首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
河台金矿是一个强烈受韧性剪切带控制的金矿床,金的成矿主要发生在热液蚀变成矿期的金石英脉阶段和金硫化物阶段,形成的矿石有蚀变糜棱岩型和富硫化物石英脉型.富硫化物含金石英脉中单颗粒锆石U-Pb同位素测年显示早加里东期是河台金矿床主成矿期,成矿年龄为492±16Ma;矿区燕山期伍村花岗岩的单颗粒锆石年龄为153.6±2.1Ma;结合已有的同位素资料,认为河台金矿床是华南加里东期构造-变质-岩浆作用及成矿作用的一个组成部分,是一个早加里东期造山作用同期的造山带型金矿床,并可能有燕山期的热液叠加成矿作用.  相似文献   

2.
粤西河台金矿锆石SHRIMP年龄及其地质意义   总被引:14,自引:1,他引:14  
河台金矿是一个受剪切带控制的金矿床,成矿作用分为韧性剪切变质成矿期的韧性剪切变质成矿作用阶段和热液蚀变成矿期的金硅化石英脉阶段、金硫化物阶段以及方铅矿闪锌矿碳酸盐脉阶段,金的成矿主要发生在热液蚀变成矿期的金石英脉阶段和金硫化物阶段。SHRIMP锆石U-Pb测年显示赋矿围岩混合岩中继承性锆石的核部和幔部年龄为343.9~1732Ma,代表形成混合岩原岩的源区岩石的年龄;继承性锆石边部和混合岩化变质作用中新生锆石的年龄平均值为239.6±3.9Ma,属印支期,为混合岩化变质作用的年龄,这一年龄与印支期印支板块与扬子板块、扬子板块与华北板块的碰撞时代相一致,证实在中国华南存在印支期的混合岩化变质作用。韧性剪切变质成矿作用的年龄小于混合岩化变质作用的年龄(239.6±3.9Ma);富硫化物含金石英脉中热液锆石普通铅含量高,为0.65%~2.27%,Th/U值变化围很小,为0.306~0.557,其年龄为152.5±3.1Ma,属燕山期,代表河台金矿主成矿期年龄。  相似文献   

3.
内蒙古白乃庙矿田十四万金矿床流体包裹体研究   总被引:1,自引:1,他引:0  
钟日晨  李文博 《岩石学报》2009,25(11):2973-2982
十四万金矿床是白乃庙矿田徐尼乌苏金矿化带内重要的石英脉型金矿,矿体产于EW向韧性剪切带的次级NE向断裂.成矿过程划分为3个阶段:早阶段形成无矿石英脉,石英遭受明显压应力作用,包裹体类型包括富水溶液型、富碳质型、纯碳质型,包裹体均一温度为260~420℃,平均盐度6.78%NaCl eqv;中阶段为硫化物-方解石-绿泥石-绢云母-细粒石英组合,充填早阶段石英的裂隙,未遭受明显应力作用,包裹体类型为富水溶液型和纯碳质型,包裹体均一温度为140~260℃,平均盐度7.22%NaCl eqv;晚阶段形成方解石脉,仅有富水溶液型包裹体,包裹体均一温度为140~180℃,平均盐度2.15%NaCl eqv.激光拉曼测试结果表明包裹体气相成份主要为CO_2、CH_4和少量N2.早阶段成矿流体为富碳质流体,成分为CH_4+CO_2+H_2O,中阶段流体为富水流体,成分为H_2O+CH_4,早、中阶段均发生了流体沸腾作用,早阶段强烈的沸腾作用使流体CO_2和CH_4含量降低,中阶段方解石沉淀使CO_2含量进一步降低,并导致了硫化物沉淀和金矿化.十四万金矿床流体包裹体特征、矿床地质特征均与造山型矿床一致,为造山型金矿,成矿流体可能源于徐尼乌苏组浅变质作用产生的变质流体,成矿构造背景可能为二叠纪末-三叠纪初华北板块与西伯利亚板块间的陆陆碰撞造山体制.  相似文献   

4.
乔尕山和河台金矿床属典型韧性剪切带金矿床,分别产于志留-泥盆系及震旦系云开群地层中。在2个矿床含金石英脉及糜棱岩中首次发现了熔融包裹体及流体-熔融包裹体,对解决此类型矿床成因具重大意义。乔尕山金矿床包裹体均一温度:熔融包裹体为900-1100℃,液相包裹体为285-390℃;河台金矿包裹体均一温度,熔融包裹体为870℃,不混熔液相包裹体为530℃,液相包裹体为180-350℃。前者流体性质属Na^ -K^ -Ca2 -SO4^2-HCO3^--Cl^-体系;后者流体性质属K^ -Ca^2 -Mg^2 -Na^ -SO4^2--HCO^3--Cl^-体系。运用电子显微镜能谱对熔融包裹体子矿物进行分析,鉴定出石英,钾长石、硅灰石及铝硅酸盐等9种子矿物,它们分别组成不同矿物组合,为熔融包裹体在矿脉中存在提供了重要的实验依据。在变质溶熔作用及强烈 动力变质作用下,沉积变质岩可以形成铝硅酸盐熔融体,具熔体-流体性质,成矿与多阶段铝硅酸盐熔体及流体作用相关。  相似文献   

5.
天山巴音布鲁克地区金锑矿床成矿作用同位素年代学研究   总被引:1,自引:0,他引:1  
陈富文  李华芹 《地球学报》2004,25(2):185-190
近年来 ,在天山中段巴音布鲁克地区发现了一系列金锑矿床 ,代表性矿床有大山口金矿和查汉萨拉锑矿。成矿作用同位素地质年代学研究表明 ,大山口金矿区含金黄铁矿 石英脉和含金黄铁矿 褐铁矿 石英脉的石英流体包裹体Rb Sr等时线年龄分别为 35 4± 8.1Ma(2σ)和 344± 2 1Ma(2σ) ,二者在实验测定误差范围内一致 ,代表大山口金矿形成的时间发生于早石炭世 ,成矿作用与区域韧性剪切作用有关 ;查汉萨拉锑矿床石英 辉锑矿脉和石英 黝铜矿 辉铋矿 辉锑矿脉石英流体包裹体Rb Sr等时线年龄为 2 5 7± 2 3Ma(2σ) ,表明该矿床形成于海西晚期 印支早期 ,成矿作用与陆内构造变形作用有关。  相似文献   

6.
在新疆乔尕山及广东河台韧性剪切带金矿床的含金石英脉及糜棱岩中首次发现熔融包裹体及流体一熔融包裹体,其均一化温度分别为780~960℃与600℃。用电子探针及扫描电镜能谱对熔融包裹体子矿物成分进行分析,通过56个熔融包裹体231个测点分析,鉴定出石英、白云母、黑云母、磁铁矿等十种子矿物,组成不同的矿物组合。子矿物常含Si、Al、Na、K、Au、Ag、Cu等元素。剪切带金矿床中熔融包裹体的发现为其成因研究提供了新依据,表明成矿与多阶段硅酸盐熔体及流体作用有关。  相似文献   

7.
胶东金矿集中区金矿成矿年代学研究   总被引:9,自引:0,他引:9  
对不同研究者采用蚀变矿物Rb Sr、K Ar和Ar Ar法 ,流体包裹体Rb Sr等时线法 ,石英Ar Ar法和矿石矿物 (黄铁矿 )Rb Sr等时线法等多种同位素定年方法获得的胶东金矿集中区金矿成矿年龄数据进行了方法适用性研究和应用选择 ,筛选后的成矿年龄集中于 15 3 8~ 80 6Ma。综合考虑与金矿床有密切时空关系的花岗岩类侵入体及脉岩的K Ar、Ar Ar及U Pb (SHRIMP)年龄 ,确认胶东金矿集中区金矿主成矿期年龄为 (115± 10 )Ma ,金 银 多金属矿成矿期年龄为 (85± 5 )Ma ,分别为中生代早白垩世晚期 (K21)和晚白垩世早期 (K12 )。  相似文献   

8.
河台大型金矿是我国华南剪切带型金矿中的典型代表,本文对河台金矿床中不同类型矿石稀土元素特征进行分析;结果表明不同成矿阶段的石英脉型金矿和蚀变糜棱岩型金矿,它们的成矿物质来源有着很强相似性,印证了韧性剪切带金矿床的多期次矿化在成矿物质来源上有继承性与连续性;其中特富矿石(平均品位45g/t)稀土元素分布模式,特别显示,该金矿床早期形成的特富金矿体与中期形成的石英脉型金矿体、晚期形成的蚀变岩型金矿体成矿物质来源是相同的。并提出产于含金韧性剪切带弱变形构造透镜体中的特富金矿体,是一种新的金矿化类型。  相似文献   

9.
小西弓金矿床是北山造山带南带重要的中型金矿床,矿体产出受韧性剪切带控制。热液成矿过程由早到晚分为石英-黄铁矿阶段、石英-多金属硫化物阶段和石英-碳酸岩阶段。石英-黄铁矿阶段石英中发育富液二相、富气二相和含CO2三相流体包裹体,均一温度范围为228℃~438℃,盐度为4.03%~17.50%NaCleqv,属中高温、中低盐度流体。石英-多金属硫化物阶段石英中发育富液二相、富气二相、含CO2三相和纯液相流体包裹体,均一温度范围为182℃~376℃,盐度为3.23%~12.21%NaCleqv。流体演化过程中发生了流体沸腾和混合作用,这可能是导致金沉淀富集的主要机制。流体沸腾温度区间约为268℃~347℃。成矿早阶段石英中流体包裹体的δ18 O和δD值分别为8.0‰~8.3‰和-84‰~-107‰。结合矿床地质特征和氢氧同位素研究认为,初始成矿流体来自变质热液,晚阶段有大气降水加入。  相似文献   

10.
构家河金矿床位于南秦岭武当山西缘,产于绢云绿泥石英片岩和变石英砂岩之中,受韧性滑脱剪切构造带控制。矿化类型主要有破碎带蚀变岩型和石英脉型,其中前者形成了破碎带蚀变岩型主矿体,呈似层状或透镜状分布于近南北向断裂中,次矿体分布在北西和北东向次级断裂中,为石英脉型矿体。成矿作用包括3个阶段:石英-硫化物阶段、石英-硫化物-金银矿化阶段和石英-碳酸盐阶段。对主矿体石英-硫化物-金银矿化阶段和石英-碳酸盐阶段的流体包裹体进行了显微观察和测温,同时对不同阶段的石英和方解石、白云石等进行了D、O、C同位素测试。结果显示,包裹体以原生气液两相包裹体为主,且主要为富液相包裹体;石英-硫化物-金银矿化阶段包裹体均一温度集中于180~270℃,峰值为220℃,盐度和密度分别为1.40%~14.46%和0.60~0.97g/cm~3;石英-碳酸盐阶段均一温度峰值为170℃,盐度和密度分别为1.34%~7.31%和0.86~0.96g/cm~3;石英-硫化物-金银矿化阶段和石英-碳酸盐阶段石英的δD_(v-SMOW)值分别为-93.3%~70.9‰和-91.6%‰~-67.2‰,δ~(18)O_(v-SMOW)值为12.9‰~14.5‰和11.9‰~13.8‰;方解石和白云石的δ~(13)C_(V.PDB)值为-12.4‰~-12.0‰,δ~(18)O_(v-PDB)值为-18.4‰~-18.1‰。成矿流体特征显示该矿床初始成矿流体为中温、低盐度的变质热液,再结合区域成矿地质与成矿构造背景,认为构家河金矿为造山型金矿床。  相似文献   

11.
Lithostratigraphy, physicochemical stratigraphy, biostratigraphy, and geochronology of the 77–70 Ma old series bracketing the Campanian–Maastrichtian boundary have been investigated by 70 experts. For the first time, direct relationships between macro- and microfossils have been established, as well as direct and indirect relationships between chemo-physical and biostratigraphical tools. A combination of criteria for selecting the boundary level, duration estimates, uncertainties on durations and on the location of biohorizons have been considered; new chronostratigraphic units are proposed. The geological site at Tercis is accepted by the Commission on Stratigraphy as the international reference for the stratigraphy of the studied interval. To cite this article: G.S. Odin, C. R. Geoscience 334 (2002) 409–414.  相似文献   

12.
Some olistolites reworked in a Tertiary flysch of Mount Parnon (Peloponnesus, Greece) exhibit a Late Permian assemblage, dominated by Paradunbarula (Shindella) shindensis, Hemigordiopsis cf. luquensis and Colaniella aff. minima. This association corresponds to the Late Wuchiapingian (=Late Dzhulfian), a substage whose algae and foraminifera are generally little known. Contemporaneous limestones crop out in the middle part of the Episkopi Formation in Hydra, but they are rather commonly reworked in Mesozoic and Cainozoic sequences. The palaeobiogeographical affinities shared by the foraminiferal markers of Greece, southeastern Pamir, and southern China, are very strong (up to the specific level), and are congruent with the Pangea B reconstructions. To cite this article: E. Skourtsos et al., C. R. Geoscience 334 (2002) 925–931.  相似文献   

13.
PALEONTOLOGY     
正20141596 Liu Yunhuan(School of Earth Sciences and Resources,Chang’an University,Xi’an 710054,China);Shao Tiequan Early Cambrian Quadrapyrgites Fossils of Xixiang Boita in Southern Shaanxi Province(Journal of Earth Sciences and Environment,ISSN1672-6561,CN61-1423/P,35(3),2013,p.39-43,3 illus.,20 refs.)  相似文献   

14.
正20141719 Chen Zhijun(State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China);Chen Jianguo Automated Batch Mapping Solution for Serial Maps:A Case Study of Exploration Geochemistry Maps(Journal of Geology,ISSN1674-3636,CN32-1796/P,37(3),2013,p.456-464,2 illus.,2 tables,10 refs.)  相似文献   

15.
正20140962 Chen Fenning(Xi’an Institute of Geology and Mineral Resources,Xi’an710054,China);Chen Ruiming Late Miocene-Early Pleistocene Ostracoda Fauna of Gyirong Basin,Southern Tibet(Acta Geologica Sinica,ISSN0001-5717,CN11-1951/P,87(6),2013,p.872-886,6illus.,56refs.)  相似文献   

16.
PETROLOGY     
正1.IGNEOUS PETROLOGY20142008Cai Jinhui(Wuhan Center,China Geological Survey,Wuhan 430205,China);Liu Wei Zircon U-Pb Geochronology and Mineralization Significance of Granodiorites from Fuzichong Pb-Zn Deposit,Guangxi,South China(Geology and Mineral Resources of South China,ISSN1007-3701,CN42-1417/P,29(4),2013,p.271-281,7illus.,  相似文献   

17.
正20141205Cheng Weiming(State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,CAS,Beijing 100101,China);Xia Yao Regional Hazard Assessment of Disaster Environment for Debris Flows:Taking Jundu Mountain,Beijing as an  相似文献   

18.
正20141266Fan Chaoyan(Guangdong Provincial Key Laboratory of Mineral Resources and Geological Processes,Guangzhou 510275,China);Wang Zhenghai On Error Analysis and Correction Method of Measured Strata Section with Wire Projection Method(Journal of  相似文献   

19.
正20140582 Fang Xisheng(Key Lab.of Marine Sedimentology and Environmental Geology,First Institute of Oceanography,State Oceanic Administration,Qingdao 266061,China);Shi Xuefa Mineralogy of Surface Sediment in the Eastern Area off the Ryukyu Islands and Its Geological Significance(Marine Geology Quaternary Geology,ISSN0256-1492,CN37  相似文献   

20.
正20141810 Bian Yumei(Geological Environmental Monitoring Center of Liaoning Province,Shenyang 110032,China);Zhang Jing Zoning Haicheng,Liaoning Province,by GeoHazard Risk and Geo-Hazard Assessment(Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467/P,24(3),2013,p.5-9,2 illus.,tables,refs.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号