首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overbank sediments of the Geul River (East Belgium) are highly contaminated by the heavy metals Pb, Zn, and Cd due to former Pb-Zn mining activities in the drainage basin. Geochemical variations in vertical overbank sediment profiles sampled 1 km north of the mine tailings of Plombiéres allow metal fluxes back to the 17th century to be reconstructed. The vertical profiles are subdivided into three major units corresponding to different industrial periods based on sedimentological criteria as well as on the distribution of contaminants. Alluvial sediments with the highest heavy metal concentrations correspond to the major period of mining activity of the 19th century. The fact that Zn mining at the La Calamine open mine started before large-scale mining of the PbS-ZnS subsurface exploitations is reflected in the vertical profiles by an increase in Zn content before a marked increase in Pb and Cu. The regional extent of contamination in the alluvial deposits was evaluated on the basis of the geochemical analysis of sediments at depths of the 0–20 cm and 80–100 cm. Most of the upper samples are extremely contaminated. Significant local variations in heavy metal concentration in the lower samples are interpreted in terms of which overbank sediment horizon has been sampled at a depth of 80–100 cm. This indicates that blind sampling of overbank sediments to characterize the degree of contamination in shallow boreholes can give very erratic results.  相似文献   

2.
Molybdenum mining in the Knabena—Kvina drainage basin (1918–1973) left more than eight million tons of tailings in two small lakes in the headwater area of the Knabena river. The piles, that reach above the water surface, were freely eroded until a dam was built to reduce the dispersion in 1976. Sampling of tailings and fluvial sediments took place almost 20 years later. Sampling media were natural sediment sources, 1-cm-thick slices of overbank sediments of various depths, material from the tailings pond, sandbars, stream sediments, fjord sediments, and integrated samples of floodplain surfaces (0–25 cm). In total 734 samples were collected. Chemical analysis (ICP-AES after aqua regia or HNO3 extraction) showed that overbank sediments at a certain depth represent the pre-industrial trace metal concentrations within the drainage basin. The tailings and recent fluvial sediments were enriched in approximately the same element suite. The highest enrichment factors were obtained for Cu (8–53) and Mo (22–57). Fluvial processes in the tailings pond have probably selectively eroded fine-grained, low-density particles. Thus, coarse chalcopyrite may have been left behind, while molybdate associated with fine-grained particles may have been selectively entrained causing dilution of Cu and enrichment of Mo in the downstream fluvial sediments. In the sandbars, the highest Cu and Mo concentrations were found in fine-grained sediments downstream of a low-gradient reach that act as a bedload trap. On the floodplains, it is seen that the first areas to be inundated in a flood situation (proximal to the river and in depressions) have the highest metal concentrations. For regional geochemical mapping it is suggested that overbank sediment profiles along river reaches with a laterally stable or slowly migrating channel, should be sampled. In such floodplains, pre-industrial overbank sediments are usually preserved at depth. In case of laterally unstable reaches upstream of the sampling point, polluted and unpolluted sediments may be interlayered or mixed. Therefore, samples should be collected from various depths or sedimentary units in such profiles. A similar sampling strategy should probably be adopted to detect vertical migration of elements especially in areas with acid rain and low bedrock buffer capacity. To obtain high contrasts between polluted and unpolluted drainage basins, the overbank sediment profiles should be within the proximal part of the floodplain.  相似文献   

3.
Identification of reliable background values of potentially toxic metals in sediments requires detailed integration of geochemical data with accurate sedimentological studies. Through analysis of 60 soil samples from the Pisa coastal plain, this study shows to what extent sediment provenance and facies characteristics may influence the natural distribution of potentially toxic metals (Cr, Ni, Cu, Zn, Pb) within alluvial and coastal sediments. Metals supplied to the alluvial plain are mostly concentrated within the finest sediment fraction (floodplain clays), while coarser crevasse and overbank deposits exhibit invariably lower metal contents. Beach-ridge sands display the lowest metal concentrations. Transport of ophiolitic detritus by the longshore drift may account for locally high Cr concentrations within beach deposits. Geochemical fingerprinting of individual facies associations in terms of natural metal contents results in the construction of a geologically-based geochemical map. This map offers a more reliable depiction of spatial distribution of background levels than interpolation techniques based uniquely upon statistical methods. Matching background values against metal concentrations from topsoil samples leads to the reliable assessment of the pollution status of Pisa coastal plain. Metal contents exceeding the threshold values designated for contaminated areas (Cr) simply reflect catchment geology, and are not the product of artificial contamination. On the other hand, anthropogenic disturbance may be detected even where metal contents (Pb, Cu) lie below the threshold values. The use of sedimentological criteria is presented here as a pragmatic tool to enhance predictability of natural metal contents in sediments, with obvious positive feedbacks for legislative purposes and environmental protection.  相似文献   

4.
H. Leenaers 《GeoJournal》1989,19(1):37-43
The floodplain soils in the Guel basin have unacceptably high levels of pollution,v brought about by metal mining and related industrial activities in the past. Spoil heaps still exist along the Geul river and these are susceptible to erosion and leaching processes. An additional source of metals is formed by erosion of older, locally highly contaminated streambank deposits. These older sediments are polluted as a result of solid waste disposal containing metalliferous ore and tailings in the sand fraction. At present, these sediments function as a major source of heavy metals during high flow stages when streambanks are undermined and suspended sediments are deposited on the floodplains. The flood deposits have a relatively coarse texture, i.e. 70% dry weight in the fraction > 63 um.In order to obtain an indication about the potential mobility of the heavy metals in these deposits, 16 samples (8 samples < 63 um and 8 samples > 63 um) out of a set of 122 were subjected to a sequential extraction scheme as proposed by Calmano & Förstner (1983). It was found that up to 80% of the metals may be present in the first three leaching stages (exchangeable cations, carbonate fraction and easily reducible fraction) and that hardly any difference exists between the chemical partitioning of metals in the size fractions < 63 um and > 63 um. Moreover, as the total metal concentrations exponentially decrease along the 40 km distance away from the source area, the percentage of metals in these 3 potentially mobile fractions steadily increases. It is concluded that despite the rapid decay of total metal concentrations, Large amounts of potentially mobile metals are probably stored in the floodplain sediments even at a large distance from the source area.  相似文献   

5.
The relation between the magnitude of a flood event and the resulting environmental impacts remains unclear. This study examines the impact of the flood of record on heavy metal deposition on the Tar River floodplain in eastern North Carolina, USA. Samples of sediment deposited on the floodplain following Hurricane Floyd were collected from 85 sites along the lower Tar River basin and analyzed for heavy metal concentration. The Hurricane Floyd event is the flood of record for the Tar River basin. Despite the magnitude of the flood, little suspended sediment was deposited on the floodplain. In almost all cases the deposition was less than 0.2 cm. There was variability in heavy metal content from site to site, but the overall concentrations were lower than might be expected for a flood of the magnitude of Floyd. To aid in comparison of contamination levels, the heavy metal concentrations were normalized to two environmental standards; the EPA preliminary remediation goals for residential soil and the general background concentrations of stream sediments throughout the Tar River basin. Most samples were highly enriched in heavy metals relative to the background concentration of stream sediments. However, samples were generally not contaminated relative to EPA PRG regulations. Arsenic, which was significantly elevated in nearly all samples, was the only exception. This contradiction makes it clear that the standard to which contaminants are compared must be considered carefully. The overall low concentration of heavy metals was likely the result of smaller flooding from Hurricane Dennis, 10 days prior to Hurricane Floyd, moving most of the stored sediment out of the basin prior to wide-spread overtopping of the banks. The implication is that event sequencing is as important as flood magnitude when examining environmental impacts.  相似文献   

6.
《Applied Geochemistry》2003,18(2):241-257
In January and March 2000 two tailings dam failures in Maramureş County, northwest Romania, resulted in the release of 200,000 m3 of contaminated water and 40,000 tonnes of tailings into tributaries of the Tisa River, a major tributary of the Danube. The high concentrations of cyanide and contaminant metals released by these dam failures resulted in pollution and fish deaths not only in Romania, but also downstream in the Tisa and Danube rivers within Hungary, Serbia and Bulgaria. Following these accidents, a research programme was initiated in northwest Romania to establish metal levels in rivers affected by the tailings dam failures and to compare these to metal values in river systems contaminated by historic mining and industrial activity. In July 2000, 65 surface water, 65 river sediment and 45 floodplain sediment samples were collected from trunk streams and principal tributaries of the Lapuş/Someş rivers (affected by the January 2000 spill) and the Vişeu/Tisa rivers (affected by the March 2000 Novat spill) down to the Hungarian and Ukrainian borders, respectively. Sample analyses for Pb, Zn Cu and Cd show that metal contamination in surface water and river sediment decreases rapidly downstream away from presently active mines and tailings ponds. Concentrations of heavy metals in water and sediment leaving Romania, and entering Hungary and the Ukraine, generally fall below EC imperative and Dutch intervention values, respectively. However, Zn, Cu and Cd concentrations in river sediments approach or exceed intervention values at the Romanian border. The results of this survey are compared with earlier surveys to ascertain the long-term fate and environmental significance of contaminant metals released by mine tailings dam failures in Maramureş County.  相似文献   

7.
《Applied Geochemistry》2003,18(2):221-239
The Aznalcóllar tailings dam at Boliden Apirsa's Aznalcóllar/Los Frailes Ag–Cu–Pb–Zn mine 45 km west of Seville, Spain, was breached on 25 April 1998, flooding approximately 4600 hectares of land along the Rı́os Agrio and Guadiamar with approximately 5.5 million m3 of acidic water and 1.3×106 m3 of heavy metal-bearing tailings. Most of the deposited tailings and approximately 4.7×106 m3 of contaminated soils were removed to the Aznalcóllar open pit during clean-up work undertaken immediately after the spill until January 1999. Detailed geomorphological and geochemical surveys of the post-clean-up channel, floodplain and valley floor, and sediment and water sampling, were carried out in January and May 1999 at 6 reaches representative of the types of river channel and floodplain environments in the Rı́o Guadiamar catchment affected by the spill. The collected data show that the clean-up operations removed enough spill-deposited sediment to achieve pre-spill metal (Ag, As, Cd, Cu, Pb, Sb, Tl, Zn) concentrations in surface sediment. These concentrations, however, are still elevated above pre-mining concentrations, and emphasise that mining continues to contaminate the Agrio-Guadiamar river system. Dilution by relatively uncontaminated sediment appears to reduce metal concentrations downstream but increases in metal and As concentrations occur downstream, presumably as a result of factors such as sewage and agriculture. River water samples collected in May 1999 have significantly greater dissolved concentrations of metals and As than those from January 1999, probably due to greater sulphide oxidation from residual tailings with concomitant release of metals in the warmer early summer months. These concentrations are reduced downstream, probably by a combination of dilution and removal of metals by mineral precipitation. Single chemical extractions (de-ionised water, CaCl2 0.01 mol l−1, CH3COONH4 1 M, CH3COONa 1 M and ammonium oxalate 0.2 M) on alluvial samples from reaches 1 and 6, the tailings, pre-spill alluvium and marl have shown that the order of sediment-borne contaminant mobility is generally Zn>Cd>Cu>Pb>As. Pb and As are relatively immobile except possibly under reducing conditions. Much of the highly contaminated sediment remaining in the floodplain and channel still contains a large proportion of tailings-related sulphide minerals which are potentially reactive and may continue to release contaminants to the Agrio–Guadiamar river system. Our work emphasises the need for pre-mining geomorphological and geochemical data, and an assessment of potential contributions of contaminants to river systems from other, non-mining sources.  相似文献   

8.
Instream, overbank and cut riverbank exposures along the East Branch of the Finniss River downstream of Rum Jungle Mine, Northern Territory have been analysed for their total metal concentrations using instrumental neutron activation analysis (INAA). Concentration values for the < 62.5 μm and bulk sample fractions are compared to Australian sediment quality guidelines values (ANZECC/ARMCANZ, 2000). The results reveal that channel and overbank environments are contaminated with heavy metals, with many samples exceeding the low and high sediment guidelines values. The < 62.5 μm fraction is consistently more contaminated than bulk samples as are instream environments compared to adjacent overbank environments. Metal concentrations are strongly correlated to sediment pH and Fe values, suggesting that these variables are significant in controlling the spatial distribution of sediment-associated metals. The strong positive correlation between sediment-associated metals and Fe is probably related to the process of metal sequestration by Fe (and Mn) oxyhydroxides. The spatial distribution of sediment-associated metals downstream of the Rum Jungle Mine site does not display a simple distance–metal concentration decay pattern. It is suggested that the non-uniform spatial distribution of sediment-associated metals is a function of local, reach-scale variations in channel geometry and geomorphology, which control sediment storage and transfer patterns. In cut riverbank exposures the vertical of metals distribution is non-uniform and probably reflects differential metal mobility. Despite rehabilitation of the mine site in the 1980s, the elevated sediment-associated metal concentrations that remain within the East Branch of the Finniss River system are likely to render the system contaminated for the foreseeable future and limit the potential for the full recovery of aquatic and terrestrial flora and fauna.  相似文献   

9.
A miniature, 9 m-wide floodplain, developed along a gravel-washing effluent stream, shows features such as levées, crevasse splays and floodbasins which compare with their larger-scale counterparts. For sediments deposited overbank, median size decreases exponentially with distance from the channel whilst sorting increases, with coarser sediment on the outside of a meander bend. Overbank flows are only a few grain diameters in depth near the channel. This study shows potentially useful systematic relationships in floodplain sediment textures, but it involves only one of a possible variety of floodplain types dominated by overbank sedimentation. This suggests that further exploration of overbank depositional processes is desirable as an aid to field interpretation.  相似文献   

10.
The traditional concept of the relationship between metal content and grain size assumes that the fine fraction carries most of the metals in natural sediments. This concept is supported in many cases by strong, significant linear relationships between total-sediment metal concentrations and percentages of various fine-size fractions. Such observations have led to development of methods to correct for the effects of grain size in order to accurately document geographical and temporal variations and identify trends in metal concentrations away from a particular source. Samples from the floodplain sediment of a large, coarse-grained river system indicates that these concepts do not hold for sediments contaminated by mining and milling wastes. In this particular system, the application of methods to correct for grain-size effects would lead to erroneous conclusions about trends of metals in the drainage. This indicates that the a priori application of grain-size correction factors limits interpretation of actual metal distributions and should not be used unless data indicate that correlations exist between metals and particular size fractions.  相似文献   

11.
Regional geochemical baseline values have been established for Hungary by the use of low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds thus produced helped to evaluate the importance of high toxic element concentrations found in soils in a valley downstream of a polymetallic vein-type base-metal mine. Erosion of the mine dumps and flotation dump, losses of metals during filtering, storage and transportation, human neglects, and operational breakdowns, have all contributed to the contamination of a small catchment basin in a procession of releases of solid waste. The sulfide-rich waste material weathers to a yellow color; this layer of `yellow sand' blankets a narrow strip of the floodplain of Toka Creek in the valley near the town of Gyöngyösoroszi. Contamination was spread out in the valley by floods. Metals present in the yellow sand include Pb, As, Cd, Cu, Zn, and Sb. Exposure of the local population to these metals may occur through inhalation of airborne particulates or by ingestion of these metals that are taken up by crops grown in the valley. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, soils, and surface water were sampled along the erosion pathways downstream of the mine and dumps. The flood-plain profile was sampled in detail to see the vertical distribution of elements and to relate the metal concentrations to the sedimentation and contamination histories of the flood plain. Downward migration of mobile Zn and Cd from the contaminated upper layers under supergene conditions is observed, while vertical migration of Pb, As, Hg and Sb appears to be insignificant. Soil profiles of 137Cs which originated from above-ground atomic bomb tests and the Chernobyl accident, provide good evidence that the upper 30–40 cm of the flood-plain sections, which includes the yellow sand contamination, were deposited in the last 30–40 years.  相似文献   

12.
 The historic processing of precious metal ores mined from the Comstock Lode of west-central Nevada resulted in the release of substantial, but unquantified amounts of mercury-contaminated mill tailings to the Carson River basin. Geomorphic and stratigraphic studies indicate that the introduction of these waste materials led to a period of valley-floor aggradation that was accompanied by lateral channel instability. The combined result of these geomorphic responses was the storage of large volumes of mercury-enriched sediment within a complexly structured alluvial sequence located along the Carson River valley. Much of the contaminated sediment is associated with filled paleochannels produced by the cutoff and abandonment of meander loops, and their subsequent infilling with contaminated particles. Geochemically, these deposits are characterized by variations in mercury levels that exceed three orders of magnitude. Continued lateral instability, coupled with an episode of channel-bed incision, followed the decline of Comstock mining, and has reexposed contaminated debris within the banks of the river. Erosion of bank sediments reintroduces mercury-enriched particles to the modern channel bed. It is suggested on the basis of geochemical and sedimentological data that during the bank erosion process, much of the mercury associated with fine (<63 μ) valley-fill deposits are carried downstream without being incorporated to any appreciable extent within the channel-bed sediments. In contrast, mercury associated with larger and denser particles, particularly mercury-gold-silver amalgam grains, are accumulated in the channel-bed sediments as the river traverses polluted reaches of the Carson River valley. Concentration patterns developed along the modern channel indicate that the valley fill is the primary source of mercury to the river today. Thus, these data imply that efforts to reduce the influx of mercury to the aquatic environment should examine methods for reducing bank erosion rates. Received: 13 December 1996 · Accepted: 15 April 1997  相似文献   

13.
In 1982, sediments contaminated with zinc, cadmium, and copper were dredged from Lake DePue in Illinois and deposited in a diked sediment disposal area (DSDA) that is flooded annually for at least three months. Data from soil and groundwater samples collected at multiple depths within and adjacent to the DSDA indicate vertical movement of the metals in the subsurface, although groundwater outside of the DSDA was not contaminated with any of the metals. Zinc was elevated in almost all of the wells inside the DSDA. Cadmium concentrations were elevated in shallow wells inside the DSDA, while copper was rarely detected in the groundwater. Comparisons of groundwater samples taken within the DSDA under flooded and unflooded conditions suggest that pH and redox conditions controlled metal solubilities. A comparison between soil cores and sediment cores from Lake DePue suggest that zinc was more mobile than cadmium or copper within the DSDA.  相似文献   

14.
The given work focused on solving the problem of environmental geochemistry related to investigation of element speciation, their mobility, and migration in polluted areas. The purpose was to describe quantitatively migration, distribution, and redistribution of heavy metals by the example of the old tailings (Talmovaya sands) of the Lead Zinc Concentration Plant (Salair, Kemerovo region, Russia) and technogenic bottom sediments of the Malaya Talmovaya river. Contents of elements in the sulfide tailings range in the following limits: Zn: 1,100–27,000 ppm, Cd: 1.3–240 ppm, Pb: 0.01–0.81 ppm, Cu: 220–960 ppm, As: 15–970 ppm, Fe: 19,000–76,000 ppm, and Ba: 80,000–1,00,000 ppm. Element concentrations in the river sediment are proportional to the element contents in the sulfide tailings. Element speciations in the sulfide tailings and technogenic bottom sediments were investigated by the modified sequential extraction procedure. Chemical forms of heavy metals in pore water and surface water were calculated by WATEQ4F software. Principles of heavy metal migration in the sulfide tailings and technogenic bottom deposits were established. The obtained results about element species in the sulfide tailings and sediment explain the main principles of element migration and redeposition. In the mine waste and technogenic bottom deposits, there is vertical substance transformation with formation of geochemical barriers.  相似文献   

15.
An intense, but localized rainfall event in February 2003, led to the severe erosion and failure of a tailings disposal impoundment at the Abarόa Antimony Mine in southern Bolivia. The failure released approximately 5,500 m3 of contaminated tailings into the Rio Chilco-Rio Tupiza drainage system. The impacts of the event on sediment quality are examined and compared to contamination resulting from historic mining operations in the headwaters of the basin. Of primary concern are contaminated floodplain soils located along downstream reaches of the Rio Tupiza which were found to contain lead (Pb), zinc (Zn), and antimony (Sb) concentrations that locally exceed Canadian, German, and Dutch guidelines for agricultural use. Spatial patterns in sediment-borne trace metal concentrations, combined with Pb isotopic data, indicate that Pb, Zn, and Sb are derived from three tributary basins draining the Abarόa, Chilcobija, and Tatasi-Portugalete mining districts. Downstream of each tributary, geographical patterns in trace metal concentrations reflect local geomorphic changes throughout the drainage system. Trace metal concentrations within the Rio Chilco decrease rapidly downstream as a result of dilution by uncontaminated sediments and storage of metal enriched particles (e.g., sulfide minerals) in the channel bed as a result of ongoing aggradation. Storage in the floodplains is limited. These processes significantly reduced the dispersal and, thus, the relative environmental affects of tailings eroded from the Abarόa Mine during the 2003 flood. In contrast, storage of Pb, Zn, and Sb in floodplains along the Rio Tupiza is significant, the majority of which is derived from historic mining operations, particularly mining within the Tatasi-Portugalete district.  相似文献   

16.
陕西潼关金矿区太峪河底泥重金属元素的含量及污染评价   总被引:3,自引:1,他引:2  
徐友宁  张江华 《地质通报》2008,27(8):1263-1671
通过对潼关金矿区太峪河和太峪水库底泥中重金属元素总量的调查,探讨了金矿开发活动中重金属元素对河流底泥的污染程度。研究结果表明,除As外,河流底泥中重金属元素的含量与尾矿渣中重金属元素的含量变化一致,表明其主要来源于尾矿渣,但又明显高于尾矿渣。在同一地点河流底泥中重金属元素的含量平均高出河水中的1048.61~666030.08倍,呈显著富集。以邻近地区不受工矿活动影响的河流底泥重金属元素的含量均值作为评价参比值,太峪河底泥受到了Hg、Pb、Cd、Cu、Zn元素的极度污染,单项污染超标倍数及综合污染指数法评价结果表明,Hg、Pb、Cd平均污染超标倍数达366.90、217.42和149.97,是底泥中最主要的污染元素。河流底泥重金属元素的综合污染指数高达278.97,表明河流的复合污染亦呈极度状态。太峪河底泥受重金属元素极度污染的现实提示,矿区的环境防治工作已刻不容缓。  相似文献   

17.
《China Geology》2022,5(4):649-661
In this paper, 25 sampling points of overlying deposits in Tonglushan mining area, Daye City, Hubei Province, China were tested for heavy metal content to explore pollution characteristics, pollution sources and ecological risks of heavy metals in sediments. A geo-accumulation index method was used to evaluate the degree of heavy metal pollution in the sediment. The mean sediment quality guideline quotient was used for evaluating the ecological risk level of heavy metal in the sediment. And a method of correlation analysis, clustering analysis, and principal component analysis was used for preliminary analysis on the source of heavy metal in the sediment. It was indicated that there was extremely heavy metal pollution in the sediment, among which Cd was extremely polluted, Cu strongly contaminated, Zn, As, and Hg moderately contaminated, and Pb, Cr, and Ni were slightly contaminated. It was also indicated by the mean sediment quality guideline-quotient result that there was a high ecological risk of heavy metals in the sediment, and 64% of the sample sites had extremely high hidden biotoxic effects. For distribution, the contamination of branches was worse than that of the main channel of Daye Dagang, and the deposition of each heavy metal was mainly influenced by the distance from this sample site to the sewage draining exit of a tailings pond. The source analysis showed that the heavy metals in the sediment come from pollution discharging of mining and beneficiation companies, tailings ponds, smelting companies, and transport vehicles. In the study area, due to the influence of heavy metal discharging from these sources, the ecotoxicity of heavy metals in the sediment was extremely high, and Cd was the most toxic pollutant. The research figured out the key restoration area and elements for ecological restoration in the sediment of the Tonglüshan mining area, which could be referenced by monitoring and governance of heavy metal pollution in the sediment of the polymetallic mining area.©2022 China Geology Editorial Office.  相似文献   

18.
黄河下游漫滩高含沙洪水河床调整剧烈,多数断面洪水后形成"相对窄深河槽",洪水前后河槽宽度发生明显变化。分别以观测断面洪水前后的河槽宽度为基准,计算漫滩高含沙洪水期泥沙时空沉积分布,结果表明,漫滩高含沙洪水与非漫滩高含沙洪水相比,能将主河槽内淤积泥沙量的59.3%搬运至嫩滩或滩地,减缓主河槽淤积。在分析研究基础上,建立了洪水后漫滩河段河槽相对缩窄率与洪水前期河槽宽度的量化关系,洪水后主槽宽度缩窄率为15.5%~44.0%;分析遴选了漫滩高含沙洪水滩地淤积量与主要水力因子间关联度及物理含义,给出了漫滩高含沙洪水滩地淤积量与相应水力因子间的响应函数;初步提出漫滩洪水河道塑槽淤滩的临界水沙配置指标,临界水沙系数取值为0.025~0.040。成果对高含沙洪水调控具有一定的指导意义。  相似文献   

19.
The Erlian Basin is one of the non-marine Cretaceous basins of north-east China that developed during the late Mesozoic continental extension in eastern Asia. This basin experienced two major tectonic events: (i) a syn-rift stage that was dominated by a fluvial–lacustrine depositional environment and (ii) a post-rift stage that was dominated by a fluvial environment. A new sedimentological study performed on Erlian Formation drill cores has led to the determination of an architectural model and to the subsequent characterisation of the stratigraphic evolution of this sedimentary unit during the late Cretaceous. The palynological occurrences that were identified in samples provided a possible stratigraphical age for the Erlian Formation.Sediments of the Erlian Formation occur at the top of the Cretaceous stratigraphic column of the Erlian Basin and were deposited during the post-rift stage. Facies architecture and the ideal succession of facies that were identified for this formation exhibit two different members, both dominated by a fluvial depositional environment: (i) the lower member, which is dominated by channels of a braided river system and (ii) the upper member, which is dominated by overbank deposits. The lower member expresses a tectonically induced uplift as indicated by channels clustering under negative accommodation, whereas a period of stratigraphic base-level rise that is associated with an increase of accommodation is identified in the upper member. Therefore the Erlian Formation highlights an alternation of short uplifts that were dominated by braided fluvial channel deposits with periods of stratigraphic base-level rise that were dominated by overbank deposits. This sedimentological architecture has significant metallogenic implications for the origin of confined permeable sandstone layers, which represent adequate host-rocks for roll front-type uranium deposits.The palynological assemblage Exesipollenites, Ulmipollenites/Ulmoideipites, Buttinia and Momipites that were recognised in two samples of the Erlian Formation has revealed a post-late Campanian age therefore more likely indicating a late Cretaceous age of deposition for the sediments of the Erlian Formation.  相似文献   

20.
The Tinto and Odiel rivers drain 100 km from the Rio Tinto sulphide mining district, and join at a 20-km long estuary entering the Atlantic Ocean. A reconnaissance study of heavy metal anomalies in channel sand and overbank mud of the river and estuary by semi-quantitative emission dc-arc spectrographic analysis shows the following upstream to downstream ranges in ppm (μg g?1): As 3,000 to <200, Cd 30 to <0.1, Cu 1,500 to 10, Pb 2,000 to <10, Sb 3000 to <150, and Zn 3,000 to <200. Organic-rich (1.3–2.6% total organic carbon, TOC), sandysilty overbank clay has been analyzed to represent suspended load materials. The high content of heavy metals in the overbank clay throughout the river and estuary systems indicates the importance of suspended sediment transport for dispersing heavy metals from natural erosion and anthropogenic mining activities of the sulfide deposit. The organic-poor (0.21–0.37% TOC) river bed sand has been analyzed to represent bedload transport of naturally-occurring sulfide minerals. The sand has high concentrations of metals upstream but these decrease an order of magnitude in the lower estuary. Although heavy metal contamination of estuary mouth beach sand has been diluted to background levels estuary mud exhibits increased contamination apparently related to finer grain size, higher organic carbon content, precipitation of river-borne dissolved solids, and input of anthropogenic heavy metals from industrial sources. The contaminated estuary mud disperses to the inner shelf mud belt and offshore suspended sediment, which exhibit metal anomalies from natural erosion and mining of upstream Rio Tinto sulphide lode sources (Pb, Cu, Zn) and industrial activities within the estuary (Fe, Cr, Ti). Because heavy metal contamination of Tinto-Odiel river sediment reaches or exceeds the highest levels encountered in other river sediments of Spain and Europe, a detailed analysis of metals in water and suspended sediment throughout the system, and epidemiological analysis of heavy metal effects in humans is appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号