首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
中国农田的温室气体排放   总被引:70,自引:2,他引:70  
中国是一个农业大国,拥有约1.33百万平方公里的农田。这些田地的种植、翻耕、施肥、灌溉等管理措施不仅长期改变着农田生态系统中的化学元素循环,而且给全球气候变化带来影响。农业生态系统对全球变化的影响主要是通过改变3种温室气体,即二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)在土壤-大气界面的交换而实现的。为了分析多种因素(如气候、土壤质地、农作物品种及各种农田经营管理措施等)对农业土壤释放CO22222222  相似文献   

2.
《Applied Geochemistry》2005,20(4):683-690
Methane oxidation plays a vital role in controlling the flux of CH4 from many ecosystems. Release of the green house gas CH4 to the atmosphere during creation and operation of hydroelectric reservoirs is of concern because of the dramatic changes in C and nutrient cycling that result from flooding. Experimentally flooded reservoirs in the boreal forest at the Experimental Lakes Area, northwestern Ontario, Canada, have been under study for a decade. In these large-scale ecosystem experiments, stable C isotopic ratios are used to determine the importance of CH4 oxidation but quantification requires knowledge of the C isotope enrichment factor associated with CH4 oxidation under the appropriate environmental conditions. Laboratory incubations were used to assess the CH4 oxidation enrichment factors in 3 experimental boreal reservoirs with different soil and vegetation, and flood histories. As a result of flooding, new flooded surfaces were created with different temperature and hydrologic regimes and the importance of CH4 oxidation in controlling the flux of CH4 to the atmosphere changed significantly. However, isotopic ratio data from different systems could not be compared directly because the enrichment factor changed between systems. The enrichment factor in a flooded boreal wetland ecosystem (ELARP) decreased with temperature and the rate of CH4 oxidation increased with temperature. This was in contrast with two flooded upland boreal forest reservoirs (Flooded Upland Dynamics Experiment) where the enrichment factor was smaller than in ELARP and there was little or no temperature effect on the enrichment factors or rates of CH4 oxidation.  相似文献   

3.
The importance of mitigation of climate change due to greenhouse gas (GHG) emissions from various developmental and infrastructure projects has generated interest at global level to reduce environmental impacts. Life cycle assessment may be used as a tool to assess GHG emissions and subsequent environmental impacts resulting from electricity generation from thermal power plants. This study uses life cycle approach for assessing GHG emissions and their impacts due to natural gas combined cycle (NGCC) and imported coal thermal power plants using the IPCC 2001 and Eco-Indicator 99(H) methods in India for the first time. The total GHG emission from the NGCC thermal power plant was 584 g CO2 eq/kWh electricity generation, whereas in case of imported coal, it was 1,127 g CO2 eq/kWh electricity generation. This shows that imported coal has nearly ~2 times more impacts when compared to natural gas in terms of global warming potential and human health as disability-adjusted life years from climate change due to GHG emissions such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O).  相似文献   

4.
Soils act as sources and sinks for greenhouse gases (GHG) such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Since both storage and emission capacities may be large, precise quantifications are needed to obtain reliable global budgets that are necessary for land-use management (agriculture, forestry), global change and for climate research. This paper discusses exclusively the soil emission-related processes and their influencing parameters. It reviews soil emission studies involving the most important land-cover types and climate zones and introduces important measuring systems for soil emissions. It addresses current shortcomings and the obvious bias towards northern hemispheric data.When using a conservative average of 300 mg CO2e m−2 h−1 (based on our literature review), this leads to global annual net soil emissions of ≥350 Pg CO2e (CO2e = CO2 equivalents = total effect of all GHG normalized to CO2). This corresponds to roughly 21% of the global soil C and N pools. For comparison, 33.4 Pg CO2 are being emitted annually by fossil fuel combustion and the cement industry.  相似文献   

5.
To stabilize the atmospheric concentration of greenhouse gases (GHG), a huge reduction of carbon dioxide (CO2) emissions is required. Although some people believe that this necessitates a considerable reduction in the use of fossil fuels or fuel switching, other options are available that allow the use of fossil fuels and reduce atmospheric emissions of CO2. Sequestration of CO2 from fossil fuel combustion in the subsurface could prevent the CO2 from reaching the surface for millions of years. Geological sequestration of CO2 in deep aquifers or in depleted oil and gas reservoirs is a mature technology. Despite the huge quantities of CO2 that can be sequestered in this way, this approach does not provide any economic benefit. This paper discusses a third option, which consists of injecting CO2 in deep coal seams to sequester the carbon and enhance the recovery of coalbed methane (CBM). Waste CO2 from CBM-fueled power plants could be injected into CBM reservoirs to produce more methane (CH4) for the power plant. The 2:1 coal-sorption selectivity for CO2 over CH4 supports the feasibility of operating fossil-fueled power plants without atmospheric CO2 emissions. Other CO2 sequestration technologies, such as ocean disposal and biofixation, are briefly discussed and the suitability of these approaches is evaluated for use in Alberta, Canada.  相似文献   

6.
Carbon emissions released from forest fires have been identified as an environmental issue in the context of global warming. This study provides data on spatial and temporal patterns of fire incidences, burnt area and carbon emissions covering natural vegetation types (forest, scrub and grassland) and Protected Areas of India. The total area affected by fire in the forest, scrub and grasslands have been estimated as 48765.45, 6540.97 and 1821.33 km 2, respectively, in 2014 using Resourcesat-2 AWiFS data. The total CO 2 emissions from fires of these vegetation types in India were estimated to be 98.11 Tg during 2014. The highest emissions were caused by dry deciduous forests, followed by moist deciduous forests. The fire season typically occurs in February, March, April and May in different parts of India. Monthly CO 2 emissions from fires for different vegetation types have been calculated for February, March, April and May and estimated as 2.26, 33.53, 32.15 and 30.17 Tg, respectively. Protected Areas represent 11.46% of the total natural vegetation cover of India. Analysis of fire occurrences over a 10-year period with two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. About 16.78 Tg of CO 2 emissions were estimated in Protected Areas in 2014. The natural vegetation types of Protected Areas have contributed for burnt area of 17.3% and CO 2 emissions of 17.1% as compared to total natural vegetation burnt area and emissions in India in 2014. 9.4% of the total vegetation in the Protected Areas was burnt in 2014. Our results suggest that Protected Areas have to be considered for strict fire management as an effective strategy for mitigating climate change and biodiversity conservation.  相似文献   

7.
Private sector actors are playing an increasingly significant role in the definition and governance of ‘sustainable’ agri-food practices. Yet, to date little attention has been paid by social scientists to how greenhouse gas (GHG) emissions are addressed as part of private agri-food governance arrangements. This paper examines how private actors within agri-food supply chains respond to emerging pressure for measures to reduce GHG emissions from agriculture. Drawing upon the Anglo-Foucauldian governmentality literature, we introduce the notion of the corporate carbon economy to conceptualise the practical techniques that enable private agri-food actors to make GHG emissions thinkable and governable in the context of existing market, regulatory, and supply chain pressures. Using a case study of the Australian dairy industry, we argue that private agri-food actors utilise a range of techniques that enable them to respond to existing government environmental regulations, balance current market pressures with future supply chain requirements, and demonstrate improved eco-efficiency along food supply chains. These techniques – which include environmental self-assessment instruments, tools for measuring GHG emissions, and sustainability reporting – have little direct relevance to the ‘international climate regime’ of carbon trading, and carbon markets more broadly, yet individually and in combination they are crucial in enacting an alternative regime of GHG governance. In concluding, we contend that the growing use of sustainability metrics by international food companies is likely to have the most powerful implications for GHG governance in the agri-food sector, with potentially far-reaching consequences for how future action on climate change is rendered thinkable and practicable.  相似文献   

8.
《Comptes Rendus Geoscience》2003,335(6-7):611-625
Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO2. Technical solutions exist to reduce CO2 emission and stabilise atmospheric CO2 concentration, including energy saving and energy efficiency, switch to lower carbon content fuels like natural gas and to energy sources that operate with zero CO2 emissions such as renewable or nuclear energy, enhance the natural sinks for CO2 (forests, soils, etc.), and last but not least, sequester CO2 from fossil fuels combustion. The purpose of this paper is to provide an overview of the technology and cost for capture and storage of CO2. Some of the factors that will influence application, including environmental impact, cost and efficiency, are also discussed. Capturing CO2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology; however, substantial R&D is needed to improve available technology and to lower the cost. Applicable to large CO2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to more than 30% of the global anthropogenic CO2 emission, it represents a valuable tool in the battle against global warming. To cite this article: P. Jean-Baptiste, R. Ducroux, C. R. Geoscience 335 (2003).  相似文献   

9.
In order to better understand the spatiotemporal variations and interrelationships of greenhouse gases (GHG), monthly surface fluxes and profile concentrations of GHG (CO2, N2O and CH4) in karst areas in the Guizhou Province, southwest China, were measured from June 2006 to May 2007. GHG fluxes showed high variability, with a range of 460.9?C1,281.2?mg?m?2?h?1 for CO2, ?25.4 to 81.5???g?m?2?h?1 for N2O and ?28.7 to ?274.9???g?m?2?h?1 for CH4, but no obvious seasonal change trends of the fluxes existed. Profile concentrations of CO2, N2O and CH4 varied between 0.5 and 31.5?mL?L?1, 0.273 and 0.734, and 0.1 and 3.5???L?L?1, respectively. In general, concentrations of CO2 and N2O increased with depth, while CH4 had an inverse trend. However, in October, November and January, the reversal of depth patterns of GHG concentrations took place below 15?cm, close to the soil?Crock interface. The spatiotemporal distribution of CO2 in soil profile was significantly positively correlated with that of N2O (p?<?0.05?C0.01) and negatively correlated with that of CH4 (p?<?0.01). The correlation analysis showed that soil temperature and moisture may be responsible for GHG dynamics in the soils, rather than the exchange of GHG between land and atmosphere.  相似文献   

10.
Amazonian hydroelectric reservoirs produce abundant carbon dioxide and methane from large quantities of flooded biomass that decompose anaerobically underwater. Emissions are extreme the first years after impounding and progressively decrease with time. To date, only water-to-air fluxes have been considered in these estimates. Here, we investigate in two Amazonian reservoirs (Balbina and Petit Saut) the fate of above water standing dead trees, by combining a qualitative analysis of wood state and density through time and a quantitative analysis of the biomass initially flooded. Dead wood was much more decomposed in the Balbina reservoir 23 years after flooding than in the Petit Saut reservoir 10 years after flooding. Termites apparently played a major role in wood decomposition, occurring mainly above water, and resulting in a complete conversion of this carbon biomass into CO2 and CH4 at a timescale much shorter than reservoir operation. The analysis of pre-impounding wood biomass reveals that above-water decomposition in Amazonian reservoirs is a large, previously unrecognized source of carbon emissions to the atmosphere, representing 26–45% of the total reservoir flux integrated over 100 years. Accounting for both below- and above-water fluxes, we could estimate that each km2 of Amazonian forest converted to reservoir would emit over 140 Gg CO2-eq in 100 years. Hydropower plants in the Amazon should thus generate 0.25–0.4 MW h per km2 flooded area to produce lower greenhouse gas emissions than gas power plants. They also have the disadvantage to emit most of their greenhouse gases the earliest years of operation.  相似文献   

11.
Accurate quantification of the gas hydrate content in the deep sea is useful for assessing the resource potential and understanding the role of gas hydrates in the global carbon cycle. Resistivity logging data combined with Archie's equation are often used to calculate gas hydrate saturation, but the reliability is dependent on the rationality of the empirical parameter cementation factor and saturation index. At present, an increasing number of fine-grained hydrate-rich sediment regions have been discovered worldwide through drilling efforts, and the reservoir types and hydrate distribution are diverse, which differs greatly from that of coarse-grained reservoirs of hydrate-bearing sediment. This results in vertical variations in m and n through stratigraphy. At present, the saturation evaluation effect of these reservoirs cannot be improved. In this work, a theory for the determination of the cementation factor and saturation index was first proposed to obtain reliable and variable values of the empirical parameters. Then, a hydrate saturation evaluation technique with variables m and n was formed based on the well logging data. This technique was used to evaluate complex fine-grained hydrate-bearing reservoirs in several regions worldwide. It was found that the highest n could be 16, and the log calculation results were more consistent with the core hydrate saturation. Additionally, the cause of the excessively high n values was explained from physical principles, and the result was verified with actually well log data. In future evaluations of the amount of hydrate resources in fine-grained sediment reservoirs worldwide, new saturation estimation methods should be taken into account to advance hydrate research.  相似文献   

12.
冻土区甲烷排放研究进展   总被引:6,自引:0,他引:6  
冻土区土牡表面和活动层土的CH排放和吸收表现出强烈的时空变化性。根据多年冻土中CH含量的模拟结果表明,全球尺度上,平均每米厚度多年冻土含有CH65Tg。在未来的200年间,多年冻土融化所导致的大气CH附加年源强变化于2~25Tg。  相似文献   

13.
A mechanistic model consisting of 13,206 lumped free radical reactions has been developed to describe the thermal evolution of a mixture of 78 alkanes: all n-alkanes from C1 to C32 and 46 branched alkane model compounds from C4 to C32. The mixture was meant to represent the major part of the saturated fraction of petroleum. The rate constants used are available from the literature. The lumping together procedure is described and the model validated on the basis of several experimental results from the literature and relating to pure alkanes. The model is also compared to the saturated fraction obtained from pyrolysis of Elgin oil at 372 °C for up to 1000 h. The cracking global activation energy of n-C15 as well as iso-C15 is close to 69 kcal/mol in the range 200-350 °C. The implications of the model for geological reservoirs will be discussed in a following paper.  相似文献   

14.
A step-wise numerical calculation method was developed to provide predictions of when and where carbonate deposits might be found through reservoirs during CO2 sequestration. Flow experiments through porous media using a supersaturated carbonate fluid were also performed in order to observe flow rates. In order to evaluate precipitation rates and permeability change in the formation, calculated flow rates based on the proposed geochemical clogging model were compared with the experimentally observed data. Both high and low temperature cases were studied to understand how hydrothermal conditions can affect precipitation rates of carbonate. According to chemical kinetics, growth rates of minerals are generally proportional to the saturation index (S.I.) that depends on temperature. Thus, a supersaturated fluid has the advantage of improving the filtration and the amount of C fixation (σ). However, when the ratio of filtration coefficient (λ) to pore fluid velocity (u) increases, the permeability around the injection point tends to be significantly reduced by carbonate accumulation, and thus, this might result in insufficient injection of CO2. Therefore, it is essential to understand how to control both λ and u so that the precipitation of carbonate can be located as far away from the inlet as possible.  相似文献   

15.
This study presents data on concentrations of n-alkylbenzenes, n-alkylnaphthalenes, phytanylnaphthalene, and methylphytanylnaphthalene in representative crude oils of Tatarstan. The results of the study reveal the elevated concentrations of C19, C21, and C23 homologues of n-alkylbenzenes and n-alkylnaphthalenes, which can be considered as biomarkers. The proposed procedure for comprehensive quantification of this group of biomarkers can be used as an efficient tool to study oils from the major petroleum basins of Russia. Based on the results of the study, four genetic groups of oils in Tatarstan have been distinguished: (1) oils from the north and northwest (Bir saddle, Lower Kama system of linear faults, and Saraily saddle), (2) oils from Devonian terrigenous reservoirs within the South Tatar arch and Melekes depression, (3) oils from Carboniferous reservoirs, and (4) oils from Devonian carbonate reservoirs. All these oils belong to the same genetic macrotype. Based on the results of this study, the sedimentary sections of the Melekes depression cannot be regarded as potential source rocks. It is assumed that oil has migrated to the northern part of the region from the north or east. Some of the possible migration routes for oils from the remaining part of Tatarstan are from the southeast and/or south.  相似文献   

16.
Natural gas, consisting primarily of methane(CH4), has become a major source of clean energy in modern society in many parts of the globe. Recent experimental observations and discoveries of deep-sourced abiotic CH4 in cold subduction zones indicate the important ability of cold subducted slabs to generate natural gas reservoirs. However, most CH4 flux and reservoirs remain unknown and their potential is overlooked in global carbon flux estimations. Massive abiot...  相似文献   

17.
The patterns of dissolved inorganic C (DIC) and aqueous CO2 in rivers and estuaries sampled during summer and winter in the Australian Victorian Alps were examined. Together with historical (1978–1990) geochemical data, this study provides, for the first time, a multi-annual coverage of the linkage between CO2 release via wetland evasion and CO2 consumption via combined carbonate and aluminosilicate weathering. δ13C values imply that carbonate weathering contributes ∼36% of the DIC in the rivers although carbonates comprise less than 5% of the study area. Baseflow/interflow flushing of respired C3 plant detritus accounts for ∼50% and atmospheric precipitation accounts for ∼14% of the DIC. The influence of in river respiration and photosynthesis on the DIC concentrations is negligible. River waters are supersaturated with CO2 and evade ∼27.7 × 106 mol/km2/a to ∼70.9 × 106 mol/km2/a CO2 to the atmosphere with the highest values in the low runoff rivers. This is slightly higher than the global average reflecting higher gas transfer velocities due to high wind speeds. Evaded CO2 is not balanced by CO2 consumption via combined carbonate and aluminosilicate weathering which implies that chemical weathering does not significantly neutralize respiration derived H2CO3. The results of this study have implications for global assessments of chemical weathering yields in river systems draining passive margin terrains as high respiration derived DIC concentrations are not directly connected to high carbonate and aluminosilicate weathering rates.  相似文献   

18.
Kinetic isotope fractionation of 13C during precipitation of CaCO3 under open system conditions has been investigated. The isotope enrichment factor ?HCO3?-CaCO3 varies between ?0.35 ± 0.23 and ?3.37 ± 0.36%. at 25°C depending on the rate of precipitation and mineralogy, the enrichment of 13C in the solid carbonate phase decreasing with increasing precipitation rate. An estimate of equilibrium ?HCO3-Calcite of between ?1.83 ± 0.32 and ?2.26 ± 0.31%. is calculated from slow precipitation runs. A surface diffusion crystal growth model is used to describe the combination of kinetic isotope effects on thermodynamic isotope fractionation during rapid diffusion controlled crystal growth. Under slow precipitation conditions ?Calcite-Aragonite was estimated as ?1.4%.; however, during rapid precipitation this fractionation appears to diminish and aragonite becomes less enriched in 13C.  相似文献   

19.
Industrial sectors responsible for large part of CO2 emissions in Poland are characterized from the point of view of possibilities of sequestration of this gas by underground storage. On the basis of official statistics and data obtained from local administration and individual plants, attempt was made to evaluate the magnitude of emissions from selected categories, sub-categories and sectors of the industry (in accordance with methodology of IPCC), concentration of CO2 in combustion gases and those emitted by industry, and to identify major point sources of emission of this gas in Poland. A special attention was paid to those sectors of industry that may be the first to act as a source of carbon dioxide for sequestration by underground storage in the nearest future. To cite this article: R. Tarkowski, C. R. Geoscience 337 (2005).  相似文献   

20.
Coupling of the C–N–P biogeochemical cycles is effected by the dependence of the land and aquatic primary producers on the availability of N and P. In general, the Redfield ratios C:P and N:P in the reservoirs supplying nutrients for primary production on land, in the oceanic coastal zone, and in the surface ocean differ from these ratios in the land phytomass and aquatic plankton. When N:P in the source is higher than in primary producers, this results in a potential accumulation of some excess nitrogen in soil water and coastal water, and increased denitrification flux to the atmosphere. The oceanic coastal zone plays an important role in the coupled C–N–P cycles and their dynamics because of its intermediate position between the land and oceanic reservoirs. These coupled cycles were analyzed for the last 300 years of exposure to four human-generated forcings (fossil fuel emissions, land use change, chemical fertilization of land, and sewage discharge to the coastal zone) and global temperature rise. In the period from 1700 to 2000, there has been a net loss of C, N, and P primarily from the land phytomass and soil humus, despite the rise in atmospheric CO2, increased recycling of nutrients from humus, chemical fertilization, and re-growth of forests on previously disturbed land. The main mechanisms responsible for the net loss were increased riverine transport to the coastal zone of dissolved and particulate materials and, for N, increased denitrification on land. The oceanic coastal zone gained N and P, resulting in their accumulation in the organic pool of living biomass and dissolved and reactive particulates, as well as in their accumulation in coastal sediments from land-derived and in situ produced organic matter. Pronounced shifts in the rates and directions of change in some of the major land reservoirs occurred near the mid-1900s. Denitrification removes N from the pool available for primary production. It is the strongest on land, accounting for 73–83% of N removal from land by the combined mechanisms of denitrification and riverine export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号