首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 590 毫秒
1.
碳酸盐岩风化形成的红土保存着喀斯特发展演化历史证据,同时也是喀斯特地区土壤研究的重要对象。文章选取云 南石林地区的两处典型碳酸盐岩剖面为研究对象,对主量元素,微量元素及稀土元素在风化层的迁移特征及分布规律进行 研究,为探究风化层的成因提供依据。结果显示:(1) 以Ti为参比元素的剖面迁移特征表明,两剖面的主量元素在成土过 程中有相似的迁移规律,多数表现为淋失;微量元素略有差异,富集淋失程度不一。(2) UCC 标准化蜘蛛图显示,相对于 基岩,风化层中的Ca和Sr均出现亏损;与UCC相比,Fe、Ti等元素轻微富集,Mg、Ca、Na、K、P等元素显示了强烈的亏 损特征。(3) 基岩与风化层的REE分布模式相似,但风化层的稀土相对富集,轻稀土元素间的分异较大而重稀土元素间的 分异较小,且SJC剖面的轻、重稀土元素比值大于QST剖面;稀土元素球粒陨石标准化后,SJC剖面的Eu为负异常,剖面 上部和下部出现Ce负异常;QST剖面Ce负异常,Eu明显负异常。(4) 元素含量变化和元素对Al-Ti、Al-Fe及Zr-Hf相关性 说明剖面上覆红土是下伏基岩风化的结果。研究结果显示,两个剖面的元素地球化学特征与基岩存在很好的继承性,风化 层是基岩原位风化的产物。  相似文献   

2.
选取贵州高原喀斯特地区的典型碳酸盐岩原生风化剖面为研究对象,研究主元素、微量元素及稀土元素在风化壳的迁移转化及其分布规律特征,为解释碳酸盐岩风化壳元素的地球化学变化提供依据。结果显示,从上陆壳标准化蛛网图可知,Pb、Co在剖面富集,而Na、K、Cr、Rb、Sr和Ba则亏损。风化壳∑REE的变化范围为167.4~1814.2μg/g,稀土元素从剖面下部往上逐渐减少,剖面中上部LREE比HREE淋滤程度大。稀土元素球粒陨石标准化后Ce正负异常,Eu轻微负异常。以风化前缘为分界,在风化前缘以下的土层,Ce负异常,风化前缘以上的土层,Ce正异常。此外,在风化壳岩土界面附近存在一个明显且突变的碱性障,岩土界面土样的元素含量较岩粉平均增加了21倍。我们的研究显示,风化剖面主元素和微量元素的变化波动特征较为一致,说明主元素和微量元素在风化过程中的地球化学行为较为一致。铁壳层中稀土元素的含量最低,与上陆壳稀土元素十分相近,为研究上陆壳与碳酸盐岩铁壳层之间的相互联系起到了一定的借鉴作用。  相似文献   

3.
本研究选择中国东部主要的花岗岩分布区中位于中温带、暖温带和热带的8个花岗岩风化壳作为研究对象,对比研究了不同气候环境下花岗岩风化过程中稀土元素(REE)的分布规律及其演化特征。结果表明,各气候带的花岗岩风化壳的REE分布具有一定的共性规律,风化产物的REE总量相对基岩都有不同程度的富集,且都表现出轻稀土(LREE)相对重稀土(HREE)富集以及一定程度的Eu负异常。由于REE的迁移和淋滤,导致其在风化壳内的再分配。通常REE在半风化层富集,p H值和粘土矿物含量等内因变化是导致这一现象的主要因素。对于少数表层REE富集的现象,如SD-DG、HN-3剖面,气候环境与地质条件等外因则是这一现象的主导因素。受海洋性气候影响显著的风化壳(QHD-1,HN-3),以基岩为标准,容易发生HREE富集的轻、重稀土分异的现象。大部分花岗岩风化壳中,Ce通常在剖面上部出现正异常,而在下部出现与之互补的Ce负异常。  相似文献   

4.
王洪  谷静  黄智龙  赵浪叶 《矿物学报》2021,41(4):439-453
新民铝土矿床是近年来黔北务正道地区新发现的大型铝土矿床,为古风化壳沉积型,其含矿岩系为二叠系下统梁山组,该组底部稀土元素异常富集.为研究其铝土矿化过程中稀土元素地球化学行为,采集了2个钻孔剖面、一个露头剖面的铝质岩系以及相关地层的样品,进行了主、微量元素分析.结果显示,铝质岩系与下伏地层韩家店组具有相似的Ti/Nb、Nb/Ta组成,说明韩家店组可能为铝质岩系和稀土元素的主要源区.∑REE、稀土元素活动迁移系数Kjw值和δCe等稀土特征的剖面变化表明,稀土元素的异常富集发生在铝质岩系沉积前的古风化壳阶段,但厚度较薄,而铝质岩系的再风化阶段稀土元素发生一定量的迁移,但不具稀土矿化意义;铝土矿化过程中,从轻稀土到重稀土,元素活动性逐渐减弱;古风化壳阶段富铁绿泥石在弱碱性、弱还原环境下沉淀,同时下伏碳酸盐岩地层促进了稀土元素在富铁绿泥石层中的富集,而铝质岩系的沉积和再风化阶段均为酸性、氧化环境.  相似文献   

5.
碳酸盐岩的REE含量极低,但最近在贵州一些碳酸盐岩风化表土层底部首次发现了REE的超常富集层,REE总量最高可达近31000μg/g;Ce强烈亏损,δCe值最低达0.007。这种低背景、高富集、强分异的REE富集现象在贵州碳酸盐岩风化壳中具有一定的普遍性。选取发育在下三叠统花溪灰岩和平坝白云岩之上的两个较具代表性的碳酸盐岩风化壳进行研究,结果表明,这种富集现象与碳酸盐岩风化成土的两阶段性密切相关。(1)在残积土形成阶段(风化早期),碳酸盐的快速溶解导致风化前缘形成一个垂直方向相对狭窄、突变的碱性障(pH值为8左右)。此障既能有效地将碳酸盐岩分解释放的REE以及下渗水携带的REE分解沉淀和以吸附于粘土矿物上的方式富集,也容易使Ce^3 氧化成Ce^4 ,与HCO3^-形成稳定的可溶性络合物随下渗雨水流走,从而使Ce进一步亏损。(2)残积土演化阶段,轻、重稀土发生明显分异,Ce^3 氧化成Ce^4 并发生水解沉淀,致使下渗水富重稀土而贫Ce,最终使REE在剖面上显示出一般风化壳共有的分异特征。另外,根据对碳酸盐岩中的酸不溶物、可溶性稀土的提取以及质量平衡计算,碳酸盐岩能够提供足够的REE物源;以可溶态为主的赋存状态有利于REE的淋滤(活化)。  相似文献   

6.
冀北地区蓟县系铁岭组顶部普遍发育一套古风化壳,该层位轻稀土元素和Rb均出现显著的富集现象。为了进一步探讨风化过程中元素的迁移规律以及古环境特征,文章对该套古风化壳开展了详细的地球化学研究。结果表明,古风化壳中轻稀土元素、Rb和Ti等含量自下而上表现为“先升高,后降低”的分布规律,且随着风化层中黏土物质的增加而升高,在中上部黏土岩中达到富集的峰值,推测与黏土矿物的吸附作用相关;古风化壳δCe正异常、δEu明显的负异常等特征指示轻稀土元素主要富集于中上部的氧化环境,且氧化作用越强越富集;化学蚀变指数CIA介于53.54~79.50,风化淋滤指数BA变化范围为0.39~1.08,共同指示了风化壳形成于温暖湿润的气候环境。综合稀土元素、微量元素和La/Yb-∑REE图解显示,风化壳稀土元素和微量元素主要来源于下伏铁岭组碳酸盐岩以及火山岩浆活动。  相似文献   

7.
贵州织金新华含稀土磷矿床稀土元素地球化学研究   总被引:8,自引:0,他引:8  
对贵州织金新华含稀土磷矿床进行的稀土元素及微量元素分析结果表明,磷块岩中普遍富集稀土元素,含稀土总量∑REE较高,并富集Y、La、Nd等重稀土及轻稀土元素.LREE/HREE比值较高,但低于上部围岩之值.含稀土磷块岩普遍具Ce的负异常,显示其对源区的继承性,也指示成磷环境处于氧化程度相对较高状态.稀土元素球粒陨石标准化模式曲线、北美页岩标准化模式曲线、Ce元素异常、LREE/HREE比值、微量元素特征及岩石矿物特征表明,织金新华含稀土磷矿床具以正常海相生物-化学沉积等为主伴有海相热水沉积混合成因的特征.文中讨论了含稀土磷块岩氧化矿石中稀土元素的迁移富集规律及特征.  相似文献   

8.
已有研究发现贵州岩溶地区碳酸盐岩红色风化壳岩土界面普遍存在REE超常富集现象(∑REE可达2.5%),且球粒陨石标准化配分模式出现了L/MREE富集、Ce强负异常.由此,引出如下亟待回答的科学问题:石灰土剖面有无REE(超常)富集现象、碳酸盐岩红色风化壳REE富集层的赋存状态及富集机理、碳酸盐岩风化作用过程中REE分异机理?  相似文献   

9.
近年来,临沧花岗岩体风化壳内离子吸附型稀土(IREE)矿床的找矿勘查取得重要进展,岔河IREE矿床是该区新发现的中大型矿床之一,为IREE矿床成矿预测提供了研究实例.文章对岔河IREE矿床11个探矿工程风化剖面样品和1370件土壤地球化学样品的稀土元素,以及Ce异常分布、迁移及富集等表生地球化学特征和规律进行研究,结合前人研究成果总结出该区找矿模型,实施工程验证并取得了找矿发现.研究表明,风化花岗岩稀土元素配分模式与母岩相似,风化过程中REE发生淋滤、富集作用(全风化层富集程度最高),LREE和HREE发生了分异作用(LREE分异程度相对较高).在风化过程中,Ce异常与稀土元素氧化物总量(ΣREO)呈负相关,且Ce异常存在明显的分异作用,如风化剖面中黏土层Ce正异常(1.69)与全风化层上部Ce负异常(0.75)数值具有明显差异,为Ce异常用于IREE矿床成矿预测成为可能(见矿率达90%).该研究不仅能定位、定量的圈定IREE矿床成矿预测区,而且完善了IREE矿床找矿模型,具有重要的推广和应用价值.  相似文献   

10.
摘要:运用岩石地球化学方法,对广东惠东地区离子吸附型稀土矿床的地球化学特征进行研究。结果显示,风化壳中元素含量及配分特点总体上取决于母岩,但稀土元素在继承母岩稀土元素的基础上含量进一步富集,且各风化层中元素含量变化与风化作用之间具有一定相关性。WIG指数相较于CIA指数能更有效地描述风化壳风化强度,风化壳中稀土元素迁出富集与WIG指数及元素迁移系数具有一定规律性,轻稀土元素多在全风化层上部富集,而重稀土元素在全风化层下部及半风化层明显迁入富集,Ce、Eu均具明显负异常。  相似文献   

11.
Geochemical and mineralogical studies were conducted on the 12-m-thick weathering profile of the Kata Beach granite in Phuket, Thailand, in order to reveal the transport and adsorption of rare earth elements (REE) related to the ion-adsorption type mineralization. The parent rock is ilmenite-series biotite granite with transitional characteristics from I type to S type, abundant in REE (592 ppm). REE are contained dominantly in fluorocarbonate as well as in allanite, titanite, apatite, and zircon. The chondrite-normalized REE pattern of the parent granite indicates enrichment of LREE relative to HREE and no significant Ce anomaly. The upper part of the weathering profile from the surface to 4.5 m depth is mostly characterized by positive Ce anomaly, showing lower REE contents ranging from 174 to 548 ppm and lower percentages of adsorbed REE from 34% to 68% compared with the parent granite. In contrast, the lower part of the profile from 4.5 to 12 m depth is characterized by negative Ce anomaly, showing higher REE contents ranging from 578 to 1,084 ppm and higher percentages from 53% to 85%. The negative Ce anomaly and enrichment of REE in the lower part of the profile suggest that acidic soil water in an oxidizing condition in the upper part mostly immobilized Ce4+ as CeO2 and transported REE3+ downward to the lower part of the profile. The transported REE3+ were adsorbed onto weathering products or distributed to secondary minerals such as rhabdophane. The immobilization of REE results from the increase of pH due to the contact with higher pH groundwater. Since the majority of REE in the weathered granite are present in the ion-adsorption fraction with negative Ce anomaly, the percentages of adsorbed REE are positively correlated with the whole-rock negative Ce anomaly. The result of this study suggests that the ion-adsorption type REE mineralization is identified by the occurrence of easily soluble REE fluorocarbonate and whole-rock negative Ce anomaly of weathered granite. Although fractionation of REE in weathered granite is controlled by the occurrence of REE-bearing minerals and adsorption by weathering products, the ion-adsorption fraction tends to be enriched in LREE relative to weathered granite.  相似文献   

12.
An in situ weathering profile overlying chlorite schists in the Mbalmayo-Bengbis formations (South Cameroon) was chosen for the study of the behaviour of REE and the evaluation of geochemical mass balance. After physical and mineralogical studies, the chlorite schists and the undisturbed weathered materials were chemically analyzed for major elements (X-ray fluorescence and titrimetry) and REE (ICP-MS). The behaviour of the REE in the Mbalmayo weathering system was established in comparison with the REE of the reference parent rock. Mass balance calculations were applied to both major elements and REE. The mineralogy of the materials was determined with the aid of a Philips 1720, diffractometer. The chlorite schists of the Mbalmayo sector show low REE contents (Σ=153.44 ppm). These rocks are relatively rich in LREE (about 125 times the chondritic value) and relatively poor in HREE (about 20 times the chondritic value). The REE diagram normalized to chondrites shows a slightly split graph ((La/Yb)N=6.18) with marked enrichment in LREE (LREE/HREE=9.50) in relation to HREE. Moreover, these spectra do not present any Ce anomaly, but a slightly positive Eu anomaly. The imperfectly evolved profile, whose materials are genetically linked, shows an atypical behaviour of REE. In effect, the LREE are more mobile than the HREE during weathering ((La/Yb)NASC<1) with weak Ce anomalies. This has been rarely reported in lateritic profiles characterized by higher HREE mobility than LREE during weathering processes with high Ce anomalies. This is either due to the difference in the stability of REE-bearing minerals, or to the weak acidic to basic pH conditions (6.70<pH<7.80), or even due to the average evolution of the weathering materials. The pathway of the REE along the profile is as follows: (1) leaching in the saprolites and summit of the profile, except for Ce, which precipitates very weakly in the nodular materials and the coarse saprolite materials, (2) at the base of the profile, solutions come in contact with chlorite schist formations, at this level, the pH increases (pH=7.79), HREE and a part of LREE partially void of Ce precipitate and (3) the other part of LREE precipitates further up in the profile. The geochemical mass balance calculations reveal that these elements are leached in the same phases as the relatively high Si, Al, K and Fe2+ contents.  相似文献   

13.
In this study, the mobilization, redistribution, and fractionation of trace and rare earth elements (REE) during chemical weathering in mid-ridge (A), near mountaintop (B), and valley (C) profiles (weak, weak to moderate, and moderate to intense chemical weathering stage, respectively), are characterized. Among the trace elements, U and V were depleted in the regolith in all three profiles, Sr, Nb, Ta, Zr, and Hf displayed slight gains or losses, and Th, Rb, Cs, and Sc remained immobile. Mn, Ba, Zn, Cu, and Cr were enriched at the regolith in profiles A and B, but depleted in profile C. Mn, Pb, and Co were also depleted in the saprock and fractured shale zones in profiles A and B and enriched in profile C. REEs were enriched in the regolith and depleted at the saprock zone in profiles A and B and depleted along profile C. Mobility of trace and REEs increased with increasing weathering intensity. Normalized REE patterns based on the parent shale revealed light REE (LREE) enrichment, middle REE (MREE), and heavy REE (HREE) depletion patterns. LREEs were less mobile compared with MREEs and HREEs, and this differentiation increased with increasing weathering degree. Positive Ce anomalies were higher in profile C than in profiles A and B. The Ce fractionated from other REE showed that Ce changed from trivalent to tetravalent (as CeO2) under oxidizing conditions. Minimal REE fractionation was observed in the saprock zone in profiles A and B. In contrast, more intense weathering in profile C resulted in preferential retention of LREE (especially Ce), leading to considerable LREE/MREE and LREE/HREE fractionation. (La/Yb)N and (La/Sm)N ratios displayed maximum values in the saprock zone within low pH values. Findings demonstrate that acidic solutions can mobilize REEs and result in leaching of REEs out of the highly acidic portions of the saprock material and transport downward into fractured shale. The overall behavior of elements in the three profiles suggests that solution pH, as well as the presence of primary and secondary minerals, play important roles in the mobilization and redistribution of trace elements and REEs during black shale chemical weathering.  相似文献   

14.
本文对广泛发育于中国南方,连续的二叠-三叠系海相界线及其附近粘土层(蒙脱石—伊利石粘土岩)进行了稀土元素地豫化学的研究。查明了REE分布特征;REE沿粘土层垂向上的变化,比较了界线粘土与非界线粘土在REE分布上的差异。讨论了界线粘土的成因,根据稀土模式所作的综合分析,提出了由中酸性山火山岩和代表冲击溅射产物的上部地壳物质组合的混合新模式。  相似文献   

15.
The effects of terrestrial weathering on REE mobilization are evaluated for a variety of uncommon meteorites found in Antarctica and in hot deserts. The meteorites analyzed include 7 non-cumulate eucrites, 10 shergottites, 3 nakhlites, 2 lunar meteorites, 4 angrites, 10 acapulcoites, 1 winonaite, and 1 brachinite. In-situ concentration measurements of lanthanides and selected other minor and trace elements were made on individual grains by secondary ion mass spectrometry (SIMS). In Antarctic meteorites, oxidation converts Ce3+ to Ce4+, which is less soluble than the trivalent REE, resulting in Ce anomalies. The mineral most affected is low-Ca pyroxene. However, not all grains of a given mineral are, and distinct analyses of a single grain can even yield REE patterns with and without Ce anomalies. The effect is most pronounced for Antarctic eucrites in which Ce anomalies are observed not only in individual minerals but also in whole rock samples. Although Ce anomalies are observed in meteorites from hot deserts as well, the most characteristic signs of chemical alteration in this environment are a LREE enrichment with a typical crustal signature, as well as Sr, Ba and U contaminations. These can modify the whole rock REE patterns and disturb the isotope systematics used to date these objects. The LREE contamination is highly heterogeneous, affecting some grains and not others of a given mineral (mainly olivine and low-Ca pyroxene, the two minerals with the lowest REE concentrations). The major conduit for REE movement is through shock-induced cracks and defects, and the highest levels of contamination are found in altered material filling such veins and cracks. Meteorites that experienced low shock levels and those that are highly recrystallized are the least altered.  相似文献   

16.
通过对秭归地区闪长岩岩体风化壳中微量元素的分布规律研究,将该风化剖面中的微量元素划分为3类。第一类包括Sc、V、Cr、Co、Ni、Cu、Zn、Zr、Hf、Nb、Ta、U、Th、Mo、W,基本属于非活动性元素,在风化过程中得以有效保留,其中U、Cr、Cu等受氧化还原条件的影响,有时呈局部富集现象,规律性不明显。第二类以Ca、Rb、Cs、Sr、Ba、Pb、Ga、Gd、Tl为代表,随着风化作用的进行而逐步从风化壳中淋失,属活动性元素。第三类以稀土元素为代表,在风化壳内部发生局部的再分配,从剖面上层随风化溶液向下淋滤亏损,到剖面中下部沉淀富集,其中重稀土元素的淋失程度大于轻稀土元素。由于母岩中斜长石的风化淋滤,Eu在氧化环境下逐渐从正异常变为负异常。Ce在地表氧化条件下很容易生成四价氧化物(方铈石),并在表层明显富集,剖面介质中氧化还原条件的变化导致Ce的波动变化。  相似文献   

17.
The behaviour of the rare-earth elements(REE)during the weathering of granites was studied in southern Guangxi,China.Based on the study of the weathering profiles,the soil,weathered and sub-weatereb zones are identified with different REE geochemical behaviours throug the weathering profiles of granite.The Ce anomalies of the weathering profiles cover a large range of values with most falling between 1.02 and 1.43in the soil zone and 0.16and 0.40in the weathered and sub-weathered zones.Light rare-earth elements(LREE) and heavy rare-earth elements(HREE)are enriched to varying degree in the weathering profiles as compared to host granites.In the soil zone,more HREEs are leached than LREEs,and HREEs are more enriched than LREE in the weathered and sub-weathered zones.It is considered that infiltration and adsorption on clays are two processes controlling the enrichment and formation of REE deposits in the weathering profiles of granite.  相似文献   

18.
珠江三角洲地区上更新统与全新统之间广泛发育1层杂色黏土,其成因多认为主要是由上更新统沉积物在末次冰盛期暴露于地表风化而成。对取自珠江三角洲3条钻孔(PRD09、PRD16和PRD17)的岩心样品分析表明,受风化作用的影响,其稀土元素含量和分异特征发生了较明显的变化。杂色黏土层的稀土总量大大低于下伏沉积物,而在邻近风化层的下伏沉积物中稀土元素却表现为明显富集,尤其是重稀土元素的富集。风化作用强度较大的PRD09孔和PRD17孔下伏沉积物中的稀土富集程度高于风化作用强度相对较小的PRD16孔。珠江三角洲在末次冰盛期时普遍发育的酸性介质条件,促进了风化层的稀土元素发生溶解和迁移。在风化过程中,由于轻、重稀土元素具有不同的溶解迁移能力和吸附能力,导致杂色黏土层的REE指标值(LREE/HREE、(La/Gd)N和(La/Yb)N)高于下伏沉积物。风化过程对Ce、Eu异常有一定的影响,但不十分明显,杂色黏土层的Ce、Eu异常值仅略低于下伏沉积物。  相似文献   

19.
Two weathering profiles, each consisting of an upper, sericite-rich zone and a lower, chlorite-rich zone, are preserved between flows of the Mt. Roe Basalt in the Fortescue Group, Hamersley Basin, Western Australia. REE concentrations in samples from these two profiles, which originally developed ca 2,760 Ma, show large variations depending on stratigraphic position. LREE abundances and (La/Yb)N are greatest at depths of 3-6 m below the paleosurface of the Mt. Roe #1 profile and are somewhat lower in samples above this level. The LREEs reach concentrations 6-9 times greater than in the underlying basalt, and thus appear to have been mobilized downward in the paleosol and concentrated in its middle part. LREE concentrations in the #2 profile show a similar distribution but with a sharp increase in all REE concentrations within 50 cm of the paleosurface. The distinction between the REE profiles in the two paleosols may be related to the difference in the overlying material. The #1 paleosol is overlain by a few meters of sediments and then by basalt, whereas the #2 paleosol is directly overlain by basalt. The LREEs appear to have been mobilized both during chemical weathering of the parental basalt and during later lower-greenschist-facies metamorphism and metasomatism of the paleosols. Remobilization of the REEs during the regional metamorphism of the Fortescue Group is confirmed by a whole-rock Sm-Nd reference isochron of Mt. Roe #1 samples with an age of 2,151 +/- 360 Ma. Variable initial 143Nd/144Nd values of unweathered basalt samples which may represent the paleosol protolith prevents a confident determination of the magnitude of LREE mobility. Both the initial mobilization of the REEs during weathering and the metasomatic remobilization appear to have taken place under redox conditions where Ce was present dominantly as Ce3+, because Ce anomalies are not developed within the sericite zone samples regardless of concentration. Europium anomalies in the paleoweathering profile are somewhat variable and were probably modified by mobilization of Eu2+ at metamorphic conditions. In all samples, the HREEs appear to have been relatively immobile and correlate with Al, Ti, Cr, V, Zr, and Nb. Sm-Nd systematics and REE patterns of four unweathered basalt samples indicate derivation of the Mt. Roe Basalts from a heterogeneous and enriched source having epsilon Nd between -4.0 and -7.4. Initial 143Nd/144Nd values of these basalts are even lower than those reported by NELSON et al. (1992) for Fortescue Group basalts and indicate a substantial crustal component in the generation of Mt. Roe Basalts.  相似文献   

20.
Distribution of the rare-earth elements (REE) in dacite has been studied so as to get a better understanding of the migration behavior of REE during alteration. Both unaltered and altered samples were collected in an unpolluted area of Guangxi Zhuang Autonomous Region, southwest China. The REE concentrations were analyzed by ICP-MS. It is concluded that the REE were enriched during dacite alteration in varying degrees. The chondrite-normalized REE patterns of altered samples approximately maintain the characteristics of unaltered samples. However, if we normalize the REE concentrations of altered samples with unaltered dacite, fractionation of REE will appear. The LREE are more enriched than HREE in all altered samples with the LREE possibly precipitated as carbonate minerals. Both positive and negative Eu anomalies exist. Enrichment, immobility and depletion are noticed for the element Lu. Heavy mineral alteration, difference in stability constant between carbonate LREE and HREE complexes, downward migration of weathering fluid and microenvironment change may be responsible for the fractionation of REE in the altered dacite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号