首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对东昆仑东段布青山得力斯坦地区出露的上二叠统格曲组砾岩层进行砾石成分、砾度统计及系统的LA-ICP-MS锆石UPb年龄谱分析。结果表明,格曲组砾岩层砾石成分以石英岩和花岗岩为主,硅质岩和基性岩次之,砂岩和灰岩较少,砾石的分散系数为1.54~2.02,该套砾岩为近源快速堆积的产物。砾岩碎屑锆石U-Pb年龄可分为3组:1早奥陶世—晚志留世年龄组为499~409Ma,峰值年龄为426Ma,对应早古生代末期原特提斯洋向北俯冲碰撞产生的一系列构造岩浆事件;2新元古代年龄组为744~619Ma,峰值年龄为744Ma,对应于全球Rodinia超大陆裂解事件;3古元古代年龄组为2443Ma,对应东昆仑地区古元古代构造岩浆热事件。结合碎屑锆石年龄及沉积学特征综合分析,花岗质砾石来源于北侧东昆仑造山带加里东期岩浆弧,沉积岩砾石则可能来自造山带早期的沉积地层,石英岩及其他变质岩砾石则多来自东昆仑基底变质岩系。综合判别,格曲组为一套沉积于活动大陆边缘环境的滨浅海相磨拉石建造,代表南侧古特提斯洋向北俯冲开始的构造阶段,是初始俯冲的沉积构造响应。  相似文献   

2.
东昆仑南缘上二叠统(乐平统)格曲组为一套由砾岩、砂岩、钙质泥岩构成的扇三角洲-浅海碳酸盐台地相沉积组合,在区域地质演化分析上具有重要的意义。经测定,格曲组砂岩的碎屑锆石LA-ICP-MS U-Pb年龄的范围为412~2448Ma,包括1869~1602Ma、1396Ma~1270Ma、1197~877Ma和572~412Ma四个年龄区间,指示物源区先后经历了古元古代早期的构造-岩浆事件、古元古代晚期的汇聚事件、中元古代的裂解事件、中元古代晚期—新元古代早期的构造-岩浆-变质事件和新元古代晚期—早古生代的裂解-扩张-汇聚事件。其中,与新元古代—早古生代洋陆转化相关的产物是格曲组的主要物源。格曲组砂岩碎屑锆石年龄组成表明沉积盆地具有前陆盆地"冷盆地"的特征。相对于格曲组,下中二叠统存在大量大于2000Ma的年龄信息,而下三叠统开始出现了大量海西末期-印支期的年龄信息。碎屑锆石年龄组成出现两次明显的变化,分别为格曲组和洪水川组底部不整合所代表的构造运动的沉积响应,表现出较好的构造-沉积耦合关系。  相似文献   

3.
纳赤台群是东昆仑造山带中段出露的构造混杂岩的重要组成部分,对纳赤台群碎屑岩段的地层时代及物质来源进行限定,可以为恢复和反演东昆仑早古生代的构造格局提供依据。前人多认为纳赤台群的地层时代为奥陶纪或奥陶纪—志留纪,但是志留纪、二叠纪甚至新生代的观点也同时存在。通过对纳赤台群碎屑岩段进行碎屑锆石年龄研究,得到最年轻的锆石年龄538±10Ma,结合侵入其中的英云闪长岩体的年龄为427.7Ma,将纳赤台群碎屑岩的沉积时代限定于538~427Ma之间,另外由于纳赤台群特殊的演化意义,结合沙松乌拉组和赛什腾组的地层时代,将纳赤台群碎屑岩的地层时代确定为奥陶纪,并认为有可能延伸至早志留世。得到的碎屑锆石年龄谱显示约2450Ma、约1100Ma、约980Ma、约810Ma、约650Ma五个明显峰值,结合纳赤台群碎屑岩近源堆积的特征,将得到的锆石年龄与东昆仑及邻区出露的老地层和岩体时代进行比对,推测白沙河岩组、小庙群、万宝沟群及新元古代早期在东昆仑地区形成的中酸性岩体为其可能物源。将得到的锆石年龄与各期重大构造-岩浆事件在昆仑造山带留下的地质记录进行对比,推测认为,纳赤台群碎屑岩的源区存在太古宙结晶基底,并经历了古元古代早期构造-岩浆事件、中元古代晚期构造-岩浆事件(格林威尔运动)和新元古代早期构造-岩浆事件。  相似文献   

4.
祁连造山带东段葫芦河群的形成时代长期存在争议。选择葫芦河群变质碎屑岩为研究对象,运用LA-ICP-MS锆石U-Pb同位素年代学方法,探讨葫芦河群的形成时代和物源特征。结果表明,葫芦河群的2个样品碎屑锆石同位素年龄数据以及侵入其中的花岗岩同位素年龄表明,葫芦河群沉积时代限定为447~434Ma,其主体形成时代为早志留世。葫芦河群变质碎屑锆石年龄谱明显分为4组:(1)震旦纪—早古生代年龄组,426~595Ma,峰值为479Ma;(2)新元古代年龄组,738~981 Ma,峰值为887 Ma;(3)中元古代年龄组,1000~1 913Ma,峰值为1499Ma;(4)古元古代—新太古代年龄组,2053~2 872Ma,峰值为2448Ma。其中,早古生代年龄组可进一步细分为426~493 Ma和527~595 Ma两个年龄段,峰值分别为445 Ma和559Ma,前者年龄段指示其物源可能以邻近地区的北祁连造山带和西秦岭北缘构造带为主,是加里东期中南祁连和西秦岭微地块分别向北俯冲、碰撞产生的一系列火成岩在造山剥蚀后的沉积响应;后者年龄段则与北祁连造山带和西秦岭北缘构造带中泛非造山事件中的岩浆活动有关。新元古代年龄组可细分为738~799Ma、839~862Ma和902~981Ma 3个年龄段,峰值分别为768Ma、848Ma和948Ma,以902~981Ma年龄组为主;第一年龄段(738~799Ma)与北祁连造山带新元古代晚期岩浆事件的年龄大致相对应,与Rodi-nia超大陆的裂解事件相关;第二年龄段和第三年龄段(839~862 Ma、902~981 Ma)与中祁连地区和西秦岭北缘的新元古代早期构造岩浆事件年龄大致相对应,与Rodinia超大陆汇聚事件及岛弧型岩浆作用相关。中元古代年龄组可细分为1 000~1 197Ma和1 243~1 913Ma 2个年龄段,峰值分别为1 036Ma和1 593Ma,其物源可能来自祁连造山带和华北板块基底岩系。古元古代—新太古代年龄组反映了物源来自北祁连造山带和西秦岭北缘构造带的结晶基底,部分物源也有可能来自于华北板块基底岩系。综合分析显示,葫芦河群碎屑沉积物质来源较为复杂,具有明显的多元性,存在祁连造山带、西秦岭北缘构造带和华北板块基底3个物源区,其中祁连造山带和西秦岭北缘构造带提供了大部分物源,而祁连造山带应为葫芦河群贡献最大的物源区。  相似文献   

5.
出露于东昆仑地区的赛什腾组是一套变碎屑岩,底部为具鲍马序列的深海浊流沉积,往上总体为下细上粗的浅海–滨浅海沉积,构成一套海退沉积序列,是东昆仑地区原特提斯洋闭合过程中形成的物质记录。由于赛什腾组中缺少化石记录,前人对其地层时代的归属一直存在争议。本文通过对赛什腾组碎屑锆石年龄谱的研究,恢复了物源区经历的几期重大构造–岩浆事件,对其物质来源及沉积时代进行了约束,为构建东昆仑及其邻区的构造演化历史提供了参考。研究得到赛什腾组碎屑锆石年龄谱存在2500 Ma、2300~2600 Ma、1600~1800 Ma、800~1200 Ma和421~600 Ma五个年龄区间,相应指示其最终物源区可能存在古老结晶基底,并先后经历了早元古代早期构造–岩浆事件、早元古代晚期构造–岩浆事件、中元古代晚期构造–岩浆事件(格林威尔运动)、新元古代早期构造–岩浆事件和早古生代构造–岩浆事件(原特提斯洋演化阶段);将赛什腾组碎屑锆石年龄与恢复得到的古水流方向相结合,推测北部邻区的白沙河岩组、小庙群、万宝沟群和新元古代早期构造–岩浆活动及原特提斯洋演化后期在东昆仑地区形成的大量中酸性岩浆岩是其主要物源;根据得到的年龄为421±7 Ma的最年轻碎屑锆石,结合侵入其中的年龄为413.8±0.8 Ma的二长花岗岩,将赛什腾组的沉积时代限定于421~413 Ma,结束了前人对其形成时代的争议;并进一步根据赛什腾组是东昆仑地区原特提斯洋发生俯冲消减直至碰撞闭合的填满沉积序列,提出赛什腾组的地层沉积时代可认为是东昆仑地区局部原特提斯洋发生闭合的最大年龄。  相似文献   

6.
周健  李迪  林春明  张妮  于洪洲  张关龙  张奎华 《地质学报》2018,92(12):2453-2468
通过对苏北盆地高邮凹陷古近系戴南组一段35件泥岩样品的稀土元素和4件碎屑岩的锆石U- Pb年代学分析,对苏北戴南组地层的物源及苏北盆地基底构造演化进行了深入探讨,恢复了沉积盆地与源区之间的耦合关系。全岩稀土元素特征表明苏北盆地古近系戴南组沉积物主要来自大别—苏鲁造山带广泛分布的新元古代浅变质酸性火成岩,具体母岩可能为高钾I型花岗片麻岩。376组协和年龄数据主要集中在2450~2600Ma、1700~2000Ma、750~850Ma、100~300Ma四个区间,其中2450~2600Ma这个年龄峰与全球新太古代晚期古陆核生长事件基本一致;1700~1900Ma这组年龄指示下扬子陆块东北部存在古元古代变质和岩浆事件,说明下扬子地块存在古元古代统一变质基底;750~850Ma这组年龄为指示扬子与华夏板块最终聚合的年龄;在100~300Ma这个年龄段中,250~300 Ma年龄锆石指示扬子地块发生裂解导致玄武岩喷发及后期伴生酸性岩浆侵入;200~250Ma为三叠纪华南陆块俯冲进入华北陆块之下形成大陆碰撞型造山带构造事件在本区的记录;100~200Ma 对应于侏罗纪-白垩纪(燕山期),指示苏北盆地及周围有晚白垩纪侵入岩物源的存在,大别山-苏鲁造山带侵入岩的侵位时间可能要推迟到晚白垩世。本次测试最小年龄为94±2Ma,早于仪征运动的时间(83.5Ma),说明高邮凹陷南部陡坡带戴南组沉积物多为再旋回沉积物,沉积物来自扬子地块基底的古老岩石和大别—苏鲁造山带的新元古代浅变质岩基底,并受张八岭隆起区南段的中生代火成岩影响。  相似文献   

7.
孔令耀  郭盼  万俊  刘成新  王晶  陈超 《地球科学》2022,47(4):1333-1348
大别造山带位于扬子陆块北缘,近年来的研究显示其发育太古代-古元古代的结晶基底,但一直缺乏中元古代的物质信息.首次报道了大别造山带核部一套中元古代“变砂岩-大理岩”变沉积岩组合,通过对该套地层的3个样品碎屑锆石U-Pb年代学和Lu-Hf同位素特征分析,显示最年轻的锆石平均年龄分别为:1 556±13 Ma、1 541±20 Ma和1 584.3±24 Ma,在误差范围内基本一致,说明该套地层的形成时代为中元古代,锆石变质增生边记录该套地层经历了124.1±2.3 Ma的变质事件,碎屑锆石年龄频谱和Lu-Hf同位素特征显示该套地层物源特征与神农架群一致;碎屑锆石峰值年龄2 682 Ma,2 461 Ma记录了“大别陆块”结晶基底两期重要生长事件,峰值年龄2 043 Ma,1 803 Ma和1 572 Ma显示“大别地块”可能参与Columbia超大陆聚合-裂解事件,在新元古代早期与“黄陵陆核”拼合而成为扬子陆块统一基底的重要组成部分.   相似文献   

8.
秦岭岩群被认为是出露于北秦岭地体内最古老的前寒武纪基底岩石,记录了北秦岭造山带的地壳形成和演化历史。本文报道丹凤-西峡地区五件秦岭岩群片麻岩锆石U-Pb年龄结果,限定其形成和变质时代,探讨北秦岭地体的构造归属。定年结果表明,岩浆成因锆石颗粒的年龄集中在1400~1600Ma左右和850~950Ma左右,记录两期主要岩浆活动。6粒锆石具有变质成因特征,低Th/U比值(0.03),206Pb/238U年龄变化在510~465Ma之间,加权平均值477±18Ma。这一古生代变质叠加时代与北秦岭地体南北缘高压变质作用时代基本一致,说明秦岭岩群遭受到北秦岭造山带俯冲-碰撞造山过程的变质作用。秦岭岩群主要形成于中元古代晚期至新元古代早期,基底岩石缺乏早元古代和太古代岩浆活动的记录。在岩浆作用时代上,北秦岭地体与广泛发育新元古代中-晚期岩浆作用的扬子陆块北缘有差别,也不同于晚太古代-早元古代的华北陆块南缘,可能是中-新元古代形成的独立微陆块。  相似文献   

9.
选取西秦岭两当地区太阳寺岩组的变质碎屑岩为研究对象,依据CL图像,采用LA-ICP-MS锆石U-Pb同位素定年方法,探讨两当地区太阳寺岩组的形成时代与物源。两当地区太阳寺岩组的锆石U-Pb年龄及与邻近地层的变质变形关系和时代对比表明,太阳寺岩组的沉积时代为426~420Ma,为晚志留世—末志留世。太阳寺岩组的碎屑锆石年龄谱可分为4组:500~420Ma、955~550Ma、1866~1227Ma和3039~2132Ma。早古生代年龄组呈现最强的烈峰值特征,峰值为438Ma,该组锆石物源以西秦岭北缘构造带为主;新元古代年龄组的碎屑锆石物源为西秦岭北缘构造带和北祁连造山带;中元古代和古元古代—新太古代年龄组的碎屑锆石物源主要来自于北祁连造山带和西秦岭北缘构造带基底岩系。综合分析认为,西秦岭北缘构造带为天水两当地区太阳寺岩组碎屑沉积物的主要源区。  相似文献   

10.
以北祁连造山带嘉峪关北大草滩地区原划为中—下奥陶统的阴沟群碎屑岩为研究对象,进行碎屑锆石LA-ICP-MS UPb测年,探讨其形成时代、物源组成和构造背景。结果表明,碎屑岩沉积时代早于432.5Ma,为早志留世,该套沉积地层并不属于早—中奥陶世阴沟群。碎屑锆石U-Pb同位素年龄可明显分为4组:早古生代年龄组,434~521Ma,峰值为447Ma;新元古代年龄组,791~992Ma,峰值年龄966Ma;中古元古代年龄组,1017~1755Ma,并出现1120Ma、1278Ma、1427Ma和1648Ma多个峰值;古元古代早期—新太古代晚期年龄组,1879~2663Ma,并出现2089Ma、2428Ma和2543Ma多个峰值。综合分析显示,碎屑岩沉积物质来源于祁连造山带和阿拉善地块,祁连造山带早古生代岛弧型岩浆岩和新元古代岩浆岩,以及造山带结晶基底岩系为该套碎屑岩沉积提供了更重要的物源。  相似文献   

11.
Lithostratigraphy, physicochemical stratigraphy, biostratigraphy, and geochronology of the 77–70 Ma old series bracketing the Campanian–Maastrichtian boundary have been investigated by 70 experts. For the first time, direct relationships between macro- and microfossils have been established, as well as direct and indirect relationships between chemo-physical and biostratigraphical tools. A combination of criteria for selecting the boundary level, duration estimates, uncertainties on durations and on the location of biohorizons have been considered; new chronostratigraphic units are proposed. The geological site at Tercis is accepted by the Commission on Stratigraphy as the international reference for the stratigraphy of the studied interval. To cite this article: G.S. Odin, C. R. Geoscience 334 (2002) 409–414.  相似文献   

12.
Well investigated platforms have been selected in each continent, and the history of Cretaceous transgressions and regressions there is concisely reviewed from the available evidence. The factual records have been summarized into a diagram and the timing of the events correlated between distant as well as adjoining areas.On a global scale, major transgressions were stepwise enlarged in space and time from the Neocomian, via Aptian-Albian, to the Late Cretaceous, and the post-Cretaceous regression was very remarkable. Minor cycles of transgression-regression were not always synchronous between different areas. Some of them were, however, nearly synchronous between the areas facing the same ocean.Tectono-eustasy may have been the main cause of the phenomena of transgression-regression, but certain kinds of other tectonic movements which affected even the so-called stable platforms were also responsible for the phenomena. The combined effects of various causes may have been unusual in the Cretaceous, since it was a period of global tectonic activity. The slowing down of this activity followed by readjustments may have been the cause of the global regression at the end of the Cretaceous.  相似文献   

13.
The Afyon stratovolcano exhibits lamprophyric rocks, emplaced as hydrovolcanic products, aphanitic lava flows and dyke intrusions, during the final stages of volcanic activity. Most of the Afyon volcanics belong to the silica-saturated alkaline suite, as potassic trachyandesites and trachytes, while the products of the latest activity are lamproitic lamprophyres (jumillite, orendite, verite, fitztroyite) and alkaline lamprophyres (campto-sannaite, sannaite, hyalo-monchiquite, analcime–monchiquite). Afyon lamprophyres exhibit LILE and Zr enrichments, related to mantle metasomatism.  相似文献   

14.
正20140751 Guo Xincheng(Geological Party,BGMRED of Xinjiang,Changji 831100,China);Zheng Yuzhuang Determination and Geological Significance of the Mesoarchean Craton in Western Kunlun Mountains,Xinjiang,China(Geological Review,ISSN0371-5736,CN11-1952/P,59(3),2013,p.401-412,8  相似文献   

15.
正20141058 Chen Ling(Key Laboratory of Mathematical Geology of Sichuan Province,Chengdu University of Technology,Chengdu610059,China);Guo Ke Study of Geochemical Ore-Forming Anomaly Identification Based on the Theory of Blind Source Separation(Geosci-  相似文献   

16.
SEISMIC GEOLOGY     
正20141334 Chen Kun(Institute of Geophysics,China Earthquake Administration,Beijing100081,China);Yu Yanxiang Shakemap of Peak Ground Acceleration with Bias Correction for the Lushan,Sichuan Earthquake on April20,2013(Seismology and Geology,ISSN0253-4967,CN11-2192/P,35(3),2013,p.627-633,2 illus.,1 table,9 refs.)Key words:great earthquakes,Sichuan Province  相似文献   

17.
正20141624 Cai Xiongfei(Key Laboratory of Geobiology and Environmental Geology,Ministry of Education,China University of Geosciences,Wuhan 430074,China);Yang Jie A Restudy of the Upper Sinian Zhengmuguan and Tuerkeng Formations in the Helan Mountains(Journal of Stratigraphy,ISSN0253-4959CN32-1187/P,37(3),2013,p.377-386,5 illus.,2 tables,10 refs.)  相似文献   

18.
PALEONTOLOGY     
正20142263Lü Shaojun(Geological Survey of Jiangxi Province,Nanchang 330030,China)Early-Middle Permian Biostratigraphical Characteristics in Qiangduo Area,Tibet(Resources SurveyEnvironment,ISSN1671-4814,CN32-1640/N,34(4),2013,p.221-227,2illus.,2tables,22refs.)Key words:biostratigraphy,Lower Permian,Middle Permian,Tibet  相似文献   

19.
正20142560Hu Hongxia(Regional Geological and Mineral Resources Survey of Jilin Province,Changchun 130022,China);Dai Lixia Application of GIS Map Projection Transformation in Geological Work(Jilin Geology,ISSN1001-2427,CN22-1099/P,32(4),2013,p.160-163,4illus.,2refs.)  相似文献   

20.
GEOCHEMISTRY     
正20140692 Duo Tianhui(No.402 Geological Team,Exploration of Geology and Mineral Resources of Sichuan Authority,Chengdu611730,China);Wang Yongli Computer Simulation of Neptunium Existing Forms in the Groundwater(Computing Techniques for Geophysical and Geochemical Exploration,ISSN1001-1749,CN51-1242/P,35(3),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号