首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
黄铁矿风化过程元素的活性及对环境的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
卢龙  王汝成等 《地质论评》2001,47(1):95-101
在对安徽铜陵鸡冠山硫铁矿属矿中黄铁矿风化产物组构特征研究的基础上,划分出代表不同分化程度的4种矿石组构型,并进而对不同组构型中硫和金属元素的含量、富集系数、流失系数变化进行了研究。研究表明在风化过程中,As、Sb、Cu、Zn明显富集,其中As、Cu、Zn对环境的潜在危害较Sb大;Co、Ni、Bi明显流失或严重流失,对环境已经形成污染,其中Bi的污染程度较高。  相似文献   

2.
通过对双王金矿床角砾岩地质特征、地球化学特征的综合分析,认为双王金矿具有不同的矿源深度及剥蚀深度。值得指出的是,Sb、As的变化可作为直接指标,即受剥蚀者Sb表现明显,未受剥蚀者As表现明显;在勘探中Au、Bi、As、Ag、Sb、Mo、Ba、Pb、Zn、Cu、Hg、Mn等可作为双王金矿找矿的指示元素,其中Au、Bi、As、Ag为主成矿元素,Sb、Pb、Zn、Cu为剥蚀深度指示元素,Ba、Hg、Mn、Mo为矿区围岩及地层元素。  相似文献   

3.
选择胶东玲珑金矿典型矿体47号脉为研究对象,应用基岩地球化学方法,测试微量元素含量,研究微量元素与金的相关关系、计算微量元素的浓集系数并确定其轴向分带,探讨微量元素对深部金成矿的指示意义,期待能对玲珑金矿深部找矿提供一些参考.初步认识如下:矿区金矿体的最佳指示元素依次为Au、Ag、Bi、As、Cu、Co、Mo、Sb;金矿体的轴向分带序列从上到下依次为As、Pb、Ag、Cu、Hg、Sb、Mo、Ni、Th、V、U、Mn、Zn、Bi、Co、Au;矿体中Au、Bi、Ag、As富集系数大,Cu、Co富集系数中等,而Zn在矿体中相对亏损.研究结果表明,在深部47号矿体仍有较好的成矿前景.  相似文献   

4.
该文以山东招远大尹格庄金矿床中微量元素为研究对象,通过对矿床围岩、矿石等微量元素的研究,表明大尹格庄金矿围岩中微量元素以富含 Bi,Au,Pb,W,Ag,Sn 为特点,矿体和矿化体中元素组合为 Au,Ag,As,Sb,Hg,B, Cu,Zn,Bi,Mo,Mn,Co,Ni,W。在5个成矿阶段中,第二阶段与第三阶段微量元素的富集程度较明显,表现为 Au, Ag,As,Co,Bi,Cu,Pb,Zn 等的富集,成矿元素可分为2个分带序列,主成矿元素为 Au Ag Cu Pb Zn Bi 组合、头晕元素 As Sb Hg 组合和尾晕元素 Co Ni 组合。  相似文献   

5.
对猫岭-王家葳子金矿区矿石中伴生的微量元素研究表明,猫岭金矿的As,Cd,B,Be,Sn,Bi,Pb,Sb明显偏高,其中As,Cd,B高度富集,Bi,Sb,Sn,Be,Pb中度富集;王家崴子金矿Pb,Cr,Cd,Zn,Be,Sn,As明显偏高,其中Cd,Bi,As,Pb,Sn高度富集,Cu为中度富集。矿石中As,Bi,B含量较高与赋矿围岩中该元素高的原始富集有关。岩矿显微鉴定和多种数理统计分析综合研究表明,Pb,Zn,Cu主要以方铅矿、闪锌矿、黄铜矿和黝铜矿等独立矿物形式存在,部分呈类质同像形式分布于黄铁矿、毒砂等硫化物中。As以毒砂形式存在,部分以类质同像形式存在于黄铁矿、雌黄铁矿、白铁矿和黝铜矿中:Sb,Bi以固溶体混入物形式分布于黄铁矿、毒砂和黝铜矿中;Sn,B以独立矿物形式赋存于黄铁矿、方铅矿和黝铜矿中;Cd与方铅矿和闪锌矿、黝铜矿有关;部分Cr,Be,B与云母和粘土矿物有关。  相似文献   

6.
贾伟  田茂生  金川  刘戈 《吉林地质》2010,29(4):92-94,102
在黑龙江某地区1:5万水系沉积物测量的基础上,对测区内可能富集成矿的Bi、Cu、Hg、W、As、Au、Mo、Zn、Sb、Ag、Pb等元素地球化学特征进行了系统阐述,其中极有可能成矿的元素是Bi、Hg、Cu、Zn、W、Mo。  相似文献   

7.
五龙金矿是辽东地区大型岩浆热液型金矿床,163矿脉是矿区内目前发现的最大含矿构造。为进一步探测深部找矿潜力,近几年矿山对163矿脉进行了大量的探采工程,其中在-762 m坑道实施了600 m钻孔。本文在详细编录该钻孔的基础上,对全孔样品进行成矿元素测试工作,利用SPSS软件对所得测试数据进行元素相关性、聚类、因子分析。相关性分析显示,具有显著正相关的元素主要为Bi、W、Cu、Ag、Au和As、Sb、Sn、Zn两组;Mo元素与Sn、Ag、Cu、Bi、W、Sb地素具有显著正相关性,而Pb元素与Cu、Mo、Au、W元素呈显著负相关性,Hg元素与其它元素相关性不明显。聚类分析结果表明,R型聚类在类的距离为5的水平上,这些元素明显可分为3组:Hg、Cu、Pb、Zn、Sn、Mo、As、W;Ag、Au、Sb、Bi。因子分析结果表明,提取3个因子可以反映出12个元素变量64.42%的地球化学信息,F1的主要载荷因子组成为Sn、Ag、As、Zn、Sb, F2的主要载荷因子组成为Au、W、Bi、-Pb, F3的主要载荷因子组成为Hg。根据成矿元素随深度变化特征,结合前人构造叠加晕研究成果,推测该钻孔深部还...  相似文献   

8.
烧锅营子金矿床的黄铁矿形成于早、中、晚3期,是主要的矿石矿物和载金矿物,其中以中期黄铁矿为最主要的载金者.黄铁矿的化学成分为:TFe43.34%~45.52%,S46.58%~48.86%,与标准黄铁矿相比显示亏铁、亏硫特点.黄铁矿内含丰富的微量元素,有Au、Ag、As、Sb、Bi、Cu、Zn、Pb、Co、Ni、W、Mo、Se等.其中Au、Ag、Cu、Pb、Zn、Bi含量较高,而As、Sb低,Se极低.其Au/Ag(多大于0.5)、(Cu+Pb+Zn)/(Co+Ni+As)(4.26)、Co/Ni(>> 1)比值表明其属中温岩浆热液矿床.  相似文献   

9.
段晓华  陈健 《甘肃地质》2008,(4):17-20,25
崖湾金矿位于秦岭活动带礼县-柞水被动陆缘带中段。区域构造主要为礼县-山阳深断裂及其分支断裂和石家河坝复式向斜。本文依据金矿区土壤、岩石测量数据,分别对岩性、含矿地段进行微量元素分布富集特征分析,矿床土壤中Au与Ag、Cu、Pb、As、Sb、Hg呈正相关关系;岩石中与Ag、As、Bi、Cu、Zn呈正相关关系。通过矿体不同标高探矿工程采样分析,初步总结出矿床原生晕的垂直分带序列Hg—Mo—Pb—Ag—Sb—Au—As—Zn—Cu—Bi,地球化学异常显示该矿区存在找金潜力。  相似文献   

10.
徐州城市表层土壤中重金属环境风险测度与源解析   总被引:43,自引:2,他引:43  
王学松  秦勇 《地球化学》2006,35(1):88-94
研究了徐州城市表层土壤的21个样品中重金属元素富集特征,结果表明,与我国土壤元素的背景值(算术平均值)相比,表层土壤中Zn、Cd、As、Hg、Sb、Sn和Ag等元素富集程度高;Se、Sc、Ba、Bi、Pb、Cu、Ni、Cr、Mn、Mo、Be、Ga和Co等元素的富集程度较低。不同城市表层土壤中重金属元素有着不同的来源,统计分析结果表明,研究区表层土壤样品中重金属元素可分成4种类别:“自然因子”类别元素(Ti、Ga、Li、V、Co、Mn、Be和Pt);“交通因子”类别元素(Ag、Se、Sc、Pb、Cu、Zn、Cd、Br、S、Mo和Au);“燃煤因子”类别元素B(i、Cr、Hg、As、Sb和Pd)和混合源类别元素(Sn和Ba)。环境风险指数的计算结果表明,表层土壤中重金属污染具有较大的环境风险,其中属于中等环境风险级别以上的样品占近40%。  相似文献   

11.
Based on back scattered electron images and electron micro-probe analysis results, four alteration layers, including a transition layer, a reticulated ferric oxide layer, a nubby ferric oxide layer and a cellular ferric oxide layer, were identified in the naturally weathering products of pyrite. These layers represent a progressive alteration sequence of pyrite under weathering conditions. The cellular ferric oxide layer correlates with the strongest weathering phase and results from the dissolution of nubby ferric oxide by acidic porewater. Leaching coefficient was introduced to better express the response of element mobility to the degree of pyrite weathering. Its variation shows that the mobility of S, Co and Bi is stronger than As, Cu and Zn. Sulfur in pyrite is oxidized to sulfuric acid and sulfate that are basically released into to porewater, and heavy metals Co and Bi are evidently released by acid dissolution. As, Cu and Zn are enriched in ferric oxide by adsorption and by co-precipitation, but they would re-release to the environment via desorption or dissolution when porewater pH becomes low enough. Consequently, Co, Bi, As, Cu and Zn may pose a substantial impact on water quality. Considering that metal mobility and its concentration in mine waste are two important factors influencing heavy metal pollution at mining-impacted sites, Bi and Co are more important pollutants in this case.  相似文献   

12.
Authigenic pyrite grains from a section of the Lower Toarcian Posidonia Shale were analysed for their trace‐element contents and sulphur‐isotope compositions. The resulting data are used to evaluate the relationship between depositional conditions and pyrite trace‐element composition. By using factor analysis, trace‐elements in pyrite may be assigned to four groups: (i) heavy metals (including Cu, Ni, Co, Pb, Bi and Tl); (ii) oxyanionic elements (As, Mo and Sb); (iii) elements partitioned in sub‐microscopic sphalerite inclusions (Zn and Cd); and (iv) elements related to organic or silicate impurities (Ga and V). Results indicate that trace‐element contents in pyrite depend on the site and mechanism of pyrite formation, with characteristic features being observed for diagenetic and syngenetic pyrites. Diagenetic pyrite formed within anoxic sediments generally has a high heavy metals content, and the degree of pyritization of these elements increases with increasing oxygen deficiency, similar to the degree of pyritization of reactive Fe. The highest gradient in the increase of the degree of trace element pyritization with bottom‐water oxygenation was found for the elements Ni < Cu < Mo = As < Tl. In contrast, syngenetic pyrite formed within a euxinic water column typically is enriched in As, Mo and Sb, but is low in heavy metals, and the geochemical variation reflects changes in sea water composition.  相似文献   

13.
《Ore Geology Reviews》2011,43(1):32-46
Hydrothermal pyrite contains significant amounts of minor and trace elements including As, Pb, Sb, Bi, Cu, Co, Ni, Zn, Au, Ag, Se and Te, which can be incorporated into nanoparticles (NPs). NP-bearing pyrite is most common in hydrothermal ore deposits that contain a wide range of trace elements, especially deposits that formed at low temperatures. In this study, we have characterized the chemical composition and structure of these NPs and their host pyrite with high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), analytical electron microscopy (AEM), and electron microprobe analysis (EMPA). Pyrite containing the NPs comes from two types of common low-temperature deposits, Carlin-type (Lone Tree, Screamer, Deep Star (Nevada, USA)), and epithermal (Pueblo Viejo (Dominican Republic) and Porgera (Papua New-Guinea)).EMPA analyses of the pyrite show maximum concentrations of As (11.2), Ni (3.04), Cu (2.99), Sb (2.24), Pb (0.99), Co (0.58), Se (0.2), Au (0.19), Hg (0.19), Ag (0.16), Zn (0.04), and Te (0.04) (in wt.%). Three types of pyrite have been investigated: “pure” or “barren” pyrite, Cu-rich pyrite and As-rich pyrite. Arsenic in pyrite from Carlin-type deposits and the Porgera epithermal deposit is negatively correlated with S, whereas some (colloform) pyrite from Pueblo Viejo shows a negative correlation between As + Cu and Fe. HRTEM observations and SAED patterns confirm that almost all NPs are crystalline and that their size varies from 5 to 100 nm (except for NPs of galena, which have diameters of up to 500 nm). NPs can be divided into three groups on the basis of their chemical composition: (i) native metals: Au, Ag, Ag–Au (electrum); (ii) sulfides and sulfosalts: PbS (galena), HgS (cinnabar), Pb–Sb–S, Ag–Pb–S, Pb–Ag–Sb–S, Pb–Sb–Bi–Ag–Te–S, Pb–Te–Sb–Au–Ag–Bi–S, Cu–Fe–S NPs, and Au–Ag–As–Ni–S; and (iii) Fe-bearing NPs: Fe–As–Ag–Ni–S, Fe–As–Sb–Pb–Ni–Au–S, all of which are in a matrix of distorted and polycrystalline pyrite. TEM-EDX spectra collected from the NPs and pyrite matrix document preferential partitioning of trace metals including Pb, Bi, Sb, Au, Ag, Ni, Te, and As into the NPs. The NPs formed due to exsolution from the pyrite matrix, most commonly for NPs less than 10 nm in size, and direct precipitation from the hydrothermal fluid and deposition into the growing pyrite, most commonly for those > 20 nm in size. NPs containing numerous heavy metals are likely to be found in pyrite and/or other sulfides in various hydrothermal, diagenetic and groundwater systems dominated by reducing conditions.  相似文献   

14.
浙江火山岩区金矿床黄铁矿的找矿矿物学研究   总被引:4,自引:0,他引:4       下载免费PDF全文
论文给出了中国浙江火山岩区金矿床中黄铁矿的微量元素、形态和物理性质找矿标型特征.例如.(在许多)浙江火山岩区重要金-银矿床中黄铁矿相对富含铅、锌、钼、锡、砷、锑、铋而贫钴,镍、硒、碲:并且S/Se、Ag/Au、Pb/Ni、Se/Te、(As+sb+Bi)/(Se+Te)比值较高,Co/Nj、Ag/Pb、Ag/Zn、Cu/Zn和(Co+Ni)/(Pb+Zn)比值较低,再如含金黄铁矿比不含金黄铁矿的反射率低.总之,黄铁矿的标型性研究对于寻找金矿具有重大的理论意义和实际意义.  相似文献   

15.
Weathering of heavy metal enriched black shales may be one of the most important sources of environmental contamination in areas where black shales are distributed. Heavy metal release during weathering of the Lower Cambrian Black Shales (LCBS) in western Hunan, China, was investigated using traditional geochemical methods and the ICP-MS analytical technique. Concentrations of 16 heavy metals, 8 trace elements and P were measured for samples from selected weathering profiles at the Taiping vanadium ore mine (TP), the Matian phosphorous ore mine (MT), and Taojiang stone-coal mine (TJ). The results show that the bedrock at these three profiles is enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Pb, Th, U, Mo, Cd, Sb, Tl, and P. Based on mass-balance calculation, the percentages of heavy metals released (in % loss) relative to immobile element Nb were estimated. The results show significant rates of release during weathering of: V, Cr, Co, Ni, Cu, Zn, U, Mo, Cd, Sn, Sb, and Tl for the TP profile; Sc, Cr, Mn, Co, Ni, Cu, Zn, Pb, Th, Cd, and Sn for the MT profile; and Sc, Mn, Co, Ni, Zn, Th, Cd, Sn, and Tl for the TJ profile. Among these heavy metals, Co, Ni, Zn, Cd, and Sn show very similar features of release from each of the three weathering profiles. The heavy metals released during weathering may affect the environment (especially topsoil and surface waters) and are possibly related to an observed high incidence of endemic diseases in the area.  相似文献   

16.
The mineralogy and geochemistry of the massive pyrite-pyrrhotite mineralization, which contains minor magnetite, sphalerite and galena, the weathered profile and surface gossan at Mugga Mugga in Western Australia have been examined. Reactions between amphibolite wall rocks and acid waters from the oxidation of the iron sulfides have resulted in distinct mineralogical zonation of the weathered profile which is further modified near the surface by lateritization. At the base of the weathered zone an opaline chert (Opal-CT) has been precipitated from fluctuations of the water table. A gossanous zone from 25.14–68.80 m with boxworks after massive pyrite is modified by abundant kaolinite, dickite and an alunite-type mineral derived from amphibolite wall rocks, while above 25.14 m both plinthite and mottled clay zones of a laterite profile are evident. Some characteristics of a mature gossan profile – sulfate-phosphate-arsenate near the base, a carbonate zone higher in the profile, and an oxide zone near the surface – overprint the gross zonation.At the interface between sulfide and weathered rock Mg, Ca, K, S, Zn, Cd, Hg, Ba are depleted, As, Sb, Mo, Cr and V contents increase and in the weathered zone, SiO2, TiO2, P2O5, SO3, Pb, Zn, Hg, Sb, Co, Ni, W, Ba, Sr and Zr decrease up the profile whilst Al2O3, Fe2O3, CO2, Cu and As increase. Of the elements associated with the massive pyrite (Pb, Zn, Cu, Ag, As, Cd, Hg, Sb, Co, Ni) anomalous concentrations of Pb, Cu, Ag, As and Sb occur in the surface gossan despite the possibility of complete leaching by highly acidic solutions. These anomalies are similar to those found in gossans over pyrite mineralization elsewhere in the Yilgarn Block.  相似文献   

17.
云浮黄铁矿利用过程中微量毒害元素的环境化学活动性   总被引:13,自引:3,他引:13  
为了解云浮黄铁矿利用过程中微量毒害元素的环境地球化学行为,客观评价它们对环境质量的影响,利用元素结合形态的连续提取实验方法,分析了云浮黄铁矿及其工业废渣中Co,Ni,Cu,Zn,As,Se,Cd,Sn,Sb,Pb和Tl等11种毒害元素的形态及化学活动性。结果表明,黄铁矿中大部分微量毒害元素都有着极强的化学活动性,各元素活动态浸出比例依次为Co96.3%,Se91.9%,Cu90.3%,Cd90.0%,Pb89.7%,Zn88.6%,Sb82.5%,Ni80.6%,Sn70%,Tl55.1%和As31.9%,元素As和Tl主要赋存于硫化物和硅酸盐矿物相中,另有少量的Cu,Pb和Sb可能赋存于碳酸盐矿物相中,其他元素则主要赋存于硫化物矿物相中。与黄铁矿相比,飞灰和灰渣中各元素可交换态和碳酸盐结合态所占的比例明显减少。废渣中各元素的化学活动性表现出很大的差别,其中Cu,Zn和Cd的化学活动性最强,活性态浸出比例在90%以上;其次是Co,Ni,Se,Pb和Tl,浸出比例在50%左右;Sb,As和Sn的稳定性较高,浸出比例分别为1%、5%和14%左右;飞灰中微量毒害元素的活动性均高于灰渣。  相似文献   

18.
湘江入湖河段沉积物重金属污染及其Pb同位素地球化学示踪   总被引:12,自引:0,他引:12  
湘江是我国重金属污染最严重的河流之一.本次工作利用等离子质谱(ICP-MS)和多接收同位素质谱(MC-ICP-MS)等技术,对湘江入湖河段沉积物进行了系统的重金属微量元素和Pb同位素分析.结果表明,湘江河床沉积物明显富集Bi、Sc、V、Mn、Ni、Cu、Zn、Pb、Cd、Sn、Sb等多种重金属微量元素,而湖盆沉积物重金...  相似文献   

19.
Urban roadside soils are important environmental media for assessing heavy metal concentrations in urban environment. However, among other things, heavy metal concentrations are controlled by soil particle grain size fractions. In this study, two roadside sites were chosen within the city of Xuzhou (China) to reflect differences in land use. Bulk soil samples were collected and then divided by particle diameter into five physical size fractions, 500–250, 250–125, 125–74, 74–45, < 45 μm. Concentrations of metals (Ti, Cr, Al, Ga, Pb, Ba, Cd, Co, Cu, Mn, Ni, V, Zn, Mo, As, Sb, Se, Hg, Bi, Ag) were determined for each individual fraction. These metals could be roughly classified into two groups: anthropogenic element (Pb, Ba, Cd, Cu, Zn, Mo, As, Sb, Se, Hg, Bi, Ag) and lithophile element (Ti, Cr, Al, Ga, Co, Mn, Ni, V) in terms of values of enrichment factor. As expected, higher concentrations of anthropogenic heavy metals (Cu, Zn, Mo, As, Hg, Bi, Ag) are observed in the finest particle grain size fraction (i.e. < 45 μm). However, heavy metals Se, Sb and Ba behave independently of selected grain size fractions. From the viewpoint of mass loading, more than 30% of the concentrations for all anthropogenic heavy metals are contributed by the particle grain size fractions of 45–74 μm at site 1 and more than 70% of the concentrations for all heavy metals are contributed by the particle grain size fractions of 45–74 and 74–125 μm at site 2. These results are important for transport of soil-bound heavy metals and pollution control by various remedial options.  相似文献   

20.
This paper reports a geochemical study of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan province (P. R. China). Trace metals Ba, Bi, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Sn, Sb, Pb, Tl, Th, U, Zr, Hf, Nb and Ta were analyzed using ICP-MS, and Pb isotopes of the bulk sediments were measured by MC-ICP-MS. The results show that trace metals Cd, Bi, Sn, Sc, Cr, Mn, Co, Ni, Cu, Zn, Sb, Pb and Tl are enriched in the sediments. Among these metals, Cd, Bi and Sn are extremely highly enriched (EF values >40), metals Zn, Sn, Sb and Pb significantly highly (5 < EF < 20), and metals Sc, Cr, Mn, Co, Ni, Cu and Tl moderately highly (2 < EF < 5) enriched in the river sediments. All these metals, however, are moderately enriched in the lake sediments. Geochemical results of trace metals Th, Sc, Co, Cr, Zr, Hf and La, and Pb isotopes suggest that metals in the river sediments are of multi-sources, including both natural and anthropogenic sources. Metals of the natural sources might be contributed mostly from weathering of the Indosinian granites (GR) and Palaeozoic sandstones (PL), and metals of anthropogenic sources were contributed from Pb–Zn ore deposits distributed in upper river areas. Metals in the lake sediments consist of the anthropogenic proportions, which were contributed from automobile exhausts and coal dusts. Thus, heavy-metal contamination for the river sediments is attributed to the exploitation and utilization (e.g., mining, smelting, and refining) of Pb–Zn ore mineral resources in the upper river areas, and this for the lake sediments was caused by automobile exhausts and coal combustion. Metals Bi, Cd, Pb, Sn and Sb have anthropogenic proportion of higher than 90%, with natural contribution less than 10%. Metals Mn and Zn consist of anthropogenic proportion of 60–85%, with natural proportion higher than 15%. Metals Sc, Cr, Co, Cu, Tl, Th, U and Ta have anthropogenic proportion of 30–70%, with natural contribution higher than 30%. Metals Ba, V and Mo might be contributed mostly from natural process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号