首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of U–Pb, Rb–Sr and Sm–Nd isotopic data, it is shown that formation of uranium mineralization in the Paleoproterozoic Salla-Koulajarvinsky belt (Northern Karelia) was a long-lasting mult-stage process that developed over more than 1 Ga: from the Paleoproterozoic to the Paleozoic. The first stage, 1.75 Ga ago, corresponds to the Svekofennian metamorphic event—regional albitization. The process was dated by the Rb–Sr (isochronic age of albitites is 1754 ± 39 Ma) and U–Pb methods (the age of rutile is 1756 ± 8 Ma). At this stage, with a lower temperature limit of 400–450°C, conditions were favorable for the mobilization and migration of uranium, but not for its deposition in minerals. The second stage, 1.62 Ga ago, was a time of alteration of rocks at the regressive stage of the Svekofennian metamorphic event, when carbonate and chlorite rocks formed after albitites. The age of this stage was estimated as 1627 ± 42 Ma according to ThO2, UO2, and PbO contents in uraninite. Probably, the deposition of uraninite took place at this stage at temperature not higher than 300–350°C. The final, third stage, 385 Ma ago, corresponds to the Paleozoic tectonic activation and formation of Caledonian alkaline intrusions. Uranium minerals were probably redeposited at this stage; the U–Pb age of brannerite is 385 ± 2 Ma.  相似文献   

2.
The enrichment of lead isotopic composition of nonuranium minerals, in the first place galena in 206Pb and 207Pb, as compared to common lead is a remarkable feature of uranium deposits. The study of such lead isotopic composition anomalous in 206Pb and 207Pb in uranium minerals provides an opportunity for not only identification of superimposed processes resulting in transformation of uranium ores during deposit history but also calculation of age of these processes under certain model assumptions. Galena from the Chauli deposit in the Chatkal–Qurama district, Uzbekistan, a typical representative of hydrothermal uranium deposits associated with domains of Phanerozoic continental volcanism, has been examined with the highprecision (±0.02%) MC-ICP-MS method. Twenty microsamples of galena were taken from polished sections. Six of them are galena hosted in carbonate adjacent to pitchblende spherulites or filling thin veinlets (approximately 60 μm) cutting pitchblende. Isotopically anomalous lead with 206Pb/204Pb and 207Pb/204Pb values reaching 20.462 and 15.743, respectively, has been found in these six microsamples in contrast to another fourteen in which the Pb–Pb characteristics are consistent with common lead. On the basis of these data and with account for the 292 ± 2 Ma age for the Chauli deposit, the age of epigenetic transformation of uranium ores of this deposit has been estimated. During this process, radiogenic lead partly lost from pitchblende was captured into galena. The obtained date is 170 Ma. In the Chatkal–Qurama district, these epigenetic processes are apparently caused by the interaction of uranium minerals with activated underground water under tectonic activity and relief transformation, which took place from the post-Permian (i.e., after the Chauli formation) to the Jurassic period.  相似文献   

3.
1 Introduction Metallogenic chronology is one of the keys in the research of mineral deposits. Determination of metallogenetic epoch is very important for understanding the relationships between mineralization and regional tectonomagmatic events, in studying the origin of mineral deposits, and for summarizing regional mineralization and instructing regional prospecting. The eastern Liaoning region hosts the main concentration of boron resources in China. The boron reserve in eastern Liaoning…  相似文献   

4.
We present a rapid and accurate technique for making in situ U-Pb isotopic measurements of uranium oxide minerals that utilizes both electron and ion microprobes. U and Pb concentrations are determined using an electron microprobe, whereas the isotopic composition of Pb for the same area is measured using a high-resolution ion microprobe. The advantages of this approach are: mineral separation and chemical digestion are unnecessary; homogenous uranium oxide standards, which are difficult to obtain, are not required; and precise and accurate U-Pb ages on ~10 μm spots can be obtained in a matter of hours. We have applied our method to study the distribution of U-Pb ages in complexly intergrown uranium oxides from the unconformity-type Cigar Lake uranium deposit, Saskatchewan, Canada. In situ U-Pb results from early formed uraninite define a well-correlated array on concordia with upper and lower intercepts of 1467 ± 63 Ma and 443 ± 96 Ma (±lσ), respectively. The 1467 Ma age is interpreted as the minimum age of mineralization and is consistent with the age of clay-mineral alteration (~1477 Ma) and magnetization of diagenetic hematite (1650 to 1450 Ma) that is associated with these unconformity-type uranium deposits and early diagenesis of the Athabasca Basin sediments. In situ U-Pb isotopic analyses of uraninite and coffinite can document the Pb?/U heterogeneities that can occur on a scale of 15 to 30 μm, thus providing relatively accurate information regarding the timing of fluid interactions associated with the evolution of these deposits.  相似文献   

5.
阿尔金群为阿尔金构造带的古老变质基底,由于缺乏精确的同位素测年数据,对其形成时代尚存争议。运用LA-ICP-MS 锆石U-Pb 定年分析方法,对阿尔金山南缘清水泉地区阿尔金群中的斜长角闪岩进行了年代学测定,并初步探讨其地质意义。锆石CL图像具有多晶面面状结构,无岩浆锆石具有的震荡环带和核边结构,Th/U比值大多都较低(<0.1),显示变质锆石的特点。18个锆石颗粒的19个测点给出的207Pb/206Pb年龄介于(1786±16)~(1877±12)Ma之间,加权平均值为(1827±13)Ma(MSWD=4.4,1σ)。区域地质与同位素年代学新资料表明,阿尔金山南缘清水泉地区在古元古代晚期存在一期构造-热事件,本期事件与吕梁运动的时限相吻合,在全球尺度上可能是古元古代哥伦比亚超大陆汇聚-裂解事件在该地区的响应,也证明阿尔金山存在新太古代—古元古代的变质基底,并且为探讨阿尔金构造带前寒武纪构造-热事件和演化历史提供了新证据。  相似文献   

6.
《Resource Geology》2018,68(3):275-286
The volcanic‐hosted Xiangshan uranium orefield is the largest uranium deposit in South China. Recent exploration has discovered extensive Pb–Zn mineralization beneath the uranium orebodies. Detailed geological investigation reveals that the major metallic minerals include pyrite, sphalerite, galena, and chalcopyrite, whilst the major non‐metallic minerals include quartz, sericite, and calcite. New δ18Ofluid and δDfluid data indicate that the ore‐forming fluids were mainly derived from magmatic, and the sulfide δ34S values (2.2–6.9‰) suggest a dominantly magmatic sulfur source. The Pb isotope compositions are homogeneous (206Pb/204Pb = 18.120–18.233, 207Pb/204Pb = 15.575–15.698, and 208Pb/204Pb = 37.047–38.446). The 87Sr/86Sr ratios of sulfide minerals range from 0.7197 to 0.7204, which is much higher than volcanic rocks and fall into the range of metamorphic basement. Lead and strontium isotopic compositions indicate that the metallogenic materials probably were derived from metamorphic basement. Pyrite Rb–Sr dating of the ores yielded 131.3 ± 4.0 Ma, indicating that the Pb–Zn mineralization occurred in the Early Cretaceous.  相似文献   

7.
Rhenium–osmium ages were determined for two molybdenite samples and a Pb–Pb age was derived from bornite–chalcopyrite–magnetite at the Salobo iron oxide copper–gold deposit to determine the timing of mineralization and its relation to the nearby Old Salobo Granite. Rhenium–osmium dating of molybdenite spatially associated with copper sulfide minerals yields ages with weighted means of 2576±8 and 2562±8 Ma. Removing the error multiplier introduced by the decay constant uncertainty, appropriate for comparing ages from the same isotopic system, these data convincingly argue for two temporally separated pulses of molybdenite deposition at 2576.1±1.4 Ma (n=2) and 2561.7±3.1 Ma (n=3). The 2576±8 Ma age coincides with a previously published U–Pb age of 2573±2 Ma for the Old Salobo Granite, suggesting that main stage ore formation may have been contemporaneous with granite magmatism. The slightly younger 2562 Ma age most likely represents new molybdenite precipitation associated with the development or reactivation of local shear zones. Lead–lead stepwise leaching of copper sulfide minerals yields a less precise isochron age of 2579±71 Ma, and supports an Archean age for the Salobo ores. This is the first documentation of an Archean iron oxide copper–gold deposit, and the Re–Os and Pb–Pb geochronology herein support 2580–2550 Ma estimates for basement reactivation and regional granite magmatism associated with the development of brittle–ductile shear zones.  相似文献   

8.
The Zhuguangshan complex carries some of the most important granite-hosted uranium deposits in South China. Here we investigate the Changjiang and Jiufeng granites which represent typical U-bearing and barren granites in the complex, using zircon U-Pb ages, whole-rock geochemistry, Sr-Nd isotopic and zircon Hf isotopic data, and mineral chemistry, to constrain the petrogenesis and uranium mineralization. LA-ICP-MS zircon U-Pb dating shows that both the Changjiang and Jiufeng granites were emplaced ca. 160 Ma. These rocks show high silica, weakly to strongly peraluminous compositions, enrichment in Rb, Th, and U, and depletion in Ba, Nb, Sr, P, and Ti. These features coupled with the high initial 87Sr/86Sr ratios, negative εNd(t) values and εHf(t) values, and the Paleoproterozoic two stage model ages of these two granites suggest that the two granites belong to S-type granites, and the parental magmas of the two granites were derived from the Paleoproterozoic metasedimentary rocks. However, the granitoids show different mineralogical characteristics. The biotite in the Changjiang granite belongs to siderophyllite, marking higher degree of chloritization, whereas the biotite in the Jiufeng granite is ferribiotite, characterized by only slight chloritization. Compared with the Jiufeng granite, the biotite in the Changjiang granite has lower crystallization temperature and oxygen fugacity, but higher F content, and the uraninite has higher UO2 content but lower ThO2 content, and stronger corrosion. The chemical ages of uraninites from both granites are (within error) consistent with the zircon U-Pb ages and are considered to represent the emplacement ages of granites. Chemical ages of pitchblende in the Changjiang granite yield 118 ± 8 Ma, 87 ± 4 Ma, and 68 ± 6 Ma, representing multiple episodes of hydrothermal events that are responsible for the precipitation of U ores in the Changjiang uranium ore field. Our study suggests that the degree of magma differentiation and physicochemical conditions of the magmatic-hydrothermal system are the key factors that control the different U contents of these two granites. The mineralogical characteristics of uraninite and biotite can be used to distinguish between U-bearing and barren granites, and serve as a potential tool for prospecting granite-hosted uranium deposits.  相似文献   

9.
花岗岩型铀矿床是我国重要的工业铀矿床类型,广泛分布于南岭地区。粤北长江铀矿田位于南岭中段诸广山岩体中南部,是我国典型的花岗岩型铀矿田。由于铀矿物在化学组成和成因上的固有属性,前人通过传统的铀矿物U-Pb同位素定年获得的成矿年龄(157~52Ma)变化范围较大且分散,难以有效约束精确的铀成矿时代。本文在精细矿物学研究的基础上,对长江铀矿田棉花坑、书楼坵和长排三个铀矿床的沥青铀矿开展了LA-ICP-MS原位微区U-Pb同位素定年研究。结果表明,棉花坑矿床成矿年龄为60. 8±0. 6Ma和66. 8±1. 6Ma,书楼坵矿床成矿年龄为71. 4±1. 3Ma和74. 4±1. 7Ma,长排矿床成矿年龄为62. 4±2. 5Ma和70. 2±0. 5Ma,总体分为~75Ma、~70Ma和~60Ma三期成矿年龄,代表了华南花岗岩型铀矿的晚期铀矿化。长江铀矿田成矿时代与诸广地区北东向断裂带、断陷盆地的强烈拉张时期(80~60Ma)同步,指示区内铀矿化与南岭地区晚白垩世-古近纪地壳拉张作用有关,区内铀成矿的幔源矿化剂CO_2来自区域性北东向断裂带的拉张作用。综合前人资料,认为诸广地区的铀成矿具同时性和多期性特征,成矿峰期为~140Ma、~125Ma、~105Ma、~90Ma和80~60Ma,成矿统一受制于华南岩石圈伸展的动力学背景,诸广山-南雄盆山体系白垩-古近纪的构造演化可能是促使区域铀矿化形成的主要因素。  相似文献   

10.
扬子地块西缘的河口群长期以来被认为是早元古代的火山—沉积地层,这种认识缺乏高精度同位素年龄的支持。为精确标定河口群的时代,采用激光剥蚀等离子体质谱(LA-ICP-MS)对川西南拉拉铜矿区河口群中的石英角斑岩进行锆石U-Pb定年。结果表明所有锆石均为岩浆锆石,单点分析结果均为谐和年龄,锆石207Pb/206Pb加权平均年龄为1722±25Ma(2σ,MSWD=0.5,n=11)。由此认为河口群浅变质火山—沉积岩系的精确沉积时代为1722±25Ma,为早元古代晚期的火山—沉积地层。  相似文献   

11.
U–Pb isotopic analyses indicate that ores from the South Zhuguang uranium ore field, south China, have high common (non‐radiogenic) Pb contents, with variable and relatively radiogenic initial Pb contents. The U–Pb isochron method was used to date these ores, with plots of 208Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb being used to identify sample suites with similar initial Pb isotopic ratios and to normalize variable initial Pb isotopic ratios. The resulting U–Pb isochrons indicate two substages of uranium mineralization at ~57 and 52 Ma, with a later hydrothermal reformation at ~49 Ma, which homogenized Pb isotopic compositions. Initial Pb isotopic systematics indicate that the ore‐forming fluid was characterized by high 206Pb/204Pb and 207Pb/204Pb ratios and low 208Pb/204Pb ratios, suggesting that the ore‐forming fluid was sourced from Cretaceous–Paleogene red‐bed basins, rather than from magma or the mantle, with consideration of mineralization ages.  相似文献   

12.
The isotopic (U-Pb, 238U-235U, 234U-238U) and chemical study of whole-rock samples and finegrained fractions of rocks in a vertical section of the terrigenous sequence at the Dybryn uranium deposit in the Khiagda ore field shows that a wide U-Pb isotopic age range (26.9-6.5 Ma) is caused by oxidation and disturbance of the U-Pb isotopic system in combination with protracted uranium ore deposition. The oxidation of rocks resulted in the loss of uranium relative to lead and eventually to an overestimated 206Pb/238U age at sites with a low U content. The 238U/235U ratios in the studied samples are within the range of 137.74–137.88. Samples with a high uranium content are characterized by a decreasing 238U/235U ratio with a decrease in 207Pb/235U and 206Pb/238U ages. A nonequilibrium 234U/238U ratio in most studied samples furnishes evidence for young (<1.5 Ma) transformation of the Miocene uranium ore, which is responsible for uranium migration and its redeposition.  相似文献   

13.
The Mesozoic Yili Basin of NW China represents the largest known concentration of U deposits in China and contains five major deposits, namely (from west to east) the 512 (Kujie’ertai), 513, 511, 510 (Mengqiguer), and 509 deposits. Pre-mining resources within the explored sandstone-type uranium deposits in this area are reportedly as much as 20,000 t contained U. The mineralization is hosted by the Middle–Lower Jurassic Shuixigou Group, which (from base to top) is divided into the Badaowan, Sangonghe, and Xishanyao formations. The U-Pb isotopic analysis of ores from the Kujie’ertai and Mengqiguer deposits indicate that they contain high and variable amounts of initial (common) Pb, meaning that the only possible way to date these deposits is by using U-Pb isochrons. Two major stages of uranium mineralization have been identified by the U-Pb isotope dating of uranium ores in this region. The Kujie’ertai deposit apparently formed between 23.4 ± 3.3 and 20.18 ± 0.49 Ma, corresponding to a period of crustal thickening and uplift within the Tien Shan Orogen. This event (35–21 Ma) accommodated the majority of the strain generated by the northward collision of the Indian Plate with the Asian Plate. However, the dating of samples from the Mengqiguer deposit yielded much younger ages (between 0.61 ± 0.24 and 0.347 ± 0.0048 Ma). The western Tien Shan mountains expanded until the Pliocene as a result of the far-field influence of continuous penetration of the Indian Plate into the Asian Plate. This activated reverse faults and folds in the piedmont of the Tien Shan mountains and caused the continuous uplift of the southern flank of the Yili Basin. The uplift caused the erosion of anticline hinge zones, introducing significant amounts of oxidizing water into the Shuixigou Group, generating a second stage of uranium mineralization. Hydrological sampling also suggests that the Mengqiguer deposit continues to grow, indicating a possible third stage of uranium mineralization (∼0 Ma). This also indicates that the U within these deposits is derived not only from U-bearing sediments but from the Tien Shan mountains as a result of groundwater cycling. The evolution of the U contents of groundwater that was initially derived from cold springs that flow into the mineralized units indicates that these cold springs have an essential role in mobilizing U from the Tien Shan mountains, with rivers flowing through areas of outcropping mineralized units acting as a source of mineralizing fluids during the formation of the Mengqiguer deposit.  相似文献   

14.
New U–Pb and Sm–Nd isotopic geochronological data are reported for rocks of the Monchegorsk pluton and massifs of its southern framing, which contain low-sulfide PGE ores. U–Pb zircon ages have been determined for orthopyroxenite (2506 ± 3 Ma) and mineralized norite (2503 ± 8 Ma) from critical units of Monchepluton at the Nyud-II deposit, metaplagioclasite (2496 ± 4 Ma) from PGE-bearing reef at the Vurechuaivench deposit, and host metagabbronorite (2504.3 ± 2.2. Ma); the latter is the youngest in Monchepluton. In the southern framing of Monchepluton, the following new datings are now available: U–Pb zircon ages of mineralized metanorite from the lower marginal zone (2504 ± 1 Ma) and metagabbro from the upper zone (2478 ± 20 Ma) of the South Sopcha PGE deposit, as well as metanorite from the Lake Moroshkovoe massif (2463.1 ± 2.7 Ma). The Sm–Nd isochron (rock-forming minerals, sulfides, whole-rock samples) age of orthopyroxenite from the Nyud-II deposit (2497 ± 36 Ma) is close to results obtained using the U–Pb method. The age of harzburgite from PGE-bearing 330 horizon reef of the Sopcha massif related to Monchepluton is 2451 ± 64 Ma at initial εNd =–6.0. The latter value agrees with geological data indicating that this reef was formed due to the injection of an additional portion of high-temperature ultramafic magma, which experienced significant crustal contamination. The results of Sm–Nd isotopic geochronological study of ore-bearing metaplagioclasite from PGE reef of the Vurechuaivench deposit (2410 ± 58 Ma at εNd =–2.4) provide evidence for the appreciable effect of metamorphic and hydrothermal metasomatic alterations on PGE ore formation. The Sm–Nd age of mineralized norite from the Nyud-II deposit is 1940 ± 32 Ma at initial εNd =–7.8. This estimate reflects the influence of the Svecofennian metamorphism on the Monchepluton ore–magmatic system, which resulted in the rearrangement of the Sm–Nd system and its incomplete closure. Thus, the new isotopic geochronological data record the polychronous development of the Monchegorsk ore–magmatic systems and the massifs in its southern framing.  相似文献   

15.
白杨河矿床是我国类型独特的一个特大型铍、铀多金属矿床,铍矿物主要确定为羟硅铍石,铀矿物主要发现沥青铀矿和次生的硅钙铀矿以及少量的铌铀矿,伴生矿物主要是萤石。为恢复铀和铍的成矿过程,划分成矿阶段,本次工作通过系统采集钻孔中的萤石样品,进行了Sm-Nd同位素测年研究,获得了三组等时线年龄,分别为291±16Ma、265±33Ma和207±37Ma,代表了成矿前、成矿期和成矿后萤石的形成;采集中心工地、新西工地和九号工地平巷内的沥青铀矿样品,进行了UPb同位素测年研究,获得了~(206)Pb/~(238)U表观年龄237.8±3.3Ma、224±3.1Ma、197.8±2.8Ma、97.8±1.4Ma和30.0±0.4Ma,利用U-Pb表观年龄将铀矿化划分为四个阶段:中三叠世、晚三叠-早侏罗世、晚白垩世和古近纪中期。因此,白杨河矿床具有铍早铀晚的成矿特点,铀成矿经历了四个阶段。  相似文献   

16.
In unaltered volcanogenic massive sulfide (VMS) ore deposits, variable Rb/Sr ratios in the ore mineral permits application of the Rb-Sr isotopic method to directly date the time of ore formation. In contrast, post-crystallization deformation and metamorphism would open the system to metamorphic fluids that would alter elemental ratios. To test whether the Rb-Sr isotopic systematics in the ore minerals had preserved the formation time in the ∼800 Ma metamorphosed VMS ores within the ∼1 Ga Ambaji-Sendra arc terrain, Rajasthan, NW India, common sulfides, pyrite and sphalerite from the Pipela Cu-Zn prospect, were analyzed for their geochemistry and Rb-Sr isotopic systematics. Trace and rare earth elements in these minerals are resident probably at crystal defects, whereas all inclusions (including those from metamorphic fluids) were removed by a simple crush leach method. Results of direct dating by the Rb-Sr method to the hydrothermal pyrite yielded an isochron age of 1025±76 Ma with an initial Sr ratio of 0.7051±0.0006, similar to previously determined zircon U-Pb age of 987 Ma from associated rhyolites. This suggests the applicability of the crush leach method to date formation time of metamorphosed pyrite ores.  相似文献   

17.
The world class Jabiluka unconformity-related uranium deposit in the Alligator Rivers Uranium Field, Australia, contains >163,000 tons of contained U3O8. Mineralization is hosted by shallow-to-steeply dipping basement rocks comprising graphitic units of chlorite–biotite–muscovite schist. These rocks are overlain by flat-lying coarse-grained sandstones belonging to the Kombolgie Subgroup. The deposit was discovered in 1971, but has never been mined. The construction of an 1,150 m decline into the upper eastern sector of the Jabiluka II deposit combined with closely spaced underground drilling in 1998 and 1999 allowed mapping and sampling from underground for the first time. Structural mapping, drill core logging and petrographic studies on polished thin sections established a detailed paragenesis that provided the framework for subsequent electron microprobe and X-ray diffraction, fluid inclusion, and O–H, U–Pb and 40Ar/39Ar isotope analysis. Uranium mineralization is structurally controlled within semi-brittle shears that are sub-conformable to the basement stratigraphy, and breccias that are developed within the hinge zone of fault-related folds adjacent to the shears. Uraninite is intimately associated with chlorite, sericite, hematite ± quartz. Electron microprobe and X-ray diffraction analysis of syn-ore illite and chlorite indicates a mineralization temperature of 200°C. Pre- and syn-ore minerals extracted from the Kombolgie Subgroup overlying the deposit and syn-ore alteration minerals in the Cahill Formation have δ18Ofluid and δD fluid values of 4.0±3.7 and −27±17‰, respectively. These values are indistinguishable from illite separates extracted from diagenetic aquifers in the Kombolgie Subgroup up to 70 km to the south and east of the deposit and believed to be the source of the uraniferous fluid. New fluid inclusion microthermometry data reveal that the mineralising brine was saline, but not saturated. U–Pb and 207Pb/206Pb ratios of uraninite by laser-ablation ICP-MS suggest that massive uraninite first precipitated at ca. 1,680 Ma, which is coincident with the timing of brine migration out from the Kombolgie Subgroup as indicated by 40Ar/39Ar ages of 1,683±11 Ma from sandstone-hosted illite. Unmineralized breccias cemeted by chlorite, quartz and sericite cross-cut the mineralized breccias and are in turn cut by straight-sided, high-angle veins of drusy quartz, sulphide and dolomite. U–Pb and 207Pb/206Pb ratios combined with fluid inclusion and stable isotope data indicate that these post-ore minerals formed when mixing between two fluids occurred sometime between ca. 1,450 and 550 Ma. Distinct 207Pb/206Pb age populations occur at ca. 1,302±37, 1,191±27 and 802±57 Ma, which respectively correlate with the intrusion of the Maningkorrirr/Mudginberri phonolitic dykes and the Derim Derim Dolerite between 1,370 and 1,316 Ma, the amalgamation of Australia and Laurentia during the Grenville Orogen at ca. 1,140 Ma, and the break-up of Rodinia between 1,000 and 750 Ma.  相似文献   

18.
661铀矿床矿石U-Pb等时线年龄及其成矿构造背景   总被引:4,自引:1,他引:3  
661铀矿床位于赣杭构造火山岩铀成矿带东段大洲铀矿田内,矿体赋存于磨石山群九里坪组流纹岩之中,矿床定位于岩石圈伸展断陷盆地附近,明显受断裂带的控制.利用矿石U-Pb等时线法确定了该矿床两个矿体的成矿时代,分别为(107.0±2.3)Ma和(110.0±3.5)Ma.这些年龄值与断陷红盆底部发育的玄武岩的成岩年龄一致,也与东南沿海地区明显存在的110 Ma基性脉岩拉张活动的时间一致,表明岩石圈伸展与铀成矿之间具有良好的对应关系,为岩石圈伸展期与铀成矿关系研究提供了年代学证据.岩石圈伸展控制着富CO2热液形成的时间,因而也大致控制了铀成矿的时代.  相似文献   

19.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

20.
苗儿山矿田为中南地区五大铀矿田之一,其内分布有我国最大规模碳硅泥岩型的铲子坪铀矿床及诸多花岗岩型铀矿床,沙子江矿床为矿田内重要的花岗岩型铀矿床之一。沥青铀矿是理想的铀矿床直接定年样品,同时,也是U-Pb同位素研究的理想矿物。本次研究以沥青铀矿为对象进行U-Pb同位素分析,获得了沙子江矿床早、晚两期铀成矿作用的年代分别为104.4Ma和53.0±6.4Ma,结合铲子坪矿床主成矿期年代74.1±9.9Ma,它们可能分别代表了苗儿山矿田3期主要铀成矿作用的时代。沙子江矿床等时线拟合所得高的初始Pb值反映了该期成矿作用之前存在铀的预富集作用。3期成矿作用与华南地区基性脉岩年代数据统计反映的岩石圈伸展期次相对应,暗示了铀成矿受控于华南岩石圈伸展这一大的动力学环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号