首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
谢学锦 《地质通报》2008,27(2):163-168
地球化学填图的发展属于勘查地球化学家的贡献。勘查地球化学家从发展局部矿产勘查至区域性矿产勘查,再从区域性地球化学填图至全国性乃至全球性地球化学填图。论述了西方国家、苏联和中国发展地球化学填图所走的不同道路,从而预见21世纪地球化学填图的标准化、多样化及其在解决资源与环境问题方面的重大作用。  相似文献   

2.
谢学锦 《地质通报》2007,26(11):1399-1404
地球化学填图的发展属于勘查地球化学家的贡献。勘查地球化学家从发展局部矿产勘查至区域性矿产勘查,再从区域性地球化学填图至全国性乃至全球性地球化学填图。论述了西方国家、苏联和中国发展地球化学填图所走的不同道路,从而预见21世纪地球化学填图的标准化、多样化及其在解决资源与环境问题方面的重大作用。  相似文献   

3.
进入21世纪中国化探发展路线图   总被引:5,自引:0,他引:5       下载免费PDF全文
笔者回顾了近年来中国化探的一些理论与方法技术上的重大新进展,立足于地球化学填图基础上的矿集区、多元素异常集结区与地球化学块体理论,利用地球化学资料进行矿产资源潜力评价与稀有分散元素独立成矿的可能性评价,利用地球化学资料进行成矿岩体演化与中国西南大地幔柱的初步研究,这些探索性的研究均取得了令人鼓舞的成就。化探方法技术的应用成果显著,如地球化学填图与矿产勘查一体化,多元素分析与分析质量监控方法不断完善外来物覆盖浅钻取样,深穿透地球化学方法,全国生态、农业、环境地球化学调查,全球地球化学填图方法研究等。在回顾近年化探成果的基础上,提出中国化探在21世纪的发展,整体思路是立足于地球化学填图及地球化学填图与矿产勘查一体化。需要有将研究、填图、调查、勘查、工程一体化的大科学计划。提出了涉及地球化学填图、矿产勘查与综合利用、能源勘查、生态环境调查、全球变化研究等的12个重点发展方向。  相似文献   

4.
地球化学省与地球化学边界   总被引:17,自引:1,他引:17  
根据中国大陆各种类型壳,幔源岩石和矿石的大量铅-锶-钕同位素资料,及全球特别是东亚大陆块体广泛的同位素与元素体系对比,发展了地球化学块体划分的同位素地球化学指标和填图方法,在此基础上开展了中国大陆的大尺度铅同位素矢量填图,确定了中国大陆主要地球化学省和地球化学急变带(边界),地球化学边界的形成与板块的斜结合以及结合以后岩石圈结构调整产生的克拉通边界密切相关,地球化学边界与重力正异常梯度带,莫霍面梯度带以及正负磁异常转换带存在平行和交错两种关系,研究表明地球化学急变带控制了中国大陆90%以上的超大型金,铜,锡,银,镍,铅-锌,铀,钾盐,硼镁,磷等(33个)和10个以上的大型矿集区。地球化学省划分制约着全球油气资源分布,而地球化学边界则具体控制着克拉通边缘前陆盆地中产油气位置,陆内六级以上强破坏性的浅源地震与克拉通边界-地球化学边界关系十分密切,喀斯特溶洞奇观的出现与地球化学边界关系同样相当密切,根据铅同位素地球化学填图确定的区域背景值可以对铅污染作出快速的定量评价。  相似文献   

5.
应用地球化学在中国发展的前景   总被引:12,自引:2,他引:12       下载免费PDF全文
应用地球化学发展的前景将是(1)立足于地球化学填图--区域性、国家性、全球性的,这将使过去从事应用地球化学研究的物理、化学、生物及地学出身的工作者扩大眼界,发现更多研究局部难以发现的问题;(2)需要多学科的融合,使多年从事地球化学填图的勘查地球化学工作者得到其他应用地球化学工作者的合作,使研究工作更加深入;(3)多学科的融合还需要大科学计划,使填图、研究、调查、勘查、工程一体化,使应用地球化学能更好地解决资源、环境、农业、生态中的大问题,并使这一学科本身得到发展.列举了已经进行和正在进行的大科学计划,这些大科学计划之所以取得成功是由于它们都立足于区域化探全国扫面计划取得的巨大成果的基础之上.构成良性循环,应继续坚持并在此基础之上开展一些新的大科学计划,以取得更大的成果.  相似文献   

6.
进入21世纪的勘查地球化学:对生态地球化学的展望   总被引:31,自引:4,他引:27  
通过对国内外地球化学填图进展的简要回顾 ,认为生态地球化学是地球化学填图的必然产物。根据中国多目标地球化学调查项目的工作部署和研究需求 ,初步提出了生态地球化学研究的基本内容和任务 ,同时指出 ,生态地球化学研究将成为中国勘查地球化学发展的主流之一  相似文献   

7.
从勘查地球化学到应用地球化学   总被引:7,自引:0,他引:7  
谢学锦 《物探与化探》2003,27(6):412-415
勘查地球化学是在20世纪从一门探矿技术发展成一门年轻的地学分支科学.进入21世纪,它可能为解决资源与环境关键问题做出许多从事勘查地球化学工作的人都未预料到的重大贡献.由于它的发展今后可能超越它原有的局限,因而称之为应用地球化学更符合它的发展方向.应用地球化学是尚未成形的一门科学.它是许多化学家、地球化学家、地质学家、物理学家、数学家、农学家与环境学家的多学科学术活动.由此产生了一种国际学术杂志“应用地球化学(appliedgeochemistry)”,但应用地球化学的研究成果散见于许多杂志,还没有一个学术团体以此命名.因而,国际勘查地球化学家协会大可借此机会改名为应用地球化学家协会,以便吸收多学科的人才,为解决人类资源与环境中关键问题共同努力.周期表上所有元素不同尺度不同性质的地球化学图已成为解决资源与环境关键问题的最重要的基础图件.勘查地球化学家多年研究地球化学填图的思路与方法可以帮助其它学科扩大视野,而多学科的融合将使改名为应用地球化学的勘查地球化学的研究得以更深入的发展.  相似文献   

8.
新一轮全球地球化学填图:中国的机遇和挑战   总被引:4,自引:0,他引:4  
论述从1988年联合国教科文组织相继批准实施国际地球化学填图(IGCP259)和全球地球化学基准(IGCP360)项目以来,中国和欧洲在制定全球地球化学填图的方法指南及技术标准方面作出的决定性贡献。文中指出,中国的"环境地球化学监控网络及动态地球化学填图"项目、欧洲的FOREGS地球化学基准值填图项目为全球其他国家开展类似工作提供了示范,但地球化学家预期10年内获得全球地表地球化学概貌的愿望至今未能实现。挪威和中国的地球化学家通过IAHS/ICCE正在酝酿"Global geochemical mapping and the sediment-bound flux of major world rivers"重大国际合作项目,以开展新一轮全球地球化学填图。通过国际极地年,IPY317项目首先从北极地区启动。新一轮全球地球化学填图项目计划以中国提出的"全球地球化学填图的泛滥平原沉积物采样草案"和挪威提出的"三角洲中河漫滩沉积物的采样草案"作为实施方案,因而巩固和扩大了中国地球化学填图技术在全球的优势地位。论文在分析中国面临的机遇与挑战后,建议政府主管部门对新一轮全球地球化学填图给予优先支持。  相似文献   

9.
地球化学块体的概念及其研究意义   总被引:12,自引:0,他引:12  
刘大文 《地球化学》2002,31(6):539-548
地球化学块体是地球上某种或某些元素高含量的巨大岩块,它们是地球从形成与演化至今不均匀性的总显示,为大型至巨型矿床的形成提供了必要的物质供应条件。应用勘查地球化学的方法手段。从元素的角度能够将这些地球化学块体勾绘出来,从中到这种巨大的地球化学块体能够为大型巨型矿床的形成提供其所必需的足够的物质供应量的新认识,通过对全国区域化探扫面计划(RGNR)所覆盖的全国600多万km^2的国土面积上获得的高质量海量元素分析数据的综合研究,发现了比传统意义的分散晕分散流更为宽广的地球化学模式;区域异常,地球化学省,地球化学巨省和地球化学域,这种更为宽广的所谓套合着的地球化学模式谱系实际上是地球上富含各种金属的巨大岩块的内部结构特征在地表的表现,而追索某元素地球化学块体的内部结构则可揭示该元素在地球化学块体中逐步浓集成矿的轨迹,依此思路发展了一整套的矿产勘查新战略;迅速掌握全局,逐步缩小靶区,并应用于国土资源大调查的项目中,尽管地球化学块体的理论与方法学研究尚在初期阶段,但这一概念改变了建立在点源分散模式上的勘查地球化学的基本原理,也为矿床学,成矿学与大地构造学研究开拓了眼界,并提供了新的研究思路。  相似文献   

10.
全球地球化学填图   总被引:19,自引:10,他引:19       下载免费PDF全文
作指出了1973年至今世界上50余项地球化学填图计划中普遍存在的缺陷大都涉及分析问题。1988-1992年实施的国际地质对比计划IGCP259项目旨在使全世界地球化学填图方法标准化。在此项目中对分析问题提出了若干规定,主要是要求今后的填图计划应统一分析71种元素,痕量及超痕量元素的检出限必须低于相应的地壳丰度值及采用中国的GSD和加拿大的STSD标样系列,以使全球数据可以对比,在其后开始延续至今的全球地球化学填图计划IGCP360,旨在用极低密度采样早日覆盖全球大陆,讨论了正在实行的两种极低密度采样方案,并提出通过极低密度采集地极少量样品示范性实现IGCP259项目对分析要求的具体建议。  相似文献   

11.
More than 40 national and regional geochemical mapping projects in the world carried out from 1973 to 1988 do not conform to common standards. In particular they have many analytical deficiencies. In the period 1988 to 1992, the International Geochemical Mapping project (Project 259 of UNESCO's IGCP Program) prepared recommendations designed to standardize geochemical mapping methods. The analytical requirements are an essential component of the overall recommendations. They included the following: 71 elements should be analyzed in future mapping projects; the detection limits of trace and ultratrace elements must be lower than the corresponding crustal abundances; and the Chinese GSD and Canadian STSD standard sample series should be used for the correlation of global data. A proposal was also made to collect 5000 composite samples, at very low sampling densities to cover the whole Earth's land surface. In 1997 an IUGS Working Group on Global Geochemical Baselines was formed to continue the work which began with IGCP 259. From 1997 up to now, new progress has been made especially in China and FOREGS countries under the aegis of this working group, including the study of suitable sampling media, development of a multi-element analytical system, new proficiency test for selection of competent laboratories and role of wide-spaced mapping in mineral exploration. One of the major problems awaiting solution has been the inability of many laboratories to meet the IGCP recommendations to generate high quality geochemical maps. Fortunately several laboratories in China and Europe have demonstrated an ability to meet the requirements and they will be well placed to render technical assistance to other countries.  相似文献   

12.
地壳全元素探测——构建“化学地球”   总被引:17,自引:1,他引:16  
地壳物质探测是地壳探测工程的重要组成部分。化学元素是地球物质组成的最基本单位,被称为地球的基因。矿产资源是由化学元素组成的,环境是受化学元素行为制约的,因此,对地壳中所有元素精确含量和分布的探测,对解决人类所面临的资源和环境问题具有重大意义。地壳全元素探测项目拟发展4种地球化学探测技术,包括地壳中所有天然元素的精确分析技术,中下地壳物质成分识别技术,穿透性地球化学探测技术,海量地球化学数据和图形显示技术。建立1个覆盖全国的地球化学基准网,系统采集代表性岩石样品10000件,疏松物样品6000件,按标准化的方法分析其主量元素和微量元素含量(包含78种元素),建立中国大陆地球化学基准值,为研究化学元素的分布、演化和成矿物质背景提供基准参考数据。进行总长度3300km的3条地球化学走廊带的实验与示范,采集各类代表性岩石样品5000件,进行元素和同位素测定,构建走廊带地壳地球化学模型、跨越不同大地构造单元的元素空间变化和大型矿集区成矿物质背景。为开展全国地壳探测工程奠定基础,并为最终建立"化学地球"进行技术准备和先导性实验。  相似文献   

13.
In order to meet the needs of geochemical mapping and geochemical exploration, 125 geochemical reference materials have been successively prepared by the Institute of Geophysical and Geochemical Exploration (IGGE) since 1978. They include certified reference materials of stream sediments (GSD1-14), soils (GSS1-16; ASA 1–6, for analysis of available elements), various rocks (GSR1-6, GSR13-15), biological material (GSV1-4 and GSB 1–10), synthetic silicates (GSES I 1–11) and limestones (GSES II 1–9 for spectral analysis). They also include geochemical reference materials for ore analysis: Cu-Pb-Zn ores (GSO1-4), Cu-Pb-Zn concentrates (GSO5-7), platinum-group element (PGE) ores (GPt5-6 and GPt9-10), silver ores (GAg1-6) and geochemical reference materials for Au (GAu8-14) and PGE determination (GPt1-4, and GPt7-8). A multi-laboratory collaborative analysis scheme was adopted in the certification procedure of the IGGE. Dozens of competent laboratories with hundreds of senior analysts in China participated in the certification analysis. These samples have been supplied to more than thirty countries and more than 4000 customers from national industrial, agricultural, environmental, scientific and educational fields. Most of the geochemical reference materials are used for the calibration of measuring apparatus, evaluation of analytical methods, certification studies, quality control and laboratory accreditation programmes.  相似文献   

14.
国际地球化学填图新进展   总被引:3,自引:1,他引:3  
欧洲和中国在国际地球化学填图中起着积极而重要的作用,而且进展也是最显著的。欧洲地球化学基准值填图计划于1996年被欧洲26个国家地质调查局长论坛(FOREGS)正式批准。经过近10年的工作,于2005年出版了电子版欧洲地球化学图集。中国不仅自己开展了多层次地球化学填图计划,而且还与发展中国家合作开展了全球尺度和成矿带尺度地球化学填图合作。欧洲和中国无论是在全球尺度,还是在区域尺度地球化学填图做法上都存在较大的差异。在采样介质上中国使用统一的采样介质,在分析技术上中国使用几种大型设备作为骨干配合使用多方法分析系统;欧洲恰恰相反,欧洲在采样介质上趋向于多介质,而分析技术上只使用少数几种大型设备。欧洲的做法尽管使用多介质采样获得了元素在更多天然介质中的分布信息,但使用单一分析技术,使得很多关键元素没有分析出来,如贵金属元素Ag,Au,Ir,Os,Pd,Pt,Rh,Ru;卤族元素F,Cl,Br,I;分散元素Ge,In,Se,Te;与生命密切相关的元素N,S,B等。尽管欧洲强调以环境为目的,但很多与环境密切相关的元素都没有分析,所以欧洲的全球尺度地球化学填图的信息量大打折扣。这些不统一的做法,特别是在全球尺度地球化学填图不统一的做法,会影响到以后全球地球化学图的编制。  相似文献   

15.
不同尺度地球化学填图能否获得稳定的和可追索的地球化学模式,能否真实反映元素含量背景,是检验填图方法是否可行的重要依据。笔者选择印度尼西亚苏门答腊岛巴东—明古鲁地区热带雨林区为研究对象,对比该区1:100 万(1 个样/100 km2)和1:25 万(1 个样/4 km2)两种不同比例尺的地球化学采样所获得的地球化学数据和异常分布模式,发现二者获得的元素含量背景值和中位数非常接近,所圈定的地球化学省在形态和变化趋势上非常类似,浓集中心的位置几乎完全重合,证明低密度地球化学填图也能获得稳定的和可追溯的地球化学模式,认为该方法在热带雨林区也是适用的。低密度地球化学填图圈出的地球化学省基本涵盖了研究区大的矿床和花岗岩体,真实的反映了研究区元素的分布情况,在这些地球化学省内开展更大比例尺的地球化学填图工作,能进一步圈定局部异常直接找矿,降低企业勘查投资风险。  相似文献   

16.
全国区域化探数据库首次汇集了全国28个省(自治区、直辖市)的1∶20万和1∶50万区域化探39种元素和氧化物的测试数据,共计数据点142万个,近5 540万个数据,涉及1∶20万图幅1 299个,1∶50万图幅18个,在国内第一次建立了地球化学海量数据库。全国矿产资源潜力评价项目对数据库进行了更新,使全国区域化探数据库汇集数据总量达147万余条记录,数据达6 321万。在此基础上,编制了4万多张各类地球化学系列图件,并建立了空间数据库,为地球化学研究和矿产资源预测相关专业提供了丰富的地球化学信息。该项成果的取得为在全国范围内研究区域地球化学分布、生态环境、基础地质和找矿远景规划提供了最基础的资料。  相似文献   

17.
Geochemical Mapping—Evolution of Its Aims, Ideas and Technology   总被引:1,自引:1,他引:0  
The development of geochemical mapping progressed from local geochemical prospecting through regional geochemical exploration and regional geochemical mapping to national and global geochemical mapping. This paper discusses the evolution of aims, ideas and methodology of geochemical mapping in Western countries, Russia and China. The sophistication of geochemical mapping methodology will make great contributions to solving resources and environmental problems in the 21^st century.  相似文献   

18.
Geochemical exploration in China was commenced in the early 1950's. In 1951, the first experimental work was carried out in Yeshan, and a geochemical exploration section was set up in the Ministry of Geology in 1953.Regional geochemical reconnaissance (metallometric surveying) was initiated in 1956 on a nation-wide scale. Soil samples have been collected, and analyzed by semiquantitative spectrography. The results were heavily biased and were not adequately processed and utilized. Renewed efforts have been made to reprocess the vast amount of data accumulated and to utilize them more fully in mineral exploration.Meanwhile, another nation-wide project of regional geochemistry using more refined techniques is in its preparatory stage. It is the Regional Geochemistry-National Reconnaissance Project. In this project stream sediment sampling with a density of one per km2 will be used in China Proper, and low-density sampling of various kinds of media in different environments will be used in remote areas. Pilot surveys covering areas of several thousand square kilometers are being undertaken in several provinces.Beside regional reconnaissance, geochemical prospecting has been carried out at virtually all phases of mineral prospecting in China.A brief summary of current research in exploration geochemistry taken by research institutes and universities is given, including studies on the methodology of regional geochemical surveys, primary halos around various types of ore deposits, mercury vapor survey techniques, refinement of analytical methods and instrumentation, and computerized data processing and plotting techniques.Several case histories are described where geochemical exploration techniques have led to successful ore discoveries in China.  相似文献   

19.
安徽省兆吉口铅锌矿床成矿地球化学机制研究   总被引:1,自引:0,他引:1  
自20世纪30年代起, 勘查地球化学就在矿产资源勘查领域发挥着重要作用。目前, 矿业界对勘查地球化学回归到基础勘查理论研究有着明确的需要。多维异常体系应用基础理论的提出是我国学者在该领域的积极响应。多维异常体系定义为“在特定的成矿地质时期, 成矿系统中存在的空间有序共存、成因机理各异、成矿指示递进的多属性异常体系”。其中, 多属性异常的形成机制及其在成矿空间中的结构关系, 是探讨矿床成矿地球化学机制和指导矿产勘查的基础, 同时也是勘查地球化学研究的前沿方向。本论文以位于安徽省东至县的兆吉口浅成低温热液型铅锌矿床为研究对象, 通过元素质量迁移定量计算, 研究典型剖面上元素活动规律, 构建矿致异常结构模式, 揭示矿床成矿地球化学机制; 利用图示方法展现不同水平断面上元素异常分布形态, 为深部成矿预测指明方向; 利用分形模型和基于成分数据理论的主成分分析、因子分析等方法, 研究地表岩屑中元素分布特征及影响因素, 指导研究区外围矿床地球化学勘查。  相似文献   

20.
帕米尔高原是由喜马拉雅山脉、喀喇昆仑山脉、昆仑山脉、天山山脉、兴都库什山脉交汇于此形成的一个巨大的山结。由于其特殊的地质构造位置和复杂的构造演化历史,形成了良好的成矿地质背景条件。依据中塔两国政府“双方地学领域科技合作谅解备忘录”精神,中塔两国合作组织实施了“塔吉克帕米尔成矿带地球化学调查”工作。完成3万km2地球化学填图任务,建立了工作区地球化学数据库,编制了系列地球化学图件。应用地球化学分析方法回答了测区资源潜力评价有关的地学问题,在此基础上编制了Ag、Au、Pb-Zn等8个元素(组)找矿预测图,共圈定各类找矿预测区136个。同时,也从地球化学角度解决了许多地质问题。为开展塔吉克帕米尔地区地质科学研究,了解帕米尔地区优势资源种类、分布地域、资源潜力等评价信息,快速缩小找矿靶区,实现找矿突破,改变地区资源分布格局等工作提供了可靠而丰富的地球化学基础资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号