Ontario to Eocene kimberlites in the Lac de Gras field, N.W.T. Based on a compilation of more than 150 robust radiometric age determinations, several distinct kimberlite emplacement patterns are recognized. In general, the temporal pattern of kimberlite emplacement in North America can be broadly subdivided into five domains: (1) a Mesoproterozoic kimberlite province in central Ontario, (2) an Eocambrian/Cambrian Labrador Sea Province in northern Québec and Labrador, (3) an eastern Jurassic Province, (4) a central Cretaceous corridor and (5) a western mixed domain that includes two Type-3 kimberlite provinces (i.e. multiple periods of kimberlite emplacement preserved in the Slave and Wyoming cratons). For some provinces the origin of kimberlite magmatism can be linked to known mantle heat sources such as mantle plume hotspots and upwelling asthenosphere attendant with continental rifting. For example, the timing and location of Mesoproterozoic kimberlites in North America coincides with and slightly precedes the timing of 1.1 Ga intracontinental rifting that culminated in the Midcontinent Rift centered in the Lake Superior region. Many of the kimberlites in the Eocambrian/Cambrian Labrador Sea province were emplaced soon after the opening of the Iapetus Ocean at about 615 Ma and may also be linked to mantle upwelling associated with continental rifting. The eastern Jurassic kimberlites record an age progression where magmatism youngs in a southeast direction from the 200 Ma Rankin Inlet kimberlites to the 155–126 Ma Timiskaming kimberlites. The location of several kimberlite fields and clusters in Ontario and Québec lie along a continental extension of the Great Meteor hotspot track and represents one of the best examples in the world of kimberlite magmatism triggered by mantle plumes. The central Cretaceous (103–94 Ma) corridor extends for more than 4000 km from Somerset Island in northern Canada through the Fort à la Corne field in Saskatchewan to the kimberlites in central USA. This is the first recognized corridor of kimberlite magmatism of this magnitude. The possible westward younging of Cretaceous to Eocene corridors of kimberlite magmatism could reflect major changes in plate geometry during subduction of the Kula–Farallon plate.  相似文献   

3.
The Late Cretaceous (ca. 100 Ma) diamondiferous Fort à la Corne (FALC) kimberlite field in the Saskatchewan (Sask) craton, Canada, is one of the largest known kimberlite fields on Earth comprising essentially pyroclastic kimberlites. Despite its discovery more than two decades ago, petrological, geochemical and petrogenetic aspects of the kimberlites in this field are largely unknown. We present here the first detailed petrological and geochemical data combined with reconnaissance Nd isotope data on drill-hole samples of five major kimberlite bodies. Petrography of the studied samples reveals that they are loosely packed, clast-supported and variably sorted, and characterised by the presence of juvenile lapilli, crystals of olivine, xenocrystal garnet (peridotitic as well as eclogitic paragenesis) and Mg-ilmenite. Interclast material is made of serpentine, phlogopite, spinel, carbonate, perovskite and rutile. The mineral compositions, whole-rock geochemistry and Nd isotopic composition (Nd: + 0.62 to − 0.37) are indistinguishable from those known from archetypal hypabyssal kimberlites. Appreciably lower bulk-rock CaO (mostly < 5 wt%) and higher La/Sm ratios (12–15; resembling those of orangeites) are a characteristic feature of these rocks. Their geochemical composition excludes any effects of significant crustal and mantle contamination/assimilation. The fractionation trends displayed suggest a primary kimberlite melt composition indistinguishable from global estimates of primary kimberlite melt, and highlight the dominance of a kimberlite magma component in the pyroclastic variants. The lack of Nb-Ta-Ti anomalies precludes any significant role of subduction-related melts/fluids in the metasomatism of the FALC kimberlite mantle source region. Their incompatible trace elements (e.g., Nb/U) have OIB-type affinities whereas the Nd isotope composition indicates a near-chondritic to slightly depleted Nd isotope composition. The Neoproterozoic (~ 0.6–0.7 Ga) depleted mantle (TDM) Nd model ages coincide with the emplacement age (ca. 673 Ma) of the Amon kimberlite sills (Baffin Island, Rae craton, Canada) and have been related to upwelling protokimberlite melts during the break-up of the Rodinia supercontinent and its separation from Laurentia (North American cratonic shield). REE inversion modelling for the FALC kimberlites as well as for the Jericho (ca. 173 Ma) and Snap Lake (ca. 537 Ma) kimberlites from the neighbouring Slave craton, Canada, indicate all of their source regions to have been extensively depleted (~ 24%) before being subjected to metasomatic enrichment (1.3–2.2%) and subsequent small-degree partial melting. These findings are similar to those previously obtained on Mesozoic kimberlites (Kaapvaal craton, southern Africa) and Mesoproterozoic kimberlites (Dharwar craton, southern India). The striking similarity in the genesis of kimberlites emplaced over broad geological time and across different supercontinents of Laurentia, Gondwanaland and Rodinia, highlights the dominant petrogenetic role of the sub-continental lithosphere. The emplacement of the FALC kimberlites can be explained both by the extensive subduction system in western North America that was established at ca. 150 Ma as well as by far-field effects of the opening of the North Atlantic ocean during the Late Cretaceous.  相似文献   

4.
The relationship among kimberlites, carbonate-rich bodies associatedwith them, and the carbonatites associated with alkalis rockcomplexes are reviewed. Particular attention is paid to theparageneses of oxide minerals in six carbonate-kimberlites:Peuyuk, Tunraq, Wesselton, Liqhobong, De Beers, and Benfontein.New analyses of spinel, limonite, and perovskite from the lowerBenfontein Sill, are consistent with previous reports and canbe divided into (1) early macrocrysts and cores of grains, and(2) late rims and groundmass grains. The evolution of a carbonate-richresiduum with progressive crystallization appears to be typicalof carbonate-rich kimberlite magmas, and is texturally relatedto the two stages of oxide precipitation in these carbonate-kimberlites.Thus, early Mg-ilmenite and Cr-rich spinel are separated byreaction textures and carbonate from later Mg-Al-titanomagnetite,perovskite, and accessory utile and apatite. The spinels spana large range in composition from Mg-Al-chromite to Mg-Al-titanomagnetite,with an intermediate gap. This simplified paragenetic scheme,and in particular the spinel trend, is repeated in the fiveother carbonate-kimberlites reviewed. It may be representativeof the hypabyssal kimberlites in general, and others where fluidizationprocesses did not completely disrupt the crystallization sequence.  相似文献   

5.
Roger H. Mitchell   《Lithos》2004,76(1-4):551-564
Liquidus and sub-liquidus phase relationships are reported for melts formed from an aphanitic kimberlite composition crystallized at 5–12 GPa and 900–1400 °C. The liquidus phase over the pressure range investigated is forsteritic olivine. This is followed with decreasing temperature by olivine plus garnet as the initial sub-liquidus solid phase assemblage. Supra-solidus assemblages consist of olivine+garnet+clinopyroxene+Mg-ilmenite+liquid at 5–7 GPa or olivine+garnet+clinopyroxene+hematite–ilmenite solid solutions (+/−perovskite)+liquid at 8–12 GPa. Phlogopite forms as a near-solidus phase only at 900 °C and 6 GPa. Orthopyroxene does not form at any temperature and pressure. All garnets formed at 6–7 GPa are Ti-rich almandine–grossular–pyrope solid solutions and not Cr-pyrope, whereas garnets formed above 8 GPa are Ti- and Fe3+-rich and have no natural counterparts. Quenched liquids are represented by magnesite at 10–12 GPa and Mg–Ca-carbonates at lower pressures. In addition to forming discrete crystals, Mg-ilmenite and hematite–ilmenite solid solutions occur as lamellar intergrowths that are identical in texture to naturally occurring intergrowths. Mg-ilmenite compositions at 6–7 GPa are similar to those of the natural occurrences, whereas clinopyroxenes are richer in Ca. The effects of graphite versus platinum capsules on the oxygen fugacity of the experimental charges and the composition of the olivine, clinopyroxene, Fe–Ti-oxides and garnets formed are described. These experimental data are interpreted to indicate that kimberlite magmas are unlikely to be formed by very small degrees of partial melting of a simple homogeneous carbonated garnet lherzolite mantle. It is proposed that kimberlite magmas form by extensive partial melting of metasomatized mantle, i.e. mineralogically complex carbonate-bearing veins in a lherzolitic/harzburgitic substrate, and that lamellar ilmenite–clinopyroxene intergrowths represent the products of non-equilibrium growth in kimberlite magma.  相似文献   

6.
Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are presented. Two generations of compositionally distinct olivine, Ti-poor phlogopite showing orangeitic evolutionary trends, spinel displaying magmatic trend-1, abundant perovskite, Tirich hydrogarnet, calcite and serpentine are the various mineral constituents. On the basis of(i) liquidus mineral composition,(ii) bulk-rock chemistry, and(iii) Sr-Nd isotopic composition, we show that Ahobil kimberlite shares several characteristic features of archetypal kimberlites than orangeites and lamproites. Geochemical modelling indicate Ahobil kimberlite magma derivation from small-degree melting of a carbonated peridotite source having higher Gd/Yb and lower La/Sm in contrast to those of orangeites from the Eastern Dharwar and Bastar cratons of Indian shield. The TDm Nd model age(~2.0 Ga) of the Ahobil kimberlite is(i) significantly older than those(1.5~1.3 Ga) reported for Wajrakarur and Narayanpet kimberlites of EDC,(ii) indistinguishable from those of the Mesoproterozoic EDC lamproites,and(iii) strikingly coincides with the timing of the amalgamation of the Columbia supercontinent. High bulk-rock Fe-Ti contents and wide variation in oxygen fugacity fO_2, as inferred from perovskite oxybarometry, suggest non-prospective nature of the Ahobil kimberlite for diamond.  相似文献   

7.

The Nxau Nxau kimberlites in northwest Botswana belong to the Xaudum kimberlite province that also includes the Sikereti, Kaudom and Gura kimberlite clusters in north-east Namibia. The Nxau Nxau kimberlites lie on the southernmost extension of the Congo Craton, which incorporates part of the Damara Orogenic Belt on its margin. The Xaudum kimberlite province is geographically isolated from other known clusters but occurs within the limits of the NW-SE oriented, Karoo-aged Okavango Dyke Swarm and near NE-SW faults interpreted as the early stages of the East African Rift System. Petrographic, geochronological and isotopic studies were undertaken to characterise the nature of these kimberlites and the timing of their emplacement. The Nxau Nxau kimberlites exhibit groundmass textures, mineral phases and Sr-isotope compositions (87Sr/86Sri of 0.7036 ± 0.0002; 2σ) that are characteristic of archetypal (Group I) kimberlites. U-Pb perovskite, 40Ar/39Ar phlogopite and Rb-Sr phlogopite ages indicate that the kimberlites were emplaced in the Cretaceous, with perovskite from four samples yielding a preferred weighted average U-Pb age of 84 ± 4 Ma (2σ). This age is typical of many kimberlites in southern Africa, indicating that the Xaudum occurrences form part of this widespread Late Cretaceous kimberlite magmatic province. This time marks a significant period of tectonic stress reorganisation that could have provided the trigger for kimberlite magmatism. In this regard, the Nxau Nxau kimberlites may form part of a NE-SW oriented trend such as the Lucapa corridor, with implications for further undiscovered kimberlites along this corridor.

  相似文献   

8.
A suite of fresh, Late Cretaceous to Eocene hypabyssal kimberlites from the Lac de Gras field were studied in order to understand better carbonate, silicate and oxide paragenesis. The samples have excellent preservation of textures and primary mineralogy and are archetypal or Group 1 kimberlite. Five kimberlite localities are identified as calcite-bearing based on the presence of high Sr–Ba calcite as phenocrysts, microphenocrysts and in segregations. Three kimberlite localities are identified as dolomite-bearing based on the presence of mixed calcite–dolomite segregations containing oscillatory and banded textures of calcite–dolomite solid solution and dolomite (±magnesite). Sr–Ba calcite are characterized by high XCa (>0.95) and are enriched in Sr (4900–11,100 ppm) and Ba (3200–14,200 ppm). The calcite–dolomite and dolomite–magnesite solid solution compositions span the XCa range from 0.42 to 0.95, and typically have Sr and Ba contents in the range of 1000–4000 ppm. The carbonate, silicate and oxide mineral compositions suggest that the origin of the calcite-bearing versus dolomite-bearing kimberlites studied is related to subtle differences in parent magma composition, in particular, the CO2/H2O ratio. Formation of the carbonates reflects the latter part of a protracted magmatic crystallization sequence, in which Sr–Ba calcite precipitates from an evolved kimberlite melt. Subsequently, calcite–dolomite solid solution and dolomite is precipitated from localized, Mg-rich carbonate fluids at relatively high temperatures (higher than serpentine stability).  相似文献   

9.
At present, 48 Late Cretaceous (ca. 70–88 Ma) kimberlitic pipes have been discovered in three separate areas of the northern Alberta: the Mountain Lake cluster, the Buffalo Head Hills field and the Birch Mountains field. The regions can be distinguished from one another by their non-archetypal kimberlite signature (Mountain Lake) or, in the case of kimberlite fields, primitive (Buffalo Head Hills) to evolved (Birch Mountains) magmatic signatures.

The dominant process of magmatic differentiation is crystal fractionation and accumulation of olivine, which acts as the main criteria to distinguish between primitive and evolved Group I-type kimberlite fields in the northern Alberta. This is important from the viewpoint of diamond exploration because the majority (about 80%) of the more primitive Buffalo Head Hills kimberlites are diamondiferous, whereas the more evolved Birch Mountains pipes are barren of diamonds for the most part. Petrographically, the Buffalo Head Hills samples are distinct from the Birch Mountains samples in that they contain less carbonate, have a smaller modal abundance of late-stage minerals such as phlogopite and ilmenite, and have a higher amount of fresh, coarse macrocrystal (>0.5 mm) olivine. Consequently, samples from the Buffalo Head Hills have the highest values of MgO, Cr and Ni, and have chemistries similar to those of primitive hypabyssal kimberlite in the Northwest Territories. Based on whole-rock isotopic data, the Buffalo Head Hills K6 kimberlite has 87Sr/86Sr and Nd values similar to those of South African Group I kimberlites, whereas the Birch Mountains Legend and Phoenix kimberlites have similar Nd values (between 0 and +1.9), but distinctly higher 87Sr/86Sr values (0.7051–0.7063).

The lack of whole-rock geochemical overlap between kimberlite and the freshest, least contaminated Mountain Lake South pipe rocks reflects significant mineralogical differences and Mountain Lake is similar geochemically to olivine alkali basalt and/or basanite. Intra-field geochemical variations are also evident. The K4 pipe (Buffalo Head Hills), and Xena and Kendu pipes (Birch Mountains) are characterized by anomalous concentrations of incompatible elements relative to other northern Alberta kimberlite pipes, including chondrite-normalized rare-earth element distribution patterns that are less fractionated than the other kimberlite samples from the Buffalo Head Hills and Birch Mountains. The Xena pipe has similar major element chemical signatures and high-Al clinopyroxene similar to, or trending towards, the Mountain Lake pipes. In addition, K4 and Kendu have higher 87Sr/86Sr and lower Nd than Bulk Earth and plot in the bottom right quadrant of the Nd–Sr diagram. We suggest, therefore, that the K4 and Kendu pipes contain a contribution from old, LREE-enriched (low Sm/Nd) lithosphere that is absent from the other kimberlites, are affected by crustal contamination, or both.

Based on xenocryst populations, the northern Alberta kimberlite province mantle is dominated by carbonate-saturated lherzolitic mantle. Higher levels of melt depletion characterize the Buffalo Head Hills mantle sample. Despite high diamondiferous to barren pipe ratios in the Buffalo Head Hills pipes, mineral indicators of high diamond potential, such as G10 garnet, diamond inclusion composition chrome spinels and high-sodium eclogitic garnet, are rare.  相似文献   


10.
New Rb–Sr age determinations using macrocrystal phlogopite are presented for 27 kimberlites from the Ekati property of the Lac de Gras region, Slave Province, Canada. These new data show that kimberlite magmatism at Ekati ranges in age from at least Late Paleocene (61 Ma) to Middle Eocene time (45 Ma). Older, perovskite-bearing kimberlites from Ekati extend this age range to Late Cretaceous time (74 Ma). Within this age range, emplacement episodes at 48, 51–53, 55–56 and 59–61 Ma can be recognized. Middle Eocene kimberlite magmatism of the previously dated Mark kimberlite (47.5 Ma) is shown to include four other pipes from the east-central Ekati property. A single kimberlite (Aaron) may be younger than the 47.5 Ma Mark kimberlite. The economically important Panda kimberlite is precisely dated in this study to be 53.3±0.6 Ma using the phlogopite isochron method, and up to six additional kimberlites from the central Ekati property have Early Eocene ages indistinguishable from that of Panda, including the Koala and Koala North occurrences. Late Paleocene 55–56 Ma kimberlite magmatism, represented by the Diavik kimberlite pipes adjacent to the southeastern Ekati property, is shown to extend onto the southeastern Ekati property and includes three, and possibly four, kimberlites. A precise eight-point phlogopite isochron for the Cobra South kimberlite yields an emplacement age of 59.7±0.4 Ma; eight other kimberlites from across the Ekati property have similar Late Paleocene Rb–Sr model ages. The addition of 27 new emplacement ages for kimberlites from the Ekati property confirms that kimberlite magmatism from the central Slave Province is geologically young, despite ages ranging back to Cambrian time from elsewhere in the Slave Province. With the available geochronologic database, Lac de Gras kimberlites with the highest diamond potential are currently restricted to the 51–53 and 55–56 Ma periods of kimberlite magmatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号