首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 130 毫秒
1.
潘裕生  方爱民 《地质科学》2010,45(1):92-101
青藏高原的形成是特提斯演化的结果。本文根据区域大地构造演化和沉积学证据,将青藏高原特提斯在时间上划分为3个阶段,即早期、中期和晚期。早期从震旦纪开始至奥陶-志留纪结束,这个阶段的大洋我们称作“原特提斯”。中期从泥盆纪开始至石炭-二叠纪结束,通常称这个大洋为“古特提斯”。晚期从二叠纪末、三叠纪初开始一直延续到第三纪早期,这个阶段的大洋通常被称作“新特提斯”。在空间上,青藏高原特提斯可以划分为3个区域相,即北区、中区和南区。上述3个阶段完全可以与空间上的3个区域相对应,原特提斯主要发育于北区,大洋消亡后的遗迹残留在青藏高原第5缝合带中,即西昆仑-阿尔金-北祁连缝合带。古特提斯主要发育于中区,大洋消亡后的遗迹残留在青藏高原第3、4缝合带中,即金沙江缝合带和昆仑南缘缝合带。新特提斯主要发育于南区,大洋主洋盆消亡后的遗迹残留在青藏高原第1缝合带中,即雅鲁藏布江缝合带,它的弧后盆地消亡后的遗迹残留在第2缝合带中,即班公湖-怒江缝合带。  相似文献   

2.
青藏高原的形成与隆升   总被引:71,自引:4,他引:67  
潘裕生 《地学前缘》1999,6(3):153-163
青藏高原的形成与隆升问题是个十分复杂、倍受地球科学家关注的问题。它被认为是冈瓦纳大陆与欧亚大陆长期相互作用的结果。青藏高原是由6个地体相继增生到亚洲大陆上的一个组合,这些地体之间的边界被5条缝合带所限定。造山作用自北向南相继变年轻。青藏高原是特提斯的主要范畴,它可以分成3个区域,分别代表了3个阶段主洋盆位置。特提斯北区位于昆仑山和祁连山,它的遗迹是第五缝合带,在大陆基底上于震旦纪形成裂谷,奥陶纪闭合。特提斯中区位于可可西里-巴颜喀喇,古生代晚期以来在弧后盆地基础上继续破裂、扩张,典型的洋壳形成于石炭-二叠纪,这个时期的洋称古特提斯,它的遗迹为第三和第四缝合带。特提斯南区位于青藏高原南部,雅鲁藏布江缝合带代表了它的主洋盆遗迹,班公-怒江缝合带代表了它的弧后盆地。青藏高原的隆升以多阶段、非均匀、不等速为特征,大体上可分成4个阶段,即45~38,25~17,13~8和3~0Ma。虽然到目前为止已经提出了多种模式来解释高原的形成与隆升,但是这一问题迄今仍然没有解决。文中笔者根据多年来地质。地球物理和地球化学研究成果和近年来新的实验研究结果,提出了叠加压扁热动力模式来解释青藏高原的形成与隆升机制。  相似文献   

3.
青藏高原龙木错-双湖板块缝合带与羌塘古特提斯洋演化记录   总被引:27,自引:17,他引:27  
龙木错-双湖缝合带、西金乌兰-金沙江缝合带和昆仑-秦岭缝合带是青藏高原上3条主要的晚三叠世板块缝合带,目前的研究资料表明后2条缝合带不具备冈瓦纳北界的基本要素。简要介绍了龙木错-双湖缝合带中有关古特提斯洋存在的基本事实,即早古生代洋壳残片、二叠纪蛇绿岩、泥盆纪—二叠纪放射虫硅质岩、各类不同性质的增生岩片、2种类型的构造混杂岩带和蛇绿混杂岩盖层体系的时代与性质等,已有的资料初步确定羌塘古特提斯洋盆演化的时限为晚泥盆世到晚三叠世。认为龙木错-双湖缝合带是青藏高原上古特提斯洋消亡的主要场所,是恢复和反演青藏高原早期形成演化的最重要的窗口,也是地学界几十年关注的冈瓦纳大陆的北界。  相似文献   

4.
本文通过综述近年西特提斯带主要缝合带的研究进展及所代表洋盆的发育特征,提出了古特提斯缝合带可能的位置和俯冲消亡方式。结合区域资料探讨了西特提斯带古生代末—中生代洋陆构造格局,认为东、西古特提斯洋完全可以类比,自晚古生代末西特提斯带主要受古特提斯大洋双向俯冲制约,在俯冲带后缘以二叠纪裂谷带为基础逐渐发展成中生代多岛弧盆系的新特提斯构造格局,西特提斯造山系主要表现为弧后洋盆消减造山作用。  相似文献   

5.
龙木错—双湖—吉塘板块缝合带与青藏高原冈瓦纳北界   总被引:43,自引:0,他引:43  
青藏高原上冈瓦纳北界的讨论由来已久,随着基础地质研究程度的提高,羌塘地区成为解决冈瓦纳北界问题的关键地区。根据对缝合带的研究,青藏高原发育三条大规模的印支期缝合带,并将青藏高原分为三大板块:昆仑—秦岭缝合带以北为塔里木—华北板块,昆仑—秦岭缝合带与龙木错—双湖—吉塘缝合带之间为扬子板块,龙木错—双湖—吉塘缝合带以南为冈瓦纳板块。西金乌兰—金沙江缝合带是发育在扬子板块内部的印支期缝合带,班公湖—怒江和印度河—雅鲁藏布江缝合带是发育在冈瓦纳大陆框架下新特提斯阶段的缝合带,构不成冈瓦纳北界。文中简要介绍龙木错—双湖—吉塘缝合带的基本事实,着重阐述该缝合带对冈瓦纳板块和扬子板块的基底、沉积盖层与生物地理、沉积建造和构造运动等方面的制约。在青藏高原印支期主要板块缝合带的对比研究基础上,笔者认为龙木错—双湖—吉塘缝合带作为青藏高原上冈瓦纳大陆的北界是符合客观实际的。  相似文献   

6.
青藏高原中段古近纪早期古构造演化   总被引:1,自引:0,他引:1  
青藏高原古近纪早期发育大量区域逆冲推覆构造系统, 典型实例如冈底斯逆冲断裂系、纳木错西逆冲推覆构造、伦坡拉逆冲推覆构造、唐古拉山北逆冲推覆构造、东昆仑南部左旋斜冲断裂系。古近纪逆冲推覆构造对古新世—始新世沉积盆地具有重要控制和改造作用。冈底斯古新世—始新世早期发育大量中酸性岩浆侵入和多期中酸性火山喷发, 岩石Sr/Y-Y地球化学显示为岛弧岩浆岩, 推断与古近纪早期新特提斯残留古大洋板块俯冲存在成因联系。古近纪早期新特提斯残留大洋板块俯冲向印度大陆板块俯冲的转换时代约为46-45 Ma, 转换期前逆冲推覆构造运动与新特提斯残留古大洋板块俯冲存在密切关系; 转换期后印度大陆板块俯冲导致更为强烈的逆冲推覆构造运动和挤压缩短变形, 不仅使早期很多逆冲推覆构造继续发生构造运动, 还在喜马拉雅、冈底斯、风火山、东昆仑南部形成大量新的逆冲推覆构造系统。  相似文献   

7.
位于羌塘中部龙木错-双湖缝合带中的果干加年山早古生代堆晶岩,主要由辉石橄榄岩、堆晶辉石岩、堆晶辉长岩、斜长岩等岩石类型组成.对堆晶辉长岩中锆石的矿物学与年代学研究表明.堆晶辉长岩中发育3种内部结构特征的锆石晶体,锆石Th、U含量和Th/U值揭示了同一岩浆系统中结晶形成的岩浆锆石.获得堆晶辉长岩SHRIMP锆石U-Pb谐和年龄461Ma±7Ma(MSWD=1.3)、431.7Ma±6.9Ma(MSWD=0.54),分别代表了青藏高原中部地区原一古特提斯洋扩张过程中早期(中奥陶世Darriwilian阶晚期)、晚期(早志留世Telychian阶中期)的岩浆作用事件.果干加年山早古生代堆晶岩具有MORB.的特征,代表了龙木错-双湖缝合带中残存的早古生代蛇绿岩,也是青藏高原中南部地区目前为止认知时代最早的原一古特提斯洋壳的残迹.羌塘中部早古生代蛇绿岩的确定及其年代学的约束,使得龙木错-双湖特提斯洋盆的形成时代至少可以追溯到中奥陶世-早志留世,并推论龙木错-双湖缝合带、南羌塘古生代增生楔及其中生代盆地和班公湖-怒江缝合带共同构成了青藏高原特提斯大洋最终消亡的巨型缝合带,晚古生代原-古特提斯洋向南的俯冲消减导致了冈底斯带石炭纪-二叠纪岛孤型火山岩、二叠纪花岗闪长岩和大洋俯冲型榴辉岩的形成.  相似文献   

8.
位于羌塘中部龙木错-双湖缝合带中的果干加年山早古生代堆晶岩,主要由辉石橄榄岩、堆晶辉石岩、堆晶辉长岩和斜长岩等岩石类型组成。通过对堆晶辉长岩锆石的矿物学与年代学研究,堆晶辉长岩中发育3种内部结构特征的锆石晶体,锆石Th、U含量和Th/U值揭示同一岩浆系统中结晶形成的岩浆锆石。获得堆晶辉长岩SHRIMP锆石U-Pb谐和年龄461±7Ma(MSWD=1.3)、431.7±6.9Ma(MSWD=0.54),分别代表了青藏高原中部地区原-古特提斯洋扩张过程中早期(中奥陶世Darriwilian阶晚期)、晚期(早志留世Telychian阶中期)的岩浆作用事件。果干加年山早古生代堆晶岩具有MORB特征,代表了龙木错-双湖缝合带中残存的早古生代蛇绿岩,也是青藏高原中南部地区目前为止认知时代最早的原-古特提斯洋壳残迹。羌塘中部早古生代蛇绿岩的确定及其年代学约束,使得龙木错-双湖特提斯洋盆的形成时代至少可以追索到中奥陶世-早志留世,并推论龙木错-双湖缝合带、南羌塘古生代增生楔及其中生代盆地和班公湖-怒江缝合带,共同构成了青藏高原特提斯大洋最终消亡的巨型缝合带,晚古生代原-古特提斯洋向南的俯冲消减导致了冈底斯带石炭-二叠纪岛弧型火山岩、二叠纪花岗闪长岩和大洋俯冲型榴辉岩的形成。  相似文献   

9.
形成于晚石炭—二叠纪的华夏植物群主要发育在东亚,范围是中国华北、华南和塔里木以及印度支那等陆块。根据这些陆块的缝合时代以及陆块内石炭—二叠纪地层、古生物发育特征的研究,笔者认为这些陆块在石炭纪之前已聚合成一个大型陆块,本文将这个以华夏植物群为特征的大型陆块称为华夏大陆。该大陆位于安加拉大陆与冈瓦纳大陆之间的古特提斯洋中,并将其分为南、北两支。二叠纪晚期,华夏大陆向北漂移,至二叠纪末期,华夏大陆与安加拉大陆碰撞,形成天山—北山—内蒙古特提斯洋北支缝合带。早三叠世末期,由冈瓦纳大陆北缘裂解出来的西藏和缅泰陆片向北漂移,与华夏大陆西南边缘碰撞,形成昆仑—三江古特提斯洋南支缝合带。至此,华夏大陆成为劳亚大陆东南边缘一部分。  相似文献   

10.
1∶25万地质填图进一步揭开了青藏高原地区大地构造的奥秘:阿尔金山是昆仑、祁连-秦岭造山系的一部分;阿尔金断裂确是一条大型转换断层;木孜塔格-玛沁缝合带和金沙江缝合带均是华力西缝合带;松潘甘孜三叠系沉积盆地是劳亚大陆南部边缘的浊积岩盆地;冈底斯带曾经历了重要的印支造山运动;不存在从古生代延续到三叠纪的大洋盆地,即不存在所谓古特提斯或永久特提斯;古生代时期,在青藏高原地区亦不存在具古生物、古地理分隔意义的大洋盆地,当时,包括中朝、扬子、塔里木以及青藏高原地区在内的中国大部分均位于古亚洲洋主洋盆———中亚-蒙古带之南,属冈瓦纳大陆结构复杂的北部边缘;雅鲁藏布江和班公湖-怒江带是特提斯洋中的孪生姊妹,它们均是从三叠纪起就发展成大洋裂谷带的;以雅鲁藏布江带为主洋盆带的特提斯洋,从三叠纪晚期开始消减,经历了印支、燕山、喜马拉雅3个阶段脉动式板块汇聚造山过程。  相似文献   

11.
FORMATION AND EUOLUTION OF TETHYS IN THE TIBETAN PLATEAU  相似文献   

12.
Abstract: The evolution of the global Tethys Sea can be classified into three stages, Proto-Tethys, Paleo-Tethys and Neo-Tethys. The Tethyan realm has distinctive features of zonations and segmentations along north-south and east-west, respectively, and has variable richness in oil and gas. The petroleum geological conditions of Tethys are complicated, partly represented by multi-layer of source and seal rocks, and reservoirs. The hydrocarbon accumulation elements and periods of the Tethyan realm show gradually younger from west to east and north to south. South China is located in the north belt and Yangtze segment of the Tethyan realm, and its polycyclic tectonic movements were governed by the Tethyan and Pacific realms. The blocks in South China rotated clockwise and counter-clockwise during their drift northward from Gondwana. The belts and segmentations of Tethys in South China are also clear, with six tectonic belts including: Chuxiong-Sichuan; middle Guizhou-Hunan-Hubei; lower Yangtze; Xuefeng-Jiangnan; Guangxi-Hunan-Jiangxi; and Cathaysia. Numerous faults, including compressional, compressional-shear, extensional, extensional-shear and shear are well developed in South China. The fault strikes are mainly NE, NW and NS, in which the NE is the dominant direction. Lower, middle and upper hydrocarbon assemblages, respectively corresponding to Proto-, Paleo- and Neo-Tethys, formed in the Tethyan realm of South China with the lower and middle having excellent hydrocarbon accumulation conditions. An integrated analysis of tectonic evolution, superimposed deformation and later hydrocarbon preservation shows that during the Neo-Tethyan stage in South China, continental sediments were deposited and experienced intense tectonic deformation, which had resulted in different hydrocarbon pool-forming features from those of the Neo-Tethyan realm.  相似文献   

13.
特提斯地球动力学   总被引:19,自引:9,他引:10  
吴福元  万博  赵亮  肖文交  朱日祥 《岩石学报》2020,36(6):1627-1674
特提斯是地球显生宙期间位于北方劳亚大陆和南方冈瓦纳大陆之间的巨型海洋,它在新生代期间的闭合形成现今东西向展布的欧洲阿尔卑斯山、土耳其-伊朗高原、喜马拉雅山和青藏高原。根据演化历史,特提斯可划分为原特提斯、古特提斯和新特提斯三个阶段,分别代表早古生代、晚古生代和中生代期间的大洋。大约在500Ma左右,冈瓦纳大陆北缘发生张裂,裂解的块体向北漂移,并使其与塔里木-华北之间的原特提斯洋在420~440Ma左右关闭,产生原特提斯造山作用,与北美-西欧地区Avalonia地体与劳伦大陆之间的阿巴拉契亚-加里东造山作用基本相当。原特提斯造山带之南、早古生代即已存在的龙木错-双湖-昌宁-孟连古特提斯洋在380Ma向北俯冲,使早期闭合的康西瓦-阿尼玛卿洋重新张开,并由于弧后扩张形成金沙江-哀牢山洋。330~360Ma左右,特提斯西部大洋由于南侧非洲板块和北侧欧洲板块的碰撞而关闭,形成欧洲华力西造山带。而特提斯东段的上述三条古特提斯洋在250Ma左右基本同时关闭,华北、华南、印支等块体聚合形成华夏大陆。该大陆与冈瓦纳大陆、劳亚大陆和华力西造山带一起围限形成封闭的古特提斯残留洋,并一直到晚三叠世-早侏罗世海水才全部退出。此后,南侧冈瓦纳大陆在三叠纪晚期重新裂解形成新特提斯洋,该洋盆在新生代初期由于印度和亚洲的碰撞而关闭。原、古、新特提斯三次造山作用基本代表了中国大陆显生宙期间的地质演化历史,并在此过程中形成了特色的特提斯域金属成矿作用。广布的被动陆缘和赤道附近的古地理位置,以及后期的造山作用同时也成就了特提斯域内巨量油气资源的形成;塑就的地貌与海陆分布格局,也对当时的古气候与古环境产生了重要影响。特别是,与原、古、新特提斯洋消亡相关的三次弧岩浆活动与显生宙地球历史上三次温室地球向冰室地球的转变,在时间上高度吻合。上述演化历史同时还表明,特提斯地质演化以南侧冈瓦纳大陆不断裂解、块体向北漂移并与劳亚大陆持续聚合为特征,其动力机制主要来自俯冲板片的拖拽力,而地幔柱是否对大陆的裂解与漂移有所贡献,则有待进一步评价。  相似文献   

14.
西藏的缝合带一直是西藏高原基础地质研究中最热门的科学问题之一.立足于西藏高原4条主要缝合带的物质组成、缝合结构以及形成时代等资料,根据时空结构分析认为古特提斯演化与转换构造有关,雅鲁藏布江洋盆扩张与羌塘-三江地区的印支运动具有耦合的时空变换关系;重点讨论了以班公湖-怒江带为中心的古-新特提斯转换扩张性质,构造体制上属左行走滑拉分,形成了西藏高原上颇具特色的与走滑拉分方向平行的伸展构造类型杂岩系,其重要意义不亚于高原周缘逆冲-拆离系构成的杂岩系和美国西部的盆-岭变质核杂岩;探讨了西藏东、西部地区不同地质结构的科学问题,提出了冈底斯岩浆弧拓展加宽受雅鲁藏布洋双重俯冲的制约.   相似文献   

15.
刘飞  杨经绥  连东洋  李观龙 《岩石学报》2020,36(10):2913-2945
西藏雅鲁藏布江缝合带(YZSZ)和班公湖-怒江缝合带(BNSZ)蛇绿岩代表了新特提斯洋壳和岩石圈地幔残余,是我国铬铁矿和蛇绿岩型金刚石的重要原产地,目前这两条蛇绿岩带的成因和相互关系还存在着争论。本文总结了YZSZ、BNSZ、狮泉河-纳木错蛇绿混杂岩带(SNMZ)和松多缝合带蛇绿岩的时空分布、组成和构造背景,归纳了拉萨地块晚古生以来的岩浆岩分布,获得以下主要认识:(1)Panjal地幔柱活动可能促使怒江洋和雅江西洋在早二叠世空谷期(283~272Ma)打开;(2)雅江东洋由于松多洋的南向俯冲在晚三叠世打开,与雅江西洋以萨嘎-措勤为界,并形成冈底斯东部245~200Ma岩浆热事件;(3)~140Ma班怒洋闭合以及南羌塘与北拉萨地块碰撞,导致雅江洋扩张速率加快而引发了北向拉萨地块的平板俯冲,进而导致班怒洋的再次裂解形成133~104Ma"红海型"小洋盆;(4)YZSZ缝合带西段南带蛇绿岩为北带的逆冲推覆体;(5)BNSZ和SNMZ蛇绿岩隶属于一个洋盆,后者代表了班怒洋成熟洋盆扩张脊的残余。  相似文献   

16.
雅鲁藏布江缝合带位于青藏高原南部,是印度板块向欧亚板块俯冲的产物,代表着新特提斯洋岩石圈的残片。文章对西藏乃东地区雅鲁藏布江缝合带中蛇绿混杂岩的变质作用及岩石学特征进行了研究。该带总体呈近东西向延伸,受变地质体主要为晚侏罗—早白垩世泽当蛇绿岩。通过野外地质调查、岩相学及岩石地球化学分析,结合岩石成因研究及构造环境判别,认为泽当蛇绿岩由地幔橄榄岩、辉长质杂岩、镁铁质杂岩、海相沉积物及伴生铬铁矿和斜长花岗岩等组成,属低绿片岩相—高绿片岩相区域变质岩。  相似文献   

17.
The Yarlung Zangbo Suture Zone (YZSZ) is believed to be composed of material largely derived from the destruction of the Neo-Tethys that occurred from early Mesozoic to early Cenozoic. We report here geochronological and petrological data obtained for newly discovered alkaline gabbro blocks embedded in a mélange zone of the western YZSZ. Single zircon U–Pb analyses from one representative gabbro sample by SIMS (Secondary Ion Mass Spectrometry) yielded a combined crystallization age of about 363.7 ± 1.7 Ma (1σ). In situ Hf isotopic analyses yielded εHf(t) values of + 2.6 to + 5.5, suggesting an enriched mantle source. All of the gabbro samples show typical Ocean Island Basalt (OIB) affinity with little or no continental crust contamination. They also display strong geochemical similarities with the Hawaii basalts and the Xigaze seamount basalts suggestive of their intra-oceanic setting. These observations, in combination with the Early Carboniferous layered gabbros reported at Luobusa, indicate that these rocks could represent remnants of the Paleo-Tethys. We propose that a branch ocean separating the Western Qiangtang terrane and the Lhasa terrane from the Gondwana continent might have been present during the Late Devonian and the Early Carboniferous, providing new constrains on the configuration of Paleo-Tethys in Tibetan Plateau during early Late Paleozoic.  相似文献   

18.
《地学前缘(英文版)》2020,11(4):1123-1131
Collision between the Indian and Eurasian plates formed the ~2500 km long Yarlung Zangbo Suture Zone and produced the Himalaya mountains and Tibetan plateau.Here we offer a new explanation for tectonic events leading to this collision:that the northward flight of India was caused by an Early Cretaceous episode of subduction initiation on the southern margin of Tibet.Compiled data for ophiolites along the Yarlung Zangbo Suture Zone show restricted ages between 120 Ma and 130 Ma,and their supra-subduction zone affinities are best explained by seafloor spreading in what became the forearc of a north-dipping subduction zone on the southern margin of Tibet.The subsequent evolution of this new subduction zone is revealed by integrating data for arcrelated igneous rocks of the Lhasa terrane and Xigaze forearc basin deposits.Strong slab pull from this new subduction zone triggered the rifting of India from East Gondwana in Early Cretaceous time and pulled it northward to collide with Tibet in Early Paleogene time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号