首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
It is proposed that major continental collision normally causes two orogenies. The first is characterized by ophiolite obduction, and the second by widespread deformation, often accompanied by metamorphism and granite intrusion. The two orogenies are separated by a relatively quiescent orogenic pause of 40–60 Ma. The two stages of continental collision are illustrated by examples from the Paleozoic Newfoundland Appalachians, and the Mesozoic-Cenozoic Tethyan collision belts of the Zagros and Himalayas.

The stages of continental collision are explained in terms of the forces driving plate motions, which are dominated by the downward pull of subducting oceanic lithosphere and, to a lesser extent, by the outward push of spreading oceanic ridges.

The Taconic stage marks attempted subduction of continental crust. The buoyancy of continental crust offsets the negative buoyancy of subducting oceanic lithosphere and other driving forces so that plate motion is halted. Orogeny involves vertical buoyancy forces and is concentrated along the narrow belt of plate overlap at the subduction zone.

In a major collision the Taconic stage destroys a substantial proportion of the earth's subducting capacity. It is an event of such magnitude that it has global consequences, reducing sea-floor spreading and the rate of convection. This results in retention of heat within the earth and a consequent increase in the forces driving the plates. The orogenic pause represents the time taken for these forces to become strong enough to overcome the obstruction of buoyant continental crust and renew subduction at the collision zone.

The Acadian stage of collision occurs when renewed subduction is achieved by detachment of continental crust from its underlying lithosphere. As the subcrustal lithosphere is subducted, the crust moves horizontally. The result is crustal shortening with widespread deformation and generation of anatectic granitic magma, as well as subduction related volcanism.

The effects of continental collision on the rate of sea-floor spreading can be related to eustatic changes in sea level, glaciations, and mass extinctions. There may also be connections, through changes in the rate of mantle convection, to the earth's magnetic polarity bias and rotation rate.  相似文献   


2.
East Asia plate tectonics since 15 Ma: constraints from the Taiwan region   总被引:4,自引:0,他引:4  
15 Ma ago, a major plate reorganization occurred in East Asia. Seafloor spreading ceased in the South China Sea, Japan Sea, Taiwan Sea, Sulu Sea, and Shikoku and Parece Vela basins. Simultaneously, shear motions also ceased along the Taiwan–Sinzi zone, the Gagua ridge and the Luzon–Ryukyu transform plate boundary. The complex system of thirteen plates suddenly evolved in a simple three-plate system (EU, PH and PA). Beneath the Manila accretionary prism and in the Huatung basin, we have determined magnetic lineation patterns as well as spreading rates deduced from the identification of magnetic lineations. These two patterns are rotated by 15°. They were formed by seafloor spreading before 15 Ma and belonged to the same ocean named the Taiwan Sea. Half-spreading rate in the Taiwan Sea was 2 cm/year from chron 23 to 20 (51 to 43 Ma) and 1 cm/year from chron 20 (43 Ma) to 5b (15 Ma). Five-plate kinematic reconstructions spanning from 15 Ma to Present show implications concerning the geodynamic evolution of East Asia. Amongst them, the 1000-km-long linear Gagua ridge was a major plate boundary which accommodated the northwestward shear motion of the PH Sea plate; the formation of Taiwan was driven by two simple lithospheric motions: (i) the subduction of the PH Sea plate beneath Eurasia with a relative westward motion of the western end (A) of the Ryukyu subduction zone; (ii) the subduction of Eurasia beneath the Philippine Sea plate with a relative southwestward motion of the northern end (B) of the Manila subduction zone. The Luzon arc only formed south of B. The collision of the Luzon arc with Eurasia occurred between A and B. East of A, the Luzon arc probably accreted against the Ryukyu forearc.  相似文献   

3.
Kyushu Island, Japan, is located at the junction of the Southwest Japan arc and the Ryukyu arc. There are two major late Cenozoic epithermal gold-silver provinces in Kyushu, which are termed the Northern and Southern provinces. The provinces are characterized by: 1) Pliocene volcanism dominated by calc-alkaline andesite, followed by Quaternary volcanism including extrusion of both calc-alkaline and tholeiitic magmas; 2) formation of extensional grabens; 3) Pliocene to Pleistocene mineralization, which was dominated by abundant low sulfidation (LS) epithermal deposits with a few high sulfidation (HS) examples. The two epithermal gold-silver provinces have evolved differently since about 5 Ma; the Northern province has exhibited diminished hydrothermal activity from the Pliocene to Pleistocene, whereas the Southern province has witnessed increased hydrothermal activity mainly in easterly and northerly directions. Changes of tectonic setting from the Pliocene to Pleistocene account for the variable trends in epithermal gold deposit formation. Westward oblique subduction of the Philippine Sea plate beneath the Southwest Japan arc caused development of the Hohi graben and arc-related volcanism at about 6 Ma. This was associated with widespread LS mineralization in and surrounding the Hohi graben, as is represented by the Bajo and Taio deposits. The subduction of the relatively buoyant Kyushu-Palau ridge during the early Pliocene strengthened the coupling between the slab and overriding Ryukyu arc, leading to polygenetic andesite volcanism with associated HS (Kasuga, Iwato, and Akeshi) and LS (Kushikino) mineral deposits forming in the Southern province. A change of the subduction direction of the Philippine Sea plate, from west to north-northwest in the early Pliocene, increased the orthogonal convergence rate between the Southwest Japan arc and the Philippine Sea plate, resulting in a decrease of volcanic and hydrothermal activity in the Hohi graben of the Northern province. The more northerly subduction of the Philippine Sea plate shifted the locus of the Kyushu-Palau ridge subduction northward, resulting in underplating of the older (85–60 Ma), negatively buoyant Amami basin oceanic slab in the Southern province, rather than continued subduction of the young (27–15 Ma), buoyant Shikoku basin slab. This replacement caused steepening of the slab angle and slab-rollback in the Southern province, which was associated with regional extension, an eastward shift of the Ryukyu volcanic front, and development of the Kagoshima and Shimabara grabens, as well as the Okinawa trough. Rhyolite and basalt volcanism, in addition to andesite volcanism, have occurred since 2 Ma in the area of the Ryukyu back arc; coincident LS mineralization at Hishikari and Ohkuchi was affiliated with the rhyolite volcanism. Another change of the subduction direction of the Philippine Sea plate to the northwest occurred at 2–1 Ma. The forearc sliver of the Southwest Japan arc shifted westward, in association with right-lateral strike-slip faulting along the Median tectonic line, due to the increase of the westward convergence rate. This shift resulted in shortening and cessation of graben development in the Hohi area, restricting the subsequent volcanism and related hydrothermal activity to the central part of the graben.  相似文献   

4.
Recent structural, tephrochronologic and magnetostratigraphic studies conducted along the northernmost border of the Philippine Sea (PHS) plate enable us to reconstruct the precise tectonic evolution along the convergent boundary between the PHS plate and the Northeast Japan (NEJ) plate or the North American (NAM) plate since about 1 Ma. The authors of the present study split the tectonic evolution into five stages and present the characteristics of each stage. A plate tectonic interpretation is proposed, based upon the tectonic evolution, with special reference to the mode of convergent motion. In brief, our interpretations are as follows: the relative motion between the PHS and the NEJ plates was not recognized geologically within the area studied from about 1.0 to 0.9 Ma (Stage 1), suggesting either none or small influence from the coupling between the two plates during that period of time. Convergence between the PHS and the NEJ plates was possibly in N-S direction from 0.9 to 0.5 Ma (Stage II), and probably north-northwestward since 0.5 Ma (Stages III to V). The mode of the convergent motion was that of buoyant subduction in Stages II and III. The mode changed gradually from buoyant subduction during Stage IV to collision in Stage V (0.07 Ma to the present).  相似文献   

5.
南海西缘新生代沉积盆地形成动力学探讨   总被引:8,自引:3,他引:5  
通过对南海西缘新生代沉积盆地伸展作用、沉降、构造变形等特征分析,检查印支地块多条近北西向走滑断裂时间、幅度等特征以及与盆地之间联系,结果表明印度-欧亚碰撞引起的逃逸作用与南海西缘新生代盆地没有直接的成因联系;两个与俯冲有关的不同扩张机制与南海西缘新生代盆地有成因联系,即(1)太平洋板块在古新世到始新世的滚动后退,太平洋-欧亚板块汇聚速率的降低驱使这些盆地产生初始伸展作用;(2)渐新世到中中新世古南海南倾俯冲板块的拖曳力,进一步驱使这些盆地的伸展及接着的南海扩张.  相似文献   

6.
Largely because of the wide variety of observational constraints which must be satisfied, the search for a viable driving mechanism is perhaps the most perplexing problem related to plate tectonics. The mechanism must be compatible with the rigid behavior of lithospheric plates, and with a wide range of plate sizes, shapes and motions. It must be consistent with complex configurations of plate boundaries and equally complex boundary interactions, such as the destruction of ridges at subduction zones. The mechanism must produce steady-state relative and absolute plate motions which persist for tens of millions of years, but must also account for sudden dramatic changes. Finally, the plate driving mechanism must be consistent with the non-Newtonian properties of olivine and with the fabrics of upper mantle peridotites.Mounting evidence suggests that plate motions result from forces associated with plate boundaries and that the principal resisting force is drag at the base of the lithosphere, particularly beneath continents Several investigators have suggested that gravitational forces acting on thermally-induced, lateral density variations in the upper mantle are the principal driving forces for plate tectonics. If so, plate motions are ultimately controlled by the temperature distribution in the upper mantle, and plate tectonics represents a state of dynamic equilibrium in which plate motions are both the cause and the consequence of temperature and density variations in the mantle. This concept requires that average absolute plate velocities be predictable from the characteristics of individual plates, and that plates tend to move down horizontal temperature gradients.A simple linear relation which includes contributions from ridge push (RP), slab pull (SP), trench suction (TS) and continental drag (CD): (cm/y) = (2.6 ± 0.4) + (4.8 ± 1.8) RP + (14.3 ± 1.7) SP +(3.5 ± 2.5) TS−(5.1 ±0.7) CD predicts plate velocities with an rms error of 0.44 cm/y, and a correlation coefficient of 0.98. That plate velocities can be accurately predicted from their own boundary configurations and proportions of continental lithosphere is strong evidence that plate motions result from negative buoyancy forces associated with plate boundaries.  相似文献   

7.
Takeshi Kudo  Koshun Yamaoka   《Tectonophysics》2003,367(3-4):203-217
The driving force for the basin subsiding against isostatic balance in and around Lake Biwa in the Kinki district, Japan is discussed. The lake region is characterized by strong negative Bouguer anomalies, especially by a steep horizontal gradient zone of gravity anomaly running along the western margin of the lake. The large negative anomaly (>50 mgal) cannot be explained by low-density sediments beneath it. A down-warping structure extending to the Moho depth should be taken into account. This conjecture has been strongly supported by a short-period receiver function imaging, which shows a clear offset of about 8 km for the Moho discontinuity under the steep gravity gradient zone.A question arises as to what is the driving force to create such a large down-warping structure. We consider that the subduction of the shallow-dipping slab under the region (Philippine Sea Slab) may cause crustal deformation by dragging the viscous mantle downward. In order to verify this model, we simulated the induced mantle flow due to the subduction of the Philippine Sea Slab and the pressure distribution on the crust–mantle boundary. This numerical experiment showed that the induced flow makes a strong negative pressure zone under the lake region if the slab has a vertical offset along the direction of subduction. This offset of the slab is consistent with plate models deduced from hypocentral distributions and Sp phases of the deep-focus earthquakes.  相似文献   

8.
In contrast to the normal ‘Wilson cycle’ sequence of subduction leading to continental collision and associated mountain building, the evolution of the New Zealand plate boundary in the Neogene reflects the converse—initially a period of continental convergence that is followed by the emplacement of subduction. Plate reconstructions allow us to place limits on the location and timing of the continental convergence and subduction zones and the migration of the transition between the two plate boundary regimes. Relative plate motions and reconstructions since the Early to Mid-Miocene require significant continental convergence in advance of the emplacement of the southward migrating Hikurangi subduction—a sequence of tectonism seen in the present plate boundary geography of Hikurangi subduction beneath North Island and convergence in the Southern Alps along the Alpine Fault. In contrast to a transition from subduction to continental convergence where the leading edge of the upper plate is relatively thin and deformable, the transition from a continental convergent regime, with its associated crustal and lithospheric thickening, to subduction of oceanic lithosphere requires substantial thinning (removal) of upper plate continental lithosphere to make room for the slab. The simple structure of the Wadati–Benioff zone seen in the present-day geometry of the subducting Pacific plate beneath North Island indicates that this lithospheric adjustment occurs quickly. Associated with this rapid lithospheric thinning is the development of a series of ephemeral basins, younging to the south, that straddle the migrating slab edge. Based on this association between localized vertical tectonics and slab emplacement, the tectonic history of these basins records the effects of lithospheric delamination driven by the southward migrating leading edge of the subducting Pacific slab. Although the New Zealand plate boundary is often described as simply two subduction zones linked by the transpressive Alpine Fault, in actuality the present is merely a snapshot view of an ongoing and complex evolution from convergence to subduction.  相似文献   

9.
One of the major processes in the formation and deformation of continental lithosphere is the process of arc volcanism. The plate-tectonic theory predicts that a continuous chain of arc volcanoes lies parallel to any continuous subduction zone. However, the map pattern of active volcanoes shows at least 24 areas where there are major spatial gaps in the volcanic chains (> 200 km). A significant proportion (~ 30%) of oceanic crust is subducted at these gaps. All but three of these gaps coincide with the collision or subduction of a large aseismic plateau or ridge.The idea that the collision of such features may have a major tectonic impact on the arc lithosphere, including cessation of volcanism, is not new. However, it is not clear how the collision or subduction of an oceanic plateau perturbs the system to the extent of inhibiting arc volcanism. Three main factors necessary for arc volcanism are (1) source materials for the volcanics—either volatiles or melt from the subducting slab and/or melt from the overlying asthenospheric wedge, (2) a heat source, either for the dehydration or the melting of the slab, or the melting within the asthenosphere and (3) a favorable state of stress in the overlying lithosphere. The absence of any one of these features may cause a volcanic gap to form.There are several ways in which the collision or subduction of an oceanic plateau may affect arc volcanism. The clearest and most common cases considered are those where the feature completely resists subduction, causing local plate boundaries to reorganize. This includes the formation of new plate-bounding transform faults or a flip in subduction polarity. In these cases, subduction has slowed down or stopped and the lack of source material has created a volcanic gap.There are a few cases, most notably in Peru, Chile, and the Nankai trough, where the dip of subduction is so shallow that effectively no asthenospheric wedge exists to produce source material for volcanism. The shallow dip of the slab may be a buoyant effect of the plateau imbedded in the oceanic lithosphere.The cases which are the most enigmatic are those where subduction is continuous, the oceanic plateau is subducted along with the slab, and the dip of the slab is clearly steep enough to allow arc volcanism; yet a volcanic gap exists. In these areas, the subducted plateau may have a fundamental effect on the physical process of arc volcanism itself. The presence of a large topographic feature on the subducting plate may affect the stress state in the are by increasing the amount of decoupling between the two plates. Alternatively, the subduction of the plateau may change the chemical processes at depth if either the water-rich top of the plateau with accompanying sediments are scraped off during subduction or if the ridge is compositionally different.  相似文献   

10.
The Antique Ophiolite Complex exposed along the western side of Panay Island, central Philippines was derived from the Jurassic to Cretaceous proto-South China Sea oceanic leading edge of the Palawan microcontinental block. The subduction and ultimate closure of this ocean basin resulted in the emplacement and exposure of this lithospheric fragment along the collisional boundary of the microcontinental block and the oceanic- to island arc-affiliated Philippine mobile belt. The ophiolite complex has volcanic rocks having normal- to transitional mid-ocean ridge basalt (MORB) to island arc tholeiitic (IAT) geochemistry consistent with the transitional MORB–IAT characteristics of its peridotites. The chromitites manifest subduction signature suggestive of the involvement of water in its generation. All of these would be consistent with generation in a supra-subduction zone environment, specifically in a subduction-related marginal ocean basin. The collision of the Palawan microcontinental block with the Philippine mobile belt along western Panay resulted, aside from ophiolite emplacement, into arc curvature, island rotation, serpentinite diapirism and thrusting along the forearc side. The offshore bathymetric expression of the microcontinental block along the collision zone shows the leading edge of this oceanic bathymetric high to have spread laterally. This is indicative of its being buoyant resulting to non-subduction as supported by available earthquake hypocenter data.  相似文献   

11.
Seismic slip vectors along the Japan Trench, the eastern margin of the Japan Sea and the Sagami Trough are compared with global relative plate motions (RM2, Minster and Jordan, 1978) to test a new hypothesis that northern Honshu, Japan, is part of the North American plate. This hypothesis also claims that the eastern margin of the Japan Sea is a nascent convergent plate boundary (Kobayashi, 1983; Nakamura, 1983).Seismic slip vectors along the Japan Trench are more parallel to the direction of the Pacific-North American relative motion than that of the Pacific-Eurasian relative motion. However, the difference in calculated relative motions is too small avoid to the possibility that a systematic bias in seismic slip vectors due to anomalous velocity structure beneath island arcs causes this apparent coincidence. Seismic slip vectors and rates of shortening along the eastern margin of the Japan Sea for the past 400 years are also consistent with the relative motion between the North American and Eurasian plates calculated there. Seismic slip vectors and horizontal crustal strain patterns revealed by geodetic surveys in south Kanto, beneath which the Philippine Sea plate is subducting, indicate two major directions; one is the relative motion between the North American and Philippine Sea plates, and the other that between the Eurasian and Philippine Sea plates.One possible interpretation of this is that the eastern margin of the Japan Sea may be in an embryonic stage of plate convergence and the jump of the North American-Eurasian plate boundary from Sakhalin-central Hokkaido to the eastern margin of the Japan Sea has not yet been accomplished. In this case northern Honshu is a microplate which does not have a driving force itself and its motion is affected by the surrounding major plates, behaving as part of either the Eurasian or North American plate. Another possibility is that the seismic slip vectors and crustal deformations in south Kanto do not correctly represent the relative motion between plates but represent the stresses due to non-rigid behaviors of part of northern Honshu.  相似文献   

12.
解习农  赵帅  任建业  杨允柳  姚永坚 《地球科学》2022,47(10):3524-3542
南海是西太平洋海域最大的边缘海,然而南海扩张终结后动力学过程研究仍较为薄弱.通过构造变革界面识别、褶皱冲断带沉积记录等方面的系统研究,揭示南海南部和东部陆缘在南海后扩张期的演化历程.研究表明南海南部和东部边缘经历了多个微板块从俯冲到碰撞的演变历程,形成了陆-陆碰撞、弧-陆碰撞、洋-弧俯冲等多个特征迥异的板块边界.南海南部陆缘属于古南海俯冲拖曳构造区,婆罗洲西北沙捞越-曾母地块率先碰撞,随后经历了婆罗洲东北沙巴-南沙地块碰撞、西南巴拉望-卡加延岛弧碰撞.南部多个微板块碰撞导致古南海呈剪刀式从西向东逐渐关闭和消亡,总体形成了以微地块碰撞、深海槽发育和造山带前缘巨厚沉积充填为特色的碰撞陆缘.东部陆缘属于菲律宾海俯冲-碰撞构造区,南海东部洋壳自中新世开始向菲律宾海板块俯冲,弧-陆碰撞仅局限于东部陆缘南北两端.澳洲-印度板块、菲律宾海板块与欧亚板块相互作用控制了南海边缘海闭合过程,南海正在进行的关闭过程主要集中在东缘和南缘,东缘呈现了以南海洋壳消亡为特征的闭合过程,而南缘则呈现以微陆块碰撞为特征的古南海闭合过程.显然,南部后扩张期陆缘演变可为边缘海闭合过程研究提供极佳的范例,同时对我国海洋权益保护和南海大陆边缘动力学研究具有重要意义.   相似文献   

13.
The collision of a divergent ocean ridge may evolve into two end cases:in the continuity of ocean-floor subduction.or in the detachment of the subducted plate.The northern Patagonia active plate margin has the unique situation that in Cenozoic time it has been subjected to two divergent ridge collisions,each one representing one of the end members.The Neogene Antarctica-Nazca divergent ridge collision evolved as a continuous ocean-floor subduction system,promoting a magmatic hiatus at the arc axis,the obduction of part of the ridge ocean-floor in the fore-arc.and basaltic volcanism in the back-arc.In contrast,the Paleogene Farallon-Aluk divergent ridge collision evolved into a transform margin,with the detachment and sinking of the Aluk plate and the development of a large slab window.As in the previous case,this collision promoted a magmatic hiatus at the arc axis,but the tectono-magmatic scenario changed to postorogenic synextensional volcanism that spread to the former fore-arc(basalt,andesite,rhyolite) and former back-arc(bimodal ignimbrite flare-up,basalt).Geochemistry of this slab window synextensional volcanism shows more MORB-like basalts towards the former fore-arc,and MORB-OIB-like basalts towards the former back-arc.Instead,an isolated undeformable crustal block in the former back-arc,with an "epeirogenic" response to the slab window and extensional regime,was covered by OIB-type basalts after uplift.Major elements show that slab window basalts reach TiCh values up to 3 wt%,as compared with the top value of 1.5 wt%of arc magmas.Besides,the MgO with respect to(FeOt + Al2O3) ratio helps to distinguish slab window magma changes from the former fore-arc to the former back-arc and also with respect to the "epeirogenic" block.Higher contents of HFS elements such as Nb and Ta also help to distinguish this slab window from arc magmas and also,to distinguish slab window magma changes from the former fore-arc to the former back-arc and "epeirogenic" block settings.The isotope compositions of slab window magmatism show a disparate coeval array from MORB to crustal sources,interpreted as a consequence of the lack of protracted storage and homogenization due to the extensional setting.  相似文献   

14.
Two remarkable geodynamic events in earth history at ± 45 and ± 37 m.y. ago, corresponding to the early and late Pyrenean orogenic phases of Middle and Late Eocene age are described in this paper. Based on numerous data, each of these events is manifested by a set of many various worldwide geologic activities, such as orogenic shortening, granodioritic plutonism, regional metamorphism, change in rate or direction of sea-floor spreading, and global marine regression. These activities shed light on the kinematic relation between plate motions and orogeny because they are widespread and coeval.According to the plate tectonic theory, mountain building is attributed mainly to three types of convergent plate motions: collision, subduction, and obduction. However, an extensive orogenic process does not occur randomly and locally, and does not proceed diachronously by steady plate motion or subduction. The data presented here indicate short duration and synchronism of
1. (a) worldwide orogenic deformations at specific times and
2. (b) abrupt changes of plate motion during the orogeny.
In this paper it is shown that there were two geodynamic peaks (±45 and ±37 m.y. ago) which involved more than 80 separate processes of displacement. Such a major reorganization in the plate tectonic pattern reflects a turning point in the geotectonic history.The generally steady, in several oceans variable sea-floor spreading on the one side and the episodic orogenic compressions correspond neither temporally nor kinematically. The two types of movement represent dissimilar kinematic actions. Ocean-floor spreading and orogeny are two different mechanisms that alternate in earth history. It is not the long-term sea-floor movement but a short-term readjustment in the plate tectonic pattern that is related to orogeny. The normal, continuous sea-floor spreading becomes disarranged; its motion is mainly slowed or stopped at times of orogeny which is discontinuous, pulsatory and of short duration. The driving forces of the two processes are different, as is apparent from the contrasting rates of motion.The essential prerequisite for crustal shortening during alpinotype viscoplastic deformation seems to be a worldwide penetrative remobilization of continental marginal zones. Due to the loss of rigidity, the bordering plates then converged. The associated migmatization and granitization point to a thermal origin of this crustal mobilization. Episodic remobilization and folding of continental margins are the expression of such an endodynamic pulsation, released by processes in the earth's interior.  相似文献   

15.
The Luzon Island is a volcanic arc sandwiched by the eastward subducting South China Sea and the northwestward subducting Philippine Sea plate.Through experiments of plane-stress,elastic,and 2-dimensional finite-element modeling,we evaluated the relationship between plate kinematics and present-day deformation of Luzon Island and adjacent sea areas.The concept of coupling rate was applied to define the boundary velocities along the subduction zones.The distribution of velocity fields calculated in our models was compared with the velocity field revealed by recent geodetic (GPS) observations.The best model was obtained that accounts for the observed velocity field within the limits of acceptable mechanical parameters and reasonable boundary conditions.Sensitivity of the selection of parameters and boundary conditions were evaluated.The model is sensitive to the direction of convergence between the South China Sea and the Philippine Sea plates,and to different coupling rates in the Manila trench,Philippine trench and eastern Luzon trough.We suggest that a change of±15° of the di rection of motion of the Philippine Sea plate can induce important changes in the distribution of the computed displacement trajectories,and the movement of the Philippine Sea plate toward azimuth330° best explains the velocity pattern observed in Luzon Island.In addition,through sensitivity analysis we conclude that the coupling rate in the Manila trench is much smaller compared with the rates in the eastern Luzon trough and the Philippine trench.This indicates that a significant part of momentum of the Philippine Sea plate motion has been absorbed by the Manila trench;whereas,a part of the momentum has been transmitted into Luzon Island through the eastern Luzon trough and the Philippine trench.  相似文献   

16.
Collision and stress trajectories in Taiwan: a finite element model   总被引:2,自引:0,他引:2  
Field analyses of Plio-Quaternary compressional deformations in Taiwan have enabled us to reconstruct the paleostress trajectories resulting from the collision of the Luzon arc (Philippine Sea plate) with the Chinese continental margin (Eurasian plate). The direction of the maximum compressional stress σ1 shows a fan-shaped pattern that we interpret as resulting from the collision of a rigid body (the Luzon arc) indenting a more deformable material (the thick sediments of the Chinese continental margin). Simple analytical models qualitatively explain the fan-shaped pattern, but the influence of various parameters such as boundary conditions and rheology cannot be quantitatively accounted for by this approach. Consequently, we have used a finite element technique to compute the stresses and strains induced by the push of a rigid body against a two-dimensional, viscous material. The boundary conditions are the velocities based on plate kinematics. A motion in the N300°E direction best explains the stress trajectories observed in central Taiwan. Viscosity contrasts as well as small changes in the shape of the northern edge of the indenter have little influence on the computed stress pattern. The most important parameter is the direction of convergence. Our model quantitatively explains the general pattern of the stress trajectories observed in the collision zone of Taiwan, between the Philippine Sea plate and Eurasia.  相似文献   

17.
A synthesis of the geologic evolution of Taiwan   总被引:2,自引:0,他引:2  
The island arc of Taiwan is composed of Cenozoic geosynclinal sediments more than 10,000 m thick, lying on a pre-Tertiary metamorphic basement. Pleistocene to Miocene andesitic islands surround the main island and are related mostly to arc magmatism. The Penghu Island Group in the Taiwan Strait is covered with Pleistocene flood basalt. Neogene shallow marine clastic sediments are exposed mainly in the western foothills with Pleistocene andesitic extrusives at the northern tip and the northeastern offshore islands. A thick sequence of Paleogene to Miocene argillitic to slaty metaclastic rocks underlies the western Central Range and forms the immediate sedimentary cover on the pre-Tertiary metamorphic complex to the east, which represents an older Mesozoic arc-trench system. The Coastal Range in eastern Taiwan is a Neogene andesitic magmatic arc, including also a large variety of volcaniclastic and turbiditic sediments. Cenozoic Taiwan is the site of arc-continent collision where the Luzon arc on the Philippine Sea plate overrides the Chinese continental margin on the Eurasian plate. East and northeast of Taiwan, the polarity of subduction changes whereby the oceanic Philippine Sea plate is subducting beneath the Ryukyu arc system on the Eurasian plate. Continent-arc collision in Taiwan island is anomalous and may occur in a broad belt of deformation rather than along a well-defined plate boundary or subduction zone.  相似文献   

18.
It is important to know the shape of a subducting slab in order to understand the mechanisms of inter-plate earthquakes and the process of subduction. Seismicity data and converted phases have been used to detect plate boundaries. The configuration of the Philippine Sea slab has been obtained at the western part of southwestern Japan. At the eastern part of southwestern Japan, however, the configuration of the Philippine Sea slab has not yet been confirmed. A spatially high-density seismic network makes it possible to detect the boundaries of the Philippine Sea slab. We used a spatially high-density temporal seismic array in the area. The configuration of the Philippine Sea plate is obtained at the eastern part of southwestern Japan using the temporal seismic array and permanent seismic network data and comparing the seismic structure obtained from the results of refraction surveys. The configuration of the Philippine Sea plate obtained by this study does not bend sharply compared to previous models obtained from receiver function analyses. We delineated the upper boundary of the slab to a depth of about 45 km. The weak image of the boundary, which corresponds to the upper mantle reflector beneath the source area of the 2000 Western Tottori earthquake, was detected using the spatially dense array.  相似文献   

19.
We interpret the GPS-derived velocity field in southwest Japan by a superposition of the elastic deformation caused by fault interactions (slips or slip deficits) on the rigid motion of tectonic blocks (or plates). Based on the strain rate field and crustal seismicity, we apply a model with three blocks (Inner Arc, Outer Arc, and the northern Ryukyu block) and slip deficits along the block boundaries.Several characteristics of the synthesized contributions are found:
(1) Westward motion of the outer arc relative to the Amurian plate and the inner arc,
(2) southeastward motion of the northern Ryukyu block relative to the Amurian plate,
(3) 2−4 mm/yr deficits of left lateral slip rates along the boundary at 32°N in southern Kyushu,
(4) 0−8 mm/yr deficits of right lateral slip rates along the Median Tectonic Line and the Beppu-Shimabara Graben,
(5) slip deficit rates on the plate interface smaller than those in the case without any consideration for rigid block motions,
(6) clockwise deflection of slip deficit rate vector on the plate interface from that estimated when not taking rigid block motions into consideration.
Keywords: Oblique subduction; Sliver motion; Backarc spreading; Interplate coupling; Euler vector  相似文献   

20.
《Gondwana Research》2010,17(3-4):414-430
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号