首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
准确确定高纬度地区多年冻土的天然上限深度及其变化规律对于冻土地区铁路工程的设计和施工至关重要。传统现场勘探测温的方法,虽然比较准确,却有很大的时间限制,在非最大融化深度季节无法确定多年冻土的天然上限深度。为了能够在任何勘测季节都可以获得多年冻土的天然上限资料,本文在对大兴安岭多年冻土地区的多年勘测、测温资料的分析研究基础之上,总结推导出了4种比较行之有效的计算多年冻土天然上限的方法,对于快速而准确的确定多年冻土天然上限具有很好的指导作用。  相似文献   

2.
青藏铁路格拉段多年冻土上限的确定方法   总被引:1,自引:0,他引:1  
影响多年冻土地区建筑物稳定性的主要部位是冻土上限附近及其上部的季节融化层.准确确定多年冻土上限的位置及掌握其变化规律是冻土地区工程勘察的基本工作和重要内容.介绍了青藏铁路多年冻土上限的勘察和确定方法.  相似文献   

3.
本文以大量实测资料为基础,探讨了季节融化层导温性能及地温峰值滞后等自然因素对多年冻土上限深度的影响。还通过地表面的热效应和气温脉动的研究,讨论了多年冻土上限深度的小区域特点和未来期望值。提出了适合青藏高原多年冻土区计算多年冻土上限深度的半经验公式。由于主要依据是地温的分布和传导特征,故称之为“地温法”。  相似文献   

4.
多年冻土隧道修建中,施工活动产生的热量将导致多年冻土围岩中出现一定范围的融化圈,进而影响支护的受力以及隧道洞室的收敛。将围岩分为融化区和未融化区,将融化区围岩视为弹塑性介质,未融化区围岩视为弹性介质,建立并求解融化作用下多年冻土隧道围岩弹塑性模型,对不同的围岩条件及支护工况下多年冻土段隧道施工中围岩与支护的相互作用进行分析。结果表明,该模型表现了融化作用下多年冻土围岩与支护相互作用的特征;在较差围岩中,喷射混凝土支护的强度是控制融化作用下多年冻土围岩稳定以及隧道周边位移量的关键因素。在多年冻土隧道施工中,可采用本模型确定施工中容许的最大围岩融化深度,施工中应采取有效措施避免围岩中出现过大的融化圈。  相似文献   

5.
在多年冻土地区铁路路基工程中,人为上限(即季节最大融化深度)的合理计算对断面形式的合理设计具有重要的意义。人为上限受很多因素影响,通常可大致分二类:(1)构筑物及其附近土体特性指标及构筑物几何形状;(2)外界(上、下边界和地中热流)条件。 然而,青藏高原多年冻土地区腹部地带又具有下述特点:年平均气温低(-5—-7℃),年内负温期长达7个月以上,年内季节冻深超过季节融深,年平均地温较季节冻土区要低得多,在融化过程中由融化界面传入冻土中的热量成为不可忽视的影响因素。因此,必须分析其主要因素,以便使路  相似文献   

6.
多年冻土区融化层的热传导系数的大小决定了全球气候变化条件下, 多年冻土的响应强弱以及对周围环境的影响.在野外实测与实验室分析的基础上, 研究了黄河源区3种典型岩土的干容重、含水率和温度对导热系数的影响,通过建立起回归方程, 运用Stephen公式近似计算了2002年源区最大冻结和融化深度的分布.结果表明: 黄河源区三种典型岩土的导热系数从小到大依次为腐殖土、碎石亚黏土、细沙;干容重和含水率与导热系数具有较好的正相关关系, 是影响导热系数的主要因素, 在较小的温度变化范围内, 温度对导热系数的影响不明显. 基于实测的导热系数分布模拟得到的最大融化深度在地势较低的黄河干流及"两湖"地区要大于南北高山区, 最大冻结深度的变化规律则相反, 除北部小部分地区最大冻结深度大于最大融化深度外, 源区绝大部分地区活动层处于增厚状态.结果将有助于多年冻土的变化及环境效应的研究.  相似文献   

7.
梁波  曹元平  葛建军 《岩土力学》2009,30(Z2):349-353
在多年冻土地区,土工结构稳定的核心是结构自身的热稳定性。在多年冻土区修建挡土建筑物,改变了原地面的热平衡条件,从而引起了多年冻土上限及其上部季节融化层的变化,有可能影响到工程结构的稳定性。因此,研究某一特定结构物的冻土上限或温度场分布及随季节的变化趋势是有意义的。结合青藏铁路格拉段目前唯一的支挡结构--L型挡墙这一工程措施,对L型支挡结构整个横断面进行了地温测试,分析了最具典型意义墙后回填土的上限或最大融化深度变化情况,得到了不同断面地层融化深度分布形状,回归了随季节变化相应的温度场。测试表明,由于开挖和施工扰动破坏了土体热平衡的自然状态,但L型挡土结构作为一种开敞式工程结构,地温场、冻土上限或融化深度都存在周期性变化,只要没有新的扰动,能够逐渐形成稳定状态或这一平衡是能够恢复的。此外,冻胀和冻结影响也不能忽略。总之,分析研究L型支挡结构的设计思想和工程措施,可为今后类似工程应用提供参考依据  相似文献   

8.
青藏铁路普通路基下部冻土变化分析   总被引:5,自引:2,他引:3  
吴青柏  刘永智  于晖 《冰川冻土》2007,29(6):960-968
高温高含冰量冻土地区,青藏铁路采取了冷却路基、降低多年冻土温度的工程措施.然而青藏铁路仍有大量路段未采用任何工程措施,因此修筑普通路基后冻土变化也是普遍关心的问题.根据青藏铁路普通路基下部土体温度监测的近期结果,分析了季节冻土区、已退化多年冻土区和多年冻土区路基下部冻土变化特征.结果表明,不同区域修筑普通路基,其下部土体温度、最大季节冻结深度、多年冻土上限等存在较大的差异.在季节冻土和已退化多年冻土区,右路肩下部(阴坡)已形成冻土隔年层;在多年冻土强烈退化区,其路基下部形成融化夹层;在高温多年冻土区,其路基下部上限存在抬升和下降,上限附近土体温度有升高的趋势.在低温多年冻土区,其路基下部上限全部抬升,上限附近土体存在"冷量"积累,有利于路基下部多年冻土热稳定性.因此,低温多年冻土区修筑普通路基后,冻土变化基本是向着有利于路基稳定性的方向发展,在其它地段修筑普通路基,冻土变化是向着不利于路基稳定性的方向发展的.特别是阴阳坡太阳辐射差异,导致了土体热状态和多年冻土上限形态产生较大的差异,这种差异将会对路基稳定性产生一定的影响.  相似文献   

9.
本文根据一个寒季末的地温观测资料,分析了昆仑山隧道的一个多年冻土沟谷地形的地温特征。采用数值模拟技术,模拟该沟谷地形地温变化情况,认为该区沟谷的冻融特征不同于非沟谷地形,其融化深度远大于该区的冻土上限,从而得出该冲沟存在一个未被冻结的通道;隧道工程对周边地温产生较大影响;最大冻结深度约10,受气温影响的最大融化深度不超过4m,本研究为再认识多年冻土区沟谷地形的冻融特征提供了一条途径。  相似文献   

10.
一、引言 在多年冻土地区,随着土中水分的冻结和融化,会导致一系列奇异独特的冻土现象,如冻胀丘、冻融滑塌和热融沉陷等。这些现象往往给结构物造成灾害,如建筑物的损坏,道路的翻浆和沉陷,管道的折裂和变形等。因此测定冻土水分随季节、土质和土层深度等的变化,确定冻结和融化速率及多年冻土上限等,就是冻土研究和勘测的一项重要内容。  相似文献   

11.
根据青藏公路和青藏铁路多年的研究实践,对青藏高原多年冻土区路堤的临界高度进行了分析和讨论. 在青藏高原多年冻土区,由于各地年平均气温不相同,因而各地空气的融化指数和冻结指数不相同. 在同一地区,路堤表面材料特性不同,其表面的融化指数和冻结指数也就不同. 如果在某一地区,路堤表面的融化指数和冻结指数相等,则该地路堤的融化深度和冻结深度也应相等(忽略路堤及基底土体融化状态和冻结状态下导热系数的差异). 在这种情况下,该路堤临界高度等于路堤融化(冻结)深度减去天然上限埋深, 该地区的年平均气温即该路堤临界高度的年平均气温临界值. 对于一定表面特性的路堤,当某地区年平均气温高于临界值时,则该地区不存在路堤临界高度;只有当年平均气温低于临界值时,路堤临界高度才存在,且随年平均气温的降低,临界路堤高度减小. 在此基础上,提出了无临界路堤高度地区路堤的设计原则,以及保持路堤下多年冻土上限不变的工程措施.  相似文献   

12.
探地雷达在祁连山多年冻土调查中的应用   总被引:5,自引:2,他引:3  
杜二计  赵林  李韧 《冰川冻土》2009,31(2):364-371
探地雷达用于多年冻_十区的勘测一般通过钻孔和探坑进行直接对比来确定冻土层分布状况,但在野外工作中,钻孔资料一般很难得到,而探坑在有限的人力物力条件下也很难开挖,这给冻土层的野外确定带来很大困难.我们采用雷达探测资料寻找浅层地下冰深度来确定多年冻土上限的深度,企图能在没有现场对比资料的情况下寻找一种利用探地雷达探测多年冻土的简易方法.探测结果显示,通过地貌特征寻找浅层地下冰可能存在的典型地段进行雷达探测能很容易确定多年冻上上限的位置.2007年在祁连山区利用Pulsc EKKO Pro探地雷达进行了多年冻土的野外探测,结果显示:大雪山老虎沟海拔3 684 m(39.5907°N;96.4339°E)处多年冻土上限约为2.2 m,在冷龙岭北坡的水管河源头海拔4 053 m(37.5463°N;101.7709°E)至海拔3 907 m(37.5508°N;101.7752°E)处的多年冻土上限深度为2.5 m,在宁昌河源头沿河岸从海拔3 448 m(37.5649°N;101.84 55°E)至海拔3 377 m(37.5797°N,101.8377°E)处多年冻土上限为2.4 m,在走廊南山的观山河源头海拔3 468 m(39.2615°N;98.6715°E)处多年冻土上限深度在2 m左右.另外根据4个勘察区多年冻土特征地貌分布区的最低分布海拔总结得出,老虎沟地区为冻土下界分布最高地区,关山河源头为冻土下界分布最低地区.其原因主要是降水和植被的差异造成的结果,降水量大和植被良好的地区多年冻土下界的分布海拔就低,反之亦然.  相似文献   

13.
沱沱河流域是长江的发源地之一,其广泛分布的多年冻土对长江源区的产汇流过程、生态系统乃至于区域气候都有着重要影响,对该区域多年冻土分布和特征的调查和了解,可为研究江河源区多年冻土与气候、水文、生态的相互作用关系提供基础数据支撑。2020年10—11月,研究团队对沱沱河源区的多年冻土开展了为期50天的野外调查工作,并在不同下垫面类型、不同地貌部位和不同海拔高度共布设钻孔32个,总钻进深度1 200 m。该文是基于钻孔和探坑资料对沱沱河源区多年冻土特征和地下冰发育状况的初步总结。结果显示,沱沱河源区多年冻土在一定程度上受河流和地热影响形成了局部融区,其多年冻土下界大致在4 650~4 680 m之间;钻孔揭示的多年冻土上限平均埋藏深度为(2.47±0.98) m,部分地区存在融化夹层;受浅表层沉积物岩性和地热的影响,多年冻土下限埋藏深度相对较浅,平均为19.3 m,多年冻土相对较薄,平均厚度为15.0 m;多年冻土下限深度和多年冻土的厚度最大为75.0 m和72.7 m;地形地貌、沉积物特征和地热条件是影响多年冻土厚度存在较大空间差异的主要原因。研究区内地下冰主要分布于15.0 m深度以上范围内,同时也发现了处于萎缩状态的冰核丘与石质冻胀丘,这些现象也一定程度上与该研究区多年冻土退化过程有关。  相似文献   

14.
青藏铁路清水河地区路基下伏多年冻土地温变化特征研究   总被引:4,自引:2,他引:4  
基于埋设在青藏铁路清水河地区路基中两个断面内的共8个地温测试孔3年来的地温观测资料,研究了该地区铁路路基下伏高原多年冻土融化特征,分析了多年冻土上限的变化规律以及填筑铁路路基施工对下伏多年冻土赋存条件的影响。研究表明,由于受到填筑路基时赋存在路基填料内的热量的影响,铁路路基下伏多年冻土近地表的地温变化特征与天然地面下的多年冻土的地温变化特征有明显的不同,且向阳面与被阴面差别较大。多年冻土的上限在施工初期会有一个明显的下移沉降,随着时间的推移,虽然残存在路基中的热量逐渐消散,多年冻土上限下降会逐渐稳定。由于受到太阳辐射和路基边坡形状及融化夹层的影响,多年冻土上限会逐渐稳定,但不会在短时期内上升到天然地面下多年冻土的上限水平。  相似文献   

15.
多年冻土南界附近青藏铁路路基下的冻土退化   总被引:1,自引:0,他引:1  
基于2006-2012年青藏铁路多年冻土区唐古拉山南侧安多断面地温监测资料,分析了多年冻土南界附近路基下多年冻土的退化过程及其影响因素.结果表明:该监测断面天然场地多年冻土退化表现为多年冻土天然上限下降与多年冻土地温升高,观测期内多年冻土天然上限下降0.29 m,下降速率为4 cm·a-1;路基下10 m处多年冻土温度升高0.03℃,升温速率为0.004℃·a-1.该监测断面路基左路肩下多年冻土退化表现为多年冻土人为上限下降、多年冻土地温升高、多年冻土下限抬升以及多年冻土厚度减少.观测期内多年冻土人为上限下降0.41 m,下降速率为6 cm·a-1;路基下10 m处多年冻土地温升高0.06℃,升温速率为0.009℃·a-1;多年冻土下限抬升0.50 m,抬升速率为7 cm·a-1;多年冻土厚度减少0.90 m,减少速率为13 cm·a-1.工程作用是导致路基下多年冻土退化的主要原因,气温升温与局地因素中的冻结层上水发育促进了这一退化过程.路基下融化夹层的出现,导致多年冻土垂向上由衔接型变为不衔接型.  相似文献   

16.
对于冻土工程而言, 基础热稳定性是决定工程稳定性及服役性能的关键. 为预测±400 kV青藏直流联网工程多年冻土区砼灌注桩基础的长期热稳定性, 建立了考虑相变问题的二维数值传热分析模型, 应用有限元方法研究了气候变暖背景下, 不同年平均地温、不同含冰量条件下灌注桩基础传热特性和长期热稳定性. 结果表明: 单桩对周围土体的热影响范围是桩径的4~5倍, 桩基周围融化深度随时间推移而增大, 在低含冰量的高温和低温冻土区桩基50 a后最大融化深度分别为6.65 m和3.05 m, 所对应的冻土上限平均融化速率分别为9.5 cm·a-1和3.6 cm·a-1;在高含冰量的高温和低温冻土区50 a后最大融化深度分别为5.25 m和2.77 m, 其冻土上限平均融化速率分别为6.7 cm·a-1和2.0 cm·a-1. 在气候变暖背景下, 桩基上部周围冻土逐渐升温、融化, 50 a后, 在低含冰量的高温冻土区桩基由于融化深度增大导致有效冻结长度减少28%, 在高含冰量的高温冻土区桩基的有效冻结长度减少15%, 桩侧冻结力随之相应减小. 该研究对于冻土区桩基长度设计、桩基工程的维护和冻土稳定性评价提供了重要的科学依据.  相似文献   

17.
青藏高原改则地区多年冻土特征   总被引:2,自引:1,他引:1  
改则地区地处青藏高原腹地, 气候寒冷干燥, 位于青藏高原大片连续多年冻土南界附近. 2010年"青藏高原多年冻土本底调查"项目在改则地区采用坑探、物探和钻探等多种方法对区域内多年冻土开展了大规模野外考察工作. 根据现场钻探资料和后来的地温观测资料, 并结合坑探和物探资料对改则地区多年冻土特征进行分析, 结果显示: 改则地区多年冻土上限深度在2.6~8.5 m之间, 部分地区存在融化夹层; 多年冻土含冰量在12%~35%之间, 主要为多冰冻土, 而且一般仅在上限附近发育有高含冰量多年冻土; 多年冻土温度普遍较高, 在-1.5~0℃之间; 多年下限深度一般小于60 m, 部分地区甚至在10 m左右; 多年冻土分布的下界海拔高度约为4 700 m, 海拔5 100 m以上区域普遍发育有多年冻土; 区域内多年冻土特征受局地因素影响明显, 特别是与坡向、植被覆盖、岩性和含水量等关系密切; 现场记录资料和后来的测温资料都显示改则地区部分多年冻土正处于退化状态.  相似文献   

18.
基于青藏铁路沿线P32和P33监测断面连续10年的含融化夹层路基的地温和变形场地实测数据,分析了该两处监测断面左路肩下多年冻土人为上限、季节冻结最大深度、融化夹层厚度及多年冻土人为上限附近地温的年变化过程;同时分析了P32和P33监测断面左右路肩的总沉降年变化过程、P32监测断面左路肩地温场对变形的影响及P33监测断面左右路肩地温场差异对左右路肩差异沉降的影响。结果表明:P32和P33监测断面左路肩下多年冻土人为上限逐年下降、季节冻结最大深度基本不变、融化夹层厚度逐年增厚及多年冻土人为上限附近地温逐年升高;观测期内,P32和P33监测断面左右路肩变形均以沉降为主,且P32监测断面左右路肩的总沉降变形量均小于P33监测断面;其中P32监测断面左路肩暖季沉降变形明显,冷季发生轻微的冻胀变形,且发生沉降和冻胀的时间略滞后于路基下部温度场的变化;P33监测断面左右路肩地温场的差异导致左右路肩存在差异沉降,且其差异沉降值随时间逐年变大。  相似文献   

19.
青藏公路路基变形分析   总被引:29,自引:8,他引:29  
为研究青藏公路多年冻土人为上限在退化过程中对路基变形产生的影响过程和程度, 在唐古拉山以南选择了3处具有代表性的路面进行了为期2 a的路面变形观测. 资料表明, 在多年冻土人为上限退化过程中随着公路路基结构、冻土类型的不同, 路基变形从冻胀和融沉过程、冻胀量和融沉量、发生的时间都有很大的不同. 在高含冰量多年冻土区采用半挖半填结构产生的路基变形最为剧烈, 在含冰量相对少且采用较高路堤结构的地段路基变形过程相对平缓. 同时结合探地雷达的勘察结果对路基下的融化区、多年冻土区的内部结构进行了分析. 结果显示,多年冻土人为上限的下移、地下冰的融化会在多年冻土人为上限以上的地质体中导致较强烈的层间错动和扰动.  相似文献   

20.
青藏铁路多年冻土区含融化夹层路基的热状态   总被引:1,自引:1,他引:0  
基于青藏铁路K1496+750监测断面含融化夹层路基长达10 a的地温监测数据,分析了在气候转暖及工程活动下天然场地及路基左右路肩下多年冻土热状态年变化过程、融化夹层的年变化过程及其对多年冻土热状态的影响。结果表明:监测断面天然场地、左右路肩下多年冻土上限逐年下降,热稳定性逐年降低;观测期内,左路肩下发育有融化夹层,融化夹层厚度在波动中呈增厚趋势,且其增厚主要是由多年冻土人为上限下降所致,而天然场地及右路肩下未发育融化夹层;多年冻土上限附近土体热积累显著,进而导致多年冻土上限逐年下降及其附近土体温度逐年升高,弱化了多年冻土的热稳定性;后期增加的块石护坡和热管两种具有“主动冷却”效能的工程补强措施很好的改善了路基的热稳定性,右路肩经工程补强措施后,多年冻土人为上限得到显著抬升,热稳定性得到显著改善,而左路肩由于融化夹层的存在,工程补强措施仅仅维持了当前多年冻土热状态,融化夹层的存在一定程度上弱化了工程补强措施所产生的冷却效能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号