首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
刘丙祥  聂虎  齐玥  杨力  祝禧艳  陈福坤 《岩石学报》2013,29(7):2437-2455
北秦岭地体中新元古代花岗岩类岩石是秦岭造山带的重要组成部分,记录了造山带基底前寒武纪地壳形成和演化历史。本文报道方庄和德河花岗岩岩体的锆石U-Pb年龄和O同位素组成、全岩元素和Sr-Nd同位素地球化学组成,探讨其岩石成因和地壳演化意义。结果表明,方庄花岗质糜棱岩的锆石结晶年龄为933.4±9.2Ma,δ18O值8.3‰~11.9‰,初始87Sr/86Sr比值0.72455,初始εNd值-6.0,Nd模式年龄2.09Ga(tDM2);德河黑云斜长片麻岩的锆石结晶年龄为948.1±8.9Ma,初始87Sr/86Sr比值变化较大,初始εNd值-5.0,Nd模式年龄2.02Ga。结合已报道的新元古代花岗岩类岩体的年龄和地球化学数据,北秦岭地体新元古代岩浆作用可以划分为980~870Ma挤压碰撞作用和~844Ma伸展裂解作用两大阶段,包括~940Ma强烈变形S型同碰撞花岗岩、~880Ma弱-无变形后碰撞I型花岗岩和~844Ma板内A型碱性岩三类花岗岩体。地球化学组成显示,这些花岗岩类岩石可能源自不同时期形成的秦岭群基底杂岩的部分熔融,但在后碰撞阶段幔源物质或年轻地壳物质的加入明显增加。北秦岭地体中新元古代岩浆活动与Rodinia超大陆演化基本同时代,可能记录超大陆形成过程中的地壳响应。在新元古代之前,北秦岭地体或许具有不同于华北陆块和华南陆块的演化历史。  相似文献   

2.
青藏高原中新生代花岗岩Sr、Nd同位素研究   总被引:10,自引:2,他引:10  
青藏高原中新生代岩浆活动强烈,本文报道青藏高原西部中新生代代表性花岗岩的Sr,Nd同位素测定结果,结合前人已发表的东部地区花岗岩同位素资料,初步探讨了青藏高原地区中新生代花岗岩的Sr,Nd同位素组成、物质来源与成因。研究表明,分布于冈底斯地块北南边界(即冈底斯花岗岩北带和南带)与洋壳俯冲有关的燕山晚期花岗岩,具有低^87Sr/^86Sr初始值(小于0.706)、正εNd(t)值和年轻的t2DM模式年龄的特征,岩浆来源于俯冲洋壳的熔融;与陆-陆碰撞及碰撞后有关的冈底斯花岗岩^87Sr/^86Sr初始值变化大(0.706~0719),而εNd(t)值和t2DM都在很小范围变化,Sr、Nd同位素组成似乎与时代、岩性无关,说明壳幔混合花岗岩的同位素源区长时期保持相对均一。无洋壳物质参与的通过陆内俯冲作用形成的喜马拉雅区花岗岩,具有高^87Sr/^86Sr初始值(大于0.720)、古老模式t2DM年龄(1792~2206Ma)和低εNd(t)值(-10.3~-16.3)特征,并与基底岩石的Sr,Nd组成一致,岩浆源区为壳源。由此说明花岗岩类及其岩石组合的形成主要取决于深部部分熔融物质的成分,不同火成岩组合的差异反映了青藏高原岩石圈组成和演化的不均一性。  相似文献   

3.
为了揭示青藏高原的形成演化及其隆升历史,本文主要立足于西藏冈底斯带新生代岩浆岩,研究了印度-亚洲大陆碰撞早期阶段的关键岩石记录、详细碰撞过程和深部动力机制.西藏新生代火山-岩浆活动贯穿于主碰撞造山过程的始终,形成规模巨大的冈底斯火成岩浆岩带,其中,火山活动形成著名的林子宗第三纪火山岩系(64~43 Ma),岩浆作用则形成3个时间连续、但组合不同的岩浆序列,即: ①壳源花岗岩组合(65~50 Ma)、②正εNd花岗岩-辉长岩组合(52~47 Ma)和③幔源玄武质次火山岩-辉绿岩组合(53~42 Ma).林子宗第三纪火山岩系形成于印度-亚洲大陆对接碰撞之后(~65 Ma),不整合覆盖于中生代褶皱构造层之上,中下部钙碱性-高钾钙碱性火山岩显示岛弧/陆缘弧地球化学特征,主要来自于洋壳板片流体交代的地幔楔形区,上部钾玄岩系火山岩则更多地显示壳源特征.壳源花岗岩主要侵位于冈底斯东段腾冲地区,成因类型为白云母过铝花岗岩和富钾钙碱性花岗岩,其高(87Sr/86Sr)i (>0.710)和低εNd(<-7)同位素组成反映其源于碰撞加厚的砂泥质地壳的深熔作用.正εNd值(+2~+5)花岗岩和辉长岩沿冈底斯带成对侵位,花岗岩具有埃达克岩与弧花岗岩过渡特征,其形成有较多的幔源物质贡献;辉长岩正εNd值特征(+2.5~+7.0)、REE平坦型或弱富集型以及亏损大部分不相容元素(Nb, P, Ti, U, Th, LREE)特征,反映软流圈地幔对岩浆形成产生重要贡献.幔源玄武质次火山岩主要为钙碱性岩系,REE平坦型,低(87Sr/86Sr)i (<0.7060) 、高εNd (高达+4.3,同位素组成接近于MORB,证明其来源于亏损的软流圈地幔.根据这些构造-岩浆事件的时空分布、岩石组合特征、岩石地球化学以及岩浆演变序列,提出了一个青藏高原大陆碰撞的四阶段演化模式.这个模式强调了①70~60 Ma,新特提斯洋板片回转,印度大陆与亚洲大陆发生碰撞(≥65 Ma),并导致加厚地壳深熔;②60~54 Ma,印度大陆板片向北陡深俯冲,下地壳缩短加厚,地壳深熔作用持续;③53~41 Ma,新特提斯洋板片发生断离,并向下拆沉.软流圈物质透过板片断离窗上涌,诱发地幔楔、上覆加厚的镁铁质下地壳熔融;④陡深俯冲的印度大陆板片因特提斯洋板片断离而发生折返,开始低角度俯冲(<40 Ma),导致高原内部的陆内俯冲、走滑剪切与地壳缩短,造成冈底斯岩浆间断(40~26 Ma)和拉萨地体初始抬升.因此,在青藏高原碰撞造山过程中,主碰撞期造山(65~41 Ma)的动力机制主要是印度大陆板片的陡角度俯冲和特提斯洋板片断离,晚碰撞期造山(40~26 Ma)的动力机制主要为印度大陆板片的低角度俯冲.  相似文献   

4.
侵入于巴颜喀拉沉积盆地中的扎加岩体,主要由高钾钙碱性的黑云母花岗岩组成,并出现有具岩浆结构的暗色微粒包体。花岗岩富集轻稀土(LREE)及大离子亲石元素(LILE),相对亏损重稀土(HREE)和高场强元素(HFSE),具Eu负异常(0.5~0.7)、较低的εNd(t)值(-3.5~-6.2)和中等的(^87Sr/^86Sr)初始比值(0.7088~0.7090),它们的亏损地幔Nd模式年龄tDM在1.1~1.3Ga之间。与寄主花岗岩相比,闪长质暗色微粒包体具有较低的SiO2,更低的Eu负异常(0.2~0.4)和εNd(t)值(-4.7~-6.1),更高的(^87Sr/^86Sr)初始比(0.7084~0.7124),以及稍老的tDM(1.4Ga)。岩石的地球化学资料表明,扎加花岗岩是在碰撞后构造环境下幔源岩浆上涌诱发下地壳岩石部分熔融的产物,其物源可能是苦海杂岩和万宝沟岩群的混合物。巴颜喀拉沉积盆地下面存在中元古代的基底,属于扬子地台西缘的一部分  相似文献   

5.
本文报道了华北克拉通南缘豫西鲁山下汤地区古元古代片麻状花岗岩和黑云角闪斜长片麻岩的全岩地球化学和锆石SHRIMP U-Pb年龄和Hf同位素组成。岩石呈包体形式存在于中元古代花岗岩中。片麻状花岗岩具深熔特征,岩浆锆石年龄为2.30Ga;岩石高SiO2和K2O,低ΣFeO、MgO和CaO,具稀土总量较高(ΣREE=165.8×10-6)、轻重稀土分离较强[(La/Yb)n=37.8]及弱负铕异常(Eu/Eu*=0.76)的稀土模式;εNd(t)(t=2.30Ga)=-0.75;tDM(Nd)=2.66Ga。黑云角闪斜长片麻岩变质原岩为辉长闪长岩,捕获锆石年龄为2.25Ga;岩石低SiO2和MgO,高Al2O3和P2O5,具稀土总量高(ΣREE=373.4×10-6)、轻重稀土分离不强[(La/Yb)n=9.4]及较强负铕异常(Eu/Eu*=0.44)的稀土模式;εNd(t)(t=2.25Ga)=-1.21;tDM(Nd)=2.75Ga。片麻状花岗岩和黑云角闪斜长片麻岩都记录了1.94Ga变质锆石年龄。片麻状花岗岩的岩浆锆石组成域的εHf(t)(t=2.30Ga)=-6.71~0.38,tDM1(Hf)=2627~2910Ma,tDM2(CC)(Hf)=2823~3255Ma。黑云角闪斜长片麻岩的捕获锆石组成域的εHf(t)(t=2.25Ga)=-19.58~-1.73,tDM1(Hf)=2664~3360Ma,tDM2(CC)(Hf)=2968~4011Ma。结合前人资料,得出如下结论:华北克拉通南缘豫陕晋结合部地区存在一规模较大的约2.3Ga地质体分布区;华北克拉通南缘很可能存在规模巨大的>2.7Ga基底;中部造山带与孔兹岩带具有类似的古元古代晚期构造热事件演化历史。  相似文献   

6.
兴蒙造山带正ε(Nd,t)值花岗岩的成因和大陆地壳生长   总被引:29,自引:3,他引:26  
大陆地壳的生长速率和地壳生长的位置均是地球科学中的最基本的问题。现有的许多大陆地壳生长模式认为 ,90 %的大陆地壳生长于 18亿年以前 ,显生宙以来的地壳生长不到整个地壳的 10 % ,主要位于活动大陆边缘。近年来在兴蒙造山带发现大量具有新生地壳来源性质的花岗岩产生于 50 0~ 10 0Ma ,对上述传统看法提出了挑战。现有的Nd同位素资料表明 ,兴蒙造山带的显生宙花岗岩 ,不论形成于什么时代和什么构造背景 ,也不论属于何种成因类型 ,几乎都具有正ε(Nd ,t)值和年轻的Nd模式年龄tDM 。从西往东 ,随着时代逐渐变新ε(Nd ,t)值有逐渐降低的趋势。花岗岩的tDM同由蛇绿岩和岛弧杂岩记录的古亚洲洋扩张的时间基本一致。只有一些在新元古代微陆块上的花岗岩才显示负ε(Nd ,t)值和较老的tDM,反映了其源岩包括前寒武纪地壳同地幔来源物质的不同程度混合。兴蒙造山带的花岗岩具有地幔来源的ε(Nd ,t)值 ,说明这些花岗岩中有一部分 (例如加里东期和海西早期 )可能同板块俯冲作用有关 ,花岗岩的来源是被交代的地幔楔。而大面积的晚古生代—中生代花岗岩则可能是由 80 0~6 0 0Ma前俯冲的洋壳形成的新生大陆地壳在拉伸体制下部分熔融而成。如果情况是这样 ,显生宙就曾发生过大规模的地壳生长。板内岩浆活动 ,特别是  相似文献   

7.
对青藏高原冈底斯带西部中生代花岗岩的研究依然十分有限。本文选择青藏高原冈底斯带西部狮泉河-革吉-雄巴地区的三个花岗岩基进行了锆石SHRIMP U-Pb定年和锆石Hf同位素分析,并探讨了中冈底斯带中侏罗世-早白垩世花岗岩的分布特征及其揭示的地壳基底的属性。定年结果表明,江巴岩体花岗闪长岩年龄为170±3Ma,雄巴岩体碱长花岗岩年龄为149±3Ma,它们形成于中晚侏罗世;邦巴岩体寄主岩石正长花岗岩和其中的石英二长闪长岩包体年龄分别为144±3Ma和133±3Ma,形成于早白垩世。锆石Hf同位素和地壳模式年龄结果表明,中晚侏罗世的江巴岩体(εHf(t)为-16.8~-13.4,Hf同位素地壳模式年龄为2.1~2.3Ga)与雄巴碱长花岗岩(-11.3~-6.2和1.6~2.0Ga)具有富集的Hf同位素特征,显示了新元古界的地壳基底年龄。邦巴正长花岗岩(-4~-0.8和1.2~1.5Ga)与其中的闪长质包体(-2.8~+0.6和1.2~1.4Ga)具有一致的Hf同位素特征,显示了岩浆混合作用。本文花岗岩定年与Hf同位素结果进一步揭示出中冈底斯带存在未出露地表的古元古代地壳基底。  相似文献   

8.
《地质论评》2012,58(3)
本文报道了华北克拉通南缘豫西鲁山下汤地区古元古代片麻状花岗岩和黑云角闪斜长片麻岩的全岩地球化学和锆石SHRIMP U-Pb年龄和Hf同位素组成.岩石呈包体形式存在于中元古代花岗岩中.片麻状花岗岩具深熔特征,岩浆锆石年龄为2.30 Ga;岩石高SiO2和K2O,低∑FeO、MgO和CaO,具稀土总量较高(∑REE=165.8×10-6)、轻重稀土分离较强[(La/Yb)n=37.8]及弱负铕异常(Eu/Eu(*)=0.76)的稀土模式;εNd(t)(t=2.30 Ga)=-0.75; tDM(Nd) =2.66 Ga.黑云角闪斜长片麻岩变质原岩为辉长闪长岩,捕获锆石年龄为2.25 Ga;岩石低SiO2 和MgO,高Al2O3和P2O5,具稀土总量高(∑REE=373.4×10-6)、轻重稀土分离不强[ (La/Yb)n=9.4]及较强负铕异常( Eu/Eu*=0.44)的稀土模式;εNd(t)(t=2.25 Ga)=-1.21;tDM(Nd) =2.75 Ga.片麻状花岗岩和黑云角闪斜长片麻岩都记录了1.94 Ga变质锆石年龄.片麻状花岗岩的岩浆锆石组成域的εHf(t)(t=2.30 Ga)=-6.71~0.38,tDMI(Hf) =2627 ~2910 Ma,tDM2(CC)(Hf)=2823 ~ 3255 Ma.黑云角闪斜长片麻岩的捕获锆石组成域的εHf(t)(t=2.25 Ga)=-19.58~ -1.73,tDM1 (Hf) =2664~3360 Ma,tDM2(CC)(Hf)=2968 ~4011 Ma.结合前人资料,得出如下结论:华北克拉通南缘豫陕晋结合部地区存在—规模较大的约2.3 Ga地质体分布区;华北克拉通南缘很可能存在规模巨大的>2.7 Ga基底;中部造山带与孔兹岩带具有类似的古元古代晚期构造热事件演化历史.  相似文献   

9.
为了揭示青藏高原的形成演化及其隆升历史,本文主要立足于西藏冈底斯带新生代岩浆岩,研究了印度—亚洲大陆碰撞早期阶段的关键岩石记录、详细碰撞过程和深部动力机制。西藏新生代火山-岩浆活动贯穿于主碰撞造山过程的始终,形成规模巨大的冈底斯火成岩浆岩带,其中,火山活动形成著名的林子宗第三纪火山岩系(64~43Ma),岩浆作用则形成3个时间连续、但组合不同的岩浆序列,即:1壳源花岗岩组合(65~50Ma)、2正εNd花岗岩-辉长岩组合(52~47Ma)和3幔源玄武质次火山岩-辉绿岩组合(53~42Ma)。林子宗第三纪火山岩系形成于印度—亚洲大陆对接碰撞之后(~65Ma),不整合覆盖于中生代褶皱构造层之上,中下部钙碱性—高钾钙碱性火山岩显示岛弧/陆缘弧地球化学特征,主要来自于洋壳板片流体交代的地幔楔形区,上部钾玄岩系火山岩则更多地显示壳源特征。壳源花岗岩主要侵位于冈底斯东段腾冲地区,成因类型为白云母过铝花岗岩和富钾钙碱性花岗岩,其高(87Sr/86Sr)i(>0.710)和低εNd(<-7)同位素组成反映其源于碰撞加厚的砂泥质地壳的深熔作用。正εNd值(+2~+5)花岗岩和辉长岩沿冈底斯带成对侵位,花岗岩具有埃达克岩与弧花岗岩过渡特征,其形成有较多的幔源物质贡献;辉长岩正εNd值特征(+2.5~+7.0)、REE平坦型或弱富集型以及亏损大部分不相容元素(Nb,P,Ti,U,Th,LREE)特征,反映软流圈地幔对岩浆形成产生重要贡献。幔源玄武质次火山岩主要为钙碱性岩系,REE平坦型,低(87Sr/86Sr)i(<0.7060)、高εNd(高达+4.3),同位素组成接近于MORB,证明其来源于亏损的软流圈地幔。根据这些构造-岩浆事件的时空分布、岩石组合特征、岩石地球化学以及岩浆演变序列,提出了一个青藏高原大陆碰撞的四阶段演化模式。这个模式强调了170~60Ma,新特提斯洋板片回转,印度大陆与亚洲大陆发生碰撞(≥65Ma),并导致加厚地壳深熔;260~54Ma,印度大陆板片向北陡深俯冲,下地壳缩短加厚,地壳深熔作用持续;353~41Ma,新特提斯洋板片发生断离,并向下拆沉。软流圈物质透过板片断离窗上涌,诱发地幔楔、上覆加厚的镁铁质下地壳熔融;4陡深俯冲的印度大陆板片因特提斯洋板片断离而发生折返,开始低角度俯冲(<40Ma),导致高原内部的陆内俯冲、走滑剪切与地壳缩短,造成冈底斯岩浆间断(40~26Ma)和拉萨地体初始抬升。因此,在青藏高原碰撞造山过程中,主碰撞期造山(65~41Ma)的动力机制主要是印度大陆板片的陡角度俯冲和特提斯洋板片断离,晚碰撞期造山(40~26Ma)的动力机制主要为印度大陆板片的低角度俯冲。  相似文献   

10.
赵娇  张成立  郭晓俊  刘欣雨  王权 《岩石学报》2015,31(6):1606-1620
华北克拉通新太古代末与古元古代早期的构造转化对认识华北克拉通早期地壳演化具重要意义。该克拉通中部带吕梁地区盖家庄正长花岗岩获得2398~2408Ma的形成年龄,其成因研究将为探讨华北克拉通新太古代晚期与古元古代早期构造演化提供重要信息。该岩体富K,高硅、碱、Fe OT/Mg O,低Ca、Mg,富集Rb、Th、U等LILE、较高的HFSE,明显亏损Sr、Ba、P、Ti,具弱轻重稀土分异和强负Eu异常的"燕式"稀土分配模式,并具高的Ga/Al比值和高锆石饱和温度,显示了碰撞造山后A2型花岗岩的特征。岩体全岩εNd(t)=2.0~2.3,两阶段Nd模式年龄tDM2=2606~2629Ma,锆石εHf(t)=+2.2~+7.1,tDM2(2494~2791Ma)略高或接近其形成年龄,一致证明主要源自新太古代中晚期新生下部陆壳物质的部分熔融,并有少量幔源物质的添加。结合区域地质及同期钾质花岗岩类的广泛出现,盖家庄正长花岗岩与同期钾质花岗岩一同代表了华北克拉通~2.5Ga形成后,中部构造带于古元古代早期~2.4Ga发生的一次陆壳伸展拉张作用引发的地幔物质上涌基性岩浆上侵导致下部新生陆壳物质增温发生部分熔融构造岩浆事件,证明陆壳已转入伸展拉张构造环境。  相似文献   

11.
文峪和娘娘山花岗岩体位于华北陆块南缘小秦岭地区,侵位于太古宇太华岩群中,主要岩性为二长花岗岩.LA-ICP-MS 锆石 U-Pb 定年结果显示,文峪和娘娘山黑云母二长花岗岩体形成时间分别为(135±7) Ma 和(139±4) Ma,普遍含有大量继承锆石.两个岩体均属于具有高硅(SiO2=64.80%~73.30%)、...  相似文献   

12.
湘东南瑶岗仙岩体岩石化学特征、成因与构造环境   总被引:2,自引:0,他引:2  
湘东南燕山早期瑶岗仙岩体主要由黑云母二长花岗岩组成。岩石SiO2和K20平均含量分别为75.83%和4.78%,Na2O+K2O平均8.02%,K2O/Na2O比值平均为1.53,Al2O3平均为12.98%。总体属弱过铝质钙碱性花岗岩类。εNd(t)值为-11.13~-9.13;t20M为1.70~1.86Ga,与湘桂内陆带花岗岩的背景值(1.8~2.4Ga)和区域基底的时代(1.7~2.7Ga)相吻合。上述特征表明,瑶岗仙岩体岩浆来源为中地壳结晶基底,属典型S型花岗岩。氧化物构造环境判别图解及区域构造演化背景反映瑶岗仙岩体形成于后造山构造环境。  相似文献   

13.
大兴安岭北段额尔古纳地块莫尔道嘎-太平川一带分布有大量的新元古代巨斑状花岗岩,该岩体形成的确切时代及成因尚不清楚。笔者等运用LA ICP MS技术进行了锆石U Pb定年和锆石Hf同位素组成测定。锆石U Pb年龄结果揭示太平川巨斑状花岗岩形成时代为791.4 Ma。锆石Hf同位素研究显示εHf(t)为1.4~6.4,均>0,反映亏损地幔来源新生地壳物质在花岗岩的形成中起主导作用,锆石Hf单阶段的模式年龄tDM为1.09~1.28 Ga,与岩石的形成时间791.4 Ma有较长的时间间隔,表明该区花岗岩的母岩来自具有较长地壳滞留时间的地壳物质的部分熔融。结合额尔古纳已有的花岗岩锆石Hf同位素资料,认为额尔古纳地块在中、新元古代曾发生过地壳增生事件,存在1.09~1.28 Ga的中元古代晚期增生地壳。  相似文献   

14.
熊子良  张宏飞  张杰 《地学前缘》2012,19(3):214-227
文中研究了北祁连东段冷龙岭地区毛藏寺岩体和黄羊河岩体的年代学、地球化学和Sr-Nd同位素组成。毛藏寺岩体主要岩石类型为花岗闪长岩。锆石U Pb定年获得花岗闪长岩岩浆结晶年龄为(424±4) Ma。花岗闪长岩具有高的Mg#(约55),K2O/Na2O=0.77~0.91,A/CNK=0.92~0.94,表明岩石属准铝质。在微量元素组成上,花岗闪长岩富集LILE、亏损HFSE,轻重稀土分异明显[(La/Yb)N=16.9~19.5],具有弱的Eu负异常(Eu/Eu*=0.75~0.83);花岗闪长岩具有ISr=0.706 3~0.706 5,εNd(t) =-1.5~-1.1,TDM=1.10~1.16 Ga。这些地球化学特征和Sr Nd同位素组成表明,花岗闪长岩岩浆源区为基性下地壳变玄武质岩石,但在成岩过程中有少量幔源物质的加入。黄羊河岩体主要由钾长花岗岩组成,其岩浆结晶年龄为(402±4) Ma。岩石富碱(K2O+Na2O=6.91‰~7.66%),K2O/Na2O>1,A/CNK=0.97~1.05。钾长花岗岩富集LILE及HFSE,轻重稀土元素分馏中等[(La/Yb)N =10.6~17.8],并具有明显的负Eu异常(Eu/Eu*=0.43~0.68),表明钾长花岗岩具有铝质A型花岗岩的地球化学特征。钾长花岗岩具有ISr=0.710 3~0.711 3,εNd(t)=-6.7~-6.0,TDM=1.46~1.55 Ga,反映岩浆主要来自地壳中长英质物质的部分熔融。冷龙岭地区花岗岩类的岩石成因及其岩浆演化揭示了北祁连山造山带从加里东早期的挤压构造体制向加里东晚期的伸展构造体制的演化。这些花岗岩类形成于碰撞后构造背景,岩浆的产生可能与俯冲的北祁连洋板片的断离作用有密切联系。  相似文献   

15.
桂东北海洋山岩体锆石SHRIMP U-Pb定年和地球化学研究   总被引:1,自引:0,他引:1  
桂东北海洋山岩体为岩性单一的二长花岗岩岩基。锆石SHRIMP U-Pb定年显示海洋山岩体主结晶年龄为431±7 Ma(MSWD=3.14),与赣湘桂内陆加里东期花岗闪长岩-二长花岗岩形成时代相似,为同一期成岩事件的产物。元素地球化学研究表明,绝大多数样品具有富硅(~68%),富钾(K2O/Na2O>1.5),弱过铝质(A/CNK均值1.05)和低Al2O3/TiO2值(<100)、高CaO/Na2O值(>0.3)的特征。与临区浅变质基底一致的εNd(t)值(-8.0~-8.6)和T2DM值(1.82~1.87 Ga),指示其理想源区为成熟度较低的古老变质杂砂岩。进一步的宏观地质特征和华南加里东造山带构造演化序列分析表明,海洋山岩体属于陆壳改造型花岗岩,其形成的构造环境很可能为汇聚造山向非造山转化的后造山伸张环境。  相似文献   

16.
拉萨地块南部冈底斯岩浆带主要形成于中生代–早新生代(205~40 Ma),正的锆石ε_(Hf)(t)和全岩ε_(Nd)(t)显示了新生地壳组分的特征,其形成普遍被认为与新特提斯洋俯冲或印度–欧亚大陆碰撞后的板片断离有关。作者近期的研究工作显示,冈底斯岩浆带中部的早始新世挡顶拉和先弄错纳花岗质侵入岩具有明显的负ε_(Nd)(t)值。锆石LA-ICP-MS U-Pb年龄表明,上述侵入岩形成于~50 Ma,与冈底斯早新生代岩浆大爆发时期(~50 Ma)一致。挡顶拉和先弄错纳侵入岩具有轻稀土元素富集、重稀土元素亏损以及中等的负Eu异常特征,但先弄错纳岩体具有低的稀土元素总量和更明显的轻、重稀土元素分异。挡顶拉和先弄错纳侵入岩具有明显富集的Sr-Nd同位素组成:(~(87)Sr/~(86)Sr)i=0.7096~0.7121,εNd(t)=-7.3~-8.0。这些侵入岩主要可能来自古老地壳的重熔,且其源区组成矿物可能为黑云母+角闪石+石英+斜长石,岩浆在上升过程中经历了结晶分异。尽管目前的研究资料还无法解释这种富集的同位素特征是与拉萨古老地壳的部分熔融有关,还是与俯冲的印度古老大陆地壳物质熔融有关,但是明显负ε_(Nd)(t)值的花岗质岩石在拉萨地块南部冈底斯岩基中部的出现,有可能为新特提斯洋俯冲及印度–欧亚大陆碰撞过程提供新的启示。  相似文献   

17.
目前对西藏冈底斯带早白垩世大规模岩浆作用的岩石成因以及冈底斯带不同构造单元的东延仍存在不同看法。为探讨这些问题,文中对冈底斯带东部地区然乌岩体中的闪长岩脉进行了锆石SHRIM PU-Pb定年和锆石Hf同位素分析。结果表明:然乌岩体中闪长岩脉的锆石SHRIM PU-Pb年龄为(114.2±0.9)Ma,与二长花岗岩为同期侵位。然乌闪长岩脉具有不均一的锆石Hf同位素组成,其εHf(t)值介于-4.2~+4.9,对应的Hf同位素地壳模式年龄为0.85~1.44Ga。闪长岩脉的全岩εNd(t)值为-4.7,Nd同位素两阶段模式年龄(TDM2)为1.29Ga,与锆石Hf同位素模式年龄一致。然乌地区同期发生的闪长质岩浆和花岗质岩浆侵位以及不均一的锆石Hf同位素组成,很可能表明然乌地区大约在115Ma发生了重要的岩浆混合作用。结合锆石Hf同位素地壳模式年龄的区域性对比,我们认为,与北冈底斯带相比,然乌地区同中冈底斯带之间具有更好的可对比性。  相似文献   

18.
满洲里南部中生代花岗岩的锆石U--Pb年龄及Hf同位素特征   总被引:4,自引:0,他引:4  
满洲里南部地区花岗岩主要由碱长花岗岩、正长花岗岩、二长花岗岩及花岗斑岩组成。采用LA--ICP--MS技术,对满洲里南部花岗岩进行的锆石U--Pb年龄测定表明,该区中生代花岗岩浆活动分为3期:中—晚三叠世(208~239 Ma)、早侏罗世(179~185 Ma)和晚侏罗世—早白垩世(137~151 Ma),与整个大兴安岭中生代花岗岩的年代学格架基本一致,与东部的张广才岭—小兴安岭地区中生代岩浆活动时代也可以对比。锆石LA--MC--ICP--MS Hf同位素研究显示,本区中生代花岗岩的锆石εHf(t)多数为+0.7~+9.5,二阶段模式年龄为0.6~1.2 Ga,表明花岗岩浆主要源于中—新元古代增生的地壳物质。结合额尔古纳地块其他花岗岩的锆石Hf同位素资料,认为额尔古纳地块在中—新元古代时期曾发生一次重要的地壳增生事件,与兴安地块的地壳增生时间为新元古代—显生宙的特点不同。  相似文献   

19.
俯冲陆壳部分熔融形成埃达克质岩浆   总被引:4,自引:0,他引:4  
在岛弧背景,埃达克质岩浆形成于俯冲洋壳板片的部分熔融已得到共识,但在大陆碰撞背景,埃达克质岩浆是否形成于俯冲陆壳的部分熔融尚未有研究报导。对祁连山东南部关山花岗岩(229 Ma)的地球化学和岩石成因研究提供了俯冲陆壳部分熔融形成埃达克质岩浆的一个实例。关山花岗岩以高K(K2O=4.12%~5.16%,K2O/Na2O=0.97~1.64)、高Sr/Y比值(13.6~84.1)、低Y (6.8×10-6 ~15.7×10-6 )和低HREE(eg. Yb=0.62×10-6~1.31×10-6)为特征,并具有强分异的稀土元素组成模式[(La/Yb)N=17.5~41.6]和演化的Sr-Nd同位素组成[初始87Sr/86Sr=0.70587~0.70714, εNd(t)=-10.9~-5.16, tDM=1.10~1.49 Ga]。这些地球化学特征表明关山花岗岩属于大陆型(C型)埃达克质岩石,而明显不同于俯冲洋壳板片或底侵玄武质下地壳部分熔融形成的埃达克岩。关山花岗岩Pb-Sr-Nd同位素组成与商丹断裂北侧的祁连山前寒武纪基底岩石、早古生代火山岩和花岗岩类存在显著差异,但类似于商丹断裂南侧秦岭早中生代花岗岩类的Pb-Sr-Nd同位素组成,由此认为具有埃达克质的关山花岗岩的岩浆来自于南部俯冲陆壳物质的部分熔融,并提出了大陆碰撞背景中埃达克质岩浆产生的一个新的地质模型。  相似文献   

20.
出露于湖南东北部华容县附近的桃花山—小墨山岩体侵位于中元古代冷家溪群。通过锆石LA-ICP-MS U-Pb法测得两岩体侵位时代分别为129 ± 1 Ma和117 ± 1 Ma。桃花山主体岩性为(片麻状)二云母二长花岗岩,SiO2 = 71.75%~73.81%,K2O/Na2O = 0.84~1.11,属弱过铝质高钾钙碱性系列;岩石明显富集大离子亲石元素,亏损高场强元素;Eu为中等负异常,ΣREE较高,Rb/Sr = 0.9~2.7,(La/Yb)N = 26.92~86.02;高ISr(0.714~0.723),低εNd(-9.76~-10.6), 高t2DM (1.72~1.79 Ga)。小墨山黑云母二长花岗岩SiO2 = 69.64%~72.73%,K2O/Na2O = 0.62~0.7,准铝质至弱过铝质,Rb/Sr = 0.26~0.88,(La/Yb)N =11.97~12.67;低ISr( 0.707~0.709),高εNd(-6.38~-6.73),低t2DM (1.43~1.46 Ga)。综合分析表明,桃花山二云母二长花岗岩为壳源含白云母过铝花岗岩类(GPG),源岩为华南古元古代基底;小墨山黑云母二长花岗岩类似含堇青石及富黑云母过铝花岗岩类(CPG),源岩为低成熟度的变杂砂岩。桃花山、小墨山岩体形成于华南早白垩世伸展背景下的局部挤压增厚环境。江南断裂晚燕山期的逆冲推覆构造造成了华容地区的小范围地壳增厚,并为桃花山源岩的“湿”深熔作用提供了流体聚集通道;小墨山花岗岩的形成则与幔源岩浆的底侵有关,热的幔源岩浆不仅为地壳的部分熔融提供了热量,而且与熔融的壳源岩浆发生了混合作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号