首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为了研究水压致裂过程中裂缝的扩展机制,在北京房山花岗岩体中开展了大型水压致裂试验。试验是在一个深 301 m的岩石新鲜完整的FR钻孔中进行的,其周围半径约40 m的范围内布置了4个120 m深的声发射观测孔。在FR孔中深度60 m至140 m的范围内选取了7段没有天然节理的部位进行了水压致裂。在所有的试验中,发现水压致裂形成的裂缝通过天然节理与AE孔连通,只在深度118.5 m进行的试验,观测到由水压致裂产生的AE事件。由声发射的震源机制解得到的P轴和T轴的方向与水压致裂应力测量的方向一致。  相似文献   

2.
某隧道区地应力测量与岩爆分析   总被引:5,自引:0,他引:5  
介绍了某高速公路隧道区2个钻孔(深度为280和567 m)的水压致裂法地应力测试结果,并就施工期岩爆发生的可能性和隧道围岩稳定性进行了初步分析。  相似文献   

3.
董琪  王媛  冯迪 《岩土力学》2022,43(12):3270-3280
水压致裂起裂压力的预测对于油气开采、地应力测量、水工结构物抗裂设计等具有重要的意义。采用颗粒离散元结合域-管道渗流模型的流固耦合非连续数值模拟方法,基于扩展前端法生成的含规则形状钻孔的颗粒体模型,对水压致裂的细观起裂过程和起裂压力大小进行了定量模拟。结果表明,在消除了颗粒体中钻孔形状不规则性的基础上,钻孔壁的接触力链分布与理论解较为一致,拟合的离散元起裂压力公式也与理论解较为接近。进一步地,从颗粒材料受挤压时产生局部张拉力的角度解释了起裂压力拟合公式与理论解之间的差别。最后,设计了含预制钻孔的抗渗砂浆试块制备方法,对不同主应力组合下的起裂压力大小进行了真三轴室内试验,验证了离散元模拟结果的可靠性。  相似文献   

4.
刘跃东  林健  冯彦军  司林坡 《岩土力学》2018,39(5):1781-1788
为了揭示水压致裂法和巴西劈裂法测量岩石抗拉强度的关系,开展了理论和现场试验研究。基于经典的水压致裂法理论,推导了不同围压下钻孔破裂压力和抗拉强度。利用断裂力学理论建立了水压致裂法和巴西劈裂法测得抗拉强度的关系。利用预制切槽方法模拟天然裂纹,对水力裂缝的起裂压力进行了研究。结果表明:围压为最大主应力等于3倍最小主应力测得的抗拉强度大于围压为0测得的抗拉强度;水压致裂法和巴西劈裂法测量抗拉强度关系与应力场、裂纹长度、断裂韧度3个变量有关;通过在晋城矿区王台铺矿的预制切槽试验,运用断裂力学建立的抗拉强度计算式更为符合现场实际。研究结果可为坚硬难垮落顶板预制切槽的水力压裂设计提供参考。  相似文献   

5.
钻杆式水压致裂原地应力测试系统的柔性会影响最大水平主应力的计算精度。利用空心岩柱液压致裂试验获得的岩石抗拉强度来取代重张压力计算最大水平主应力是降低钻杆式测试系统柔性的负面影响的重要途径。在福建某隧道深度为65 m的钻孔内开展了8段的高质量水压致裂原地应力测试,随后利用钻孔所揭露的完整岩芯开展了17个岩样的空心岩柱液压致裂试验。利用空心岩柱液压致裂所得的抗拉强度平均值为8.40 MPa,与经典水压致裂法确定的岩体抗拉强度8.22 MPa接近。对于20 m的范围内8个测段的原地应力量值,最小水平主应力平均值为8.41 MPa,基于重张压力Pr的最大水平主应力平均值为16.70 MPa;基于空心岩柱抗拉强度的最大水平主应力量值平均值为16.88 MPa,两种方法获得的最大水平主应力平均值基本一致。最大最小水平主应力与垂直主应力之间的关系表现为σH > σV > σh,这种应力状态有利于区域走滑断层活动。通过对比分析可知,对于钻杆式水压致裂原地应力测试系统,当测试深度小且测试系统柔性小时,基于重张压力和基于空心岩柱抗拉强度得到的最大水平主应力量值差别不大,这说明基于空心岩柱的岩石抗拉强度完全可以用于水压致裂最大水平主应力的计算,同时基于微小系统柔性的水压致裂测试系统获得的现场岩体强度也是可靠的。   相似文献   

6.
在水压致裂应力测量压裂特征参数中,瞬时关闭压力 是重要的研究内容,因为它不仅直接代表最小水平主应力,而且在计算最大水平主应力时,该值又是重要的参数。 判读的准确性和可靠性直接关系到水压致裂应力测量结果的可靠性与精度。结合3个典型的水压致裂测试曲线,分析了单切线法、dp/dt方法、马斯卡特方法和dT/dP法4种常用判读关闭压力方法的取值特点和适用性。结果表明,该4种判读方法对于不同形态的水压致裂测试曲线不具有普遍适用性,因此,对不同形态的水压致裂测试曲线进行判读关闭压力时,所选取的判读方法也不同。对于岩石完整、原生裂隙及节理不发育、岩石结构致密的水压致裂压裂段,应选取以上4种方法中2种或2种以上方法进行判读瞬时关闭压力值;对于岩石完整性差、原生裂隙及节理较发育、岩石结构较破碎的水压致裂压裂段,为取得比较可靠有效的关闭压力值,建议用单切线法计算机自动取值和dp/dt方法所取的关闭压力值。  相似文献   

7.
李宏  马元春  王福江 《岩土力学》2007,28(2):253-257
压磁套芯解除法是20世纪50年代开始发展起来的原地应力测试技术。为了实现在单一钻孔中进行三维地应力测量研制了单孔全应力计。在简单介绍压磁全应力计结构和计算原理的基础上,通过现场测试,对在锦屏二级水电站地下厂房洞群区压磁套心解除3孔交汇法三维地应力测量和单孔三维地应力测量及水压致裂地应力测量进行了比较分析研究。测量结果表明,在探洞浅部,受局部地形影响,测点的应力分布主要受自重和地形地貌控制,形成特有的“V”型河谷岸坡内的局部应力状态,最大主应力为11 MPa左右,作用方向NNW基本近水平;在探洞深部地应力应力值较高,最大主应力为40 MPa左右,作用方向近直立;随水平埋深的增大最大主应力由近水平状态转变为近直立状态,说明在洞深部自重应力起主导作用。通过三种方法测量结果的对比分析,说明压磁套心解除单孔三维地应力测试技术与压磁套心解除3孔交汇法和水压致裂地应力测试技术具有相同测试精度。  相似文献   

8.
水压致裂法三维地应力测量的理论探讨   总被引:11,自引:1,他引:10  
本文对现有的水压致裂三维地应力测量方法进行了深入的力学分析,在此基础上提出了新的理论模型。新的理论模型采用了最小主应力破坏准则,与现有方法采用的最小切向应力破坏准则相比,更客观的表述了水压致裂过程中的力学机制。为说明该方法的工作步骤及其可行性,文中利用遗传算法反演技术,对假设的地应力状态进行了试算。试算结果表明该方法是可行的。   相似文献   

9.
利用1999~2001年在金沙江溪洛渡水电站厂区用水压致裂法先后完成的9个垂直深钻孔平面地应力和8个测点三维应力测量结果,结合河谷地形地貌、构造岩性等资料,对工程区地应力场的基本特征进行了较系统的分析研究,认为电站区最大主应力数值在10~20MPa,方向在NW~NWW间,大致平行于金沙江河流走向,地应力作用以水平为主。随着深度增加,地层平面、三维主应力值均有所增大。本文的研究结果为电站工程设计提供了地应力的基础资料。  相似文献   

10.
通过华东某公路隧洞3个深钻孔的水压致裂法地应力测量结果,分析并推导得到了隧洞轴线水平面上的应力和隧洞轴线横截面内最大切向应力的估算公式,并用于隧洞形状选择及隧洞开挖时岩爆可能性判断。认为测区应力以水平作用为主,在测试深度域内最大水平主应力的数值在4.69~14.07MPa,优势方向约N61°W,用应力估算公式和岩爆判据得出岩爆发生的临界埋深厚度约304m。  相似文献   

11.
新建川藏铁路穿越鲜水河活动构造带,沿线构造应力场极其复杂,隧道围岩工程破坏问题突出。为了揭示该区构造应力场特征,为深埋隧道设计、施工提供基础参数,采用新型水压致裂地应力测量系统在川西郭达山隧道水平孔获得10段有效地应力测量数据,最大测量深度达508.10 m,创造了水平孔地应力测量最深记录。测量结果表明,在148.4~508.1 m测量深度范围,郭达山隧道水平孔截面上最大主应力值为3.59~13.72 MPa,最小主应力值为3.28~8.36 MPa。根据印模实验结果,除浅部钻孔截面上最大主应力倾角较大外,深部钻孔截面上最大主应力倾角近水平。根据地应力状态将0~280 m段划分为应力释放区,280~330 m段为应力集中区,大于330 m段为原地应力区。基于地应力测量结果对郭达山隧道水平孔围岩稳定性进行了预判分析,在孔深292.9 m、508.10 m处隧道围岩有轻微至中等程度岩爆可能,其余段无岩爆可能性。  相似文献   

12.
冀前辉 《探矿工程》2014,41(11):28-30,56
针对我国松软低透气性煤层瓦斯抽采难题,提出了采用跟管钻进和水力压裂技术提高松软煤层钻孔深度和煤层透气性,通过布孔设计、应力分析论证了该方法的施工可行性,讨论了该方法的施工步骤。该技术有望成为解决松软低透气性煤层瓦斯抽采难题的新工艺方法。  相似文献   

13.
小秦岭金矿田2000m深孔钻探技术   总被引:3,自引:0,他引:3  
曾石友 《地质与勘探》2015,51(1):175-181
本文以小秦岭金矿田深部探矿项目ZK8302为背景,从钻孔结构、钻探设备(钻机、泥浆泵、钻具组合及钻头等)优选、深孔钻进规程参数、冲洗液和新技术新机具等方面对钻探技术进行了介绍。该钻孔积极探索了绳索取心液动潜孔锤技术,同时采用绳索取心钻杆液压钳、塔上塔下视频监控和多个起钻接头等新技术,大大降低工人的劳动强度,提高了钻探效率。该钻孔实现了河南省小口径岩心钻探金矿勘查孔深2000 m的突破,取得了良好的经济效益和社会效益。  相似文献   

14.
针对四川会理县拉拉铜矿外围深部找矿深孔钻探,选用国产全液压钻机,并采取相对应的钻探技术措施,在复杂地层条件下成功施工孔深2067.68 m钻孔。介绍了该钻孔的钻探技术措施。  相似文献   

15.
INTRODUCTIONWith the rapid progress of national economy and the im-plementation of the sustainable development,more and moreattention is paid to biological environment protection duringexploration of underground resources in China.Some tradi-tional mining systems do not conform to new standard of bio-logical environment protection.Therefore,new mining tech-nology should be created.In exploration of mineral resourceswe must carry out the strategy of sustainable development.The drilling hy…  相似文献   

16.
雪峰山深孔水压致裂地应力测量及其意义   总被引:5,自引:5,他引:0  
利用最新研制的深孔水压致裂地应力测量设备在雪峰山2000 m科钻先导孔内开展了原地应力测量,在孔深170~2021 m范围内获得了16个测段的有效地应力测量数据,是国内首次利用水压致裂法获得的孔深超过2000 m深度的原地应力测量成果。测量结果表明,地应力随孔深增加而逐渐加大,对实测数据进行线性回归,得到最大和最小水平主应力随深度变化的关系分别为:SH=0.03328H+5.25408,Sh=0.0203H+4.5662,在孔深2021 m深度,其实测值分别为66.31 MPa和43.33 MPa。基于实测数据,结合钻孔成像测试和井温测试结果,对测点应力状态进行了综合分析。在170~800 m深度范围,三向主应力关系为SH > Sh > Sv,有利于逆断层活动;孔深1000~2021 m表现为SH > Sv > Sh,表明该区域深部应力结构属于走滑型。最大水平主应力方向为北西-北西西方向。基于实测地应力数据及莫尔-库伦破裂准则,对测区附近断层活动性进行了分析讨论,认为该区域断层处于稳定状态。   相似文献   

17.
土石坝心墙水力劈裂机制研究   总被引:9,自引:0,他引:9  
朱俊高  王俊杰  张辉 《岩土力学》2007,28(3):487-492
心墙的水力劈裂问题是土质心墙坝建设中亟需解决但尚未很好解决的重要岩土工程问题。从心墙受力变形方面探讨了水力劈裂发生、发展的机制。研究认为:水库蓄水初期是水力劈裂的危险期;完全均质的心墙内不会发生水力劈裂;“裂缝或局部的缺陷”及“迅速蓄水的初期”是土石坝心墙发生水力劈裂的两个重要条件,水力劈裂发生的根本原因是局部高水力梯度的存在。最后,对上述机制进行了简单的试验验证。为进一步研究水力劈裂发生的判定、水力劈裂计算模拟指出了研究方向与思路。  相似文献   

18.
马衍坤  刘泽功  周健  王维德 《岩土力学》2015,36(8):2151-2158
利用自行研制的煤岩体水力压裂试验系统,开展了配比型煤与原煤水力压裂试验,测试并分析了水力压裂过程中压裂孔孔壁应变-水压曲线,并基于孔壁应变的发展规律,分析了压裂孔的三阶段起裂特征。结果表明,在压裂孔起裂过程中,钻孔孔壁呈现拉伸与压缩应变两种类型,并呈现拉伸破裂区与压缩变形区,其中压缩型应变具有较好的可恢复性,其应变恢复比远大于拉伸型应变;钻孔起裂过程分为3个阶段,即水气作用诱导微损伤形成阶段,孔壁内形成气流通道并产生初始损伤;局部损伤带形成阶段,孔壁形成拉伸破裂区和压缩变形区;试件失稳破坏阶段,裂缝不断延伸直至试件破裂,拉伸破裂区依然保持拉伸变形并较好地保持残余变形,而压缩变形区则由于作用力转向而得到一定程度恢复。研究成果对于揭示钻孔起裂行为及能量的演化规律具有重要理论意义。  相似文献   

19.
水劈裂过程中岩体渗透性规律及机理分析   总被引:7,自引:0,他引:7  
唐红侠  周志芳  王文远 《岩土力学》2004,25(8):1320-1322
岩体的结构及其透水性直接关系到建筑物围岩的稳定及安全。通过水力劈裂试验,可以真实地反映高水压作用下岩体的结构和渗透性的变化规律。以某水电站工程坝址区岩体所作的水力劈裂试验资料为基础,分析了在水力劈裂过程中,岩体的结构和渗透性发生的变化及其规律以及在该过程中岩体裂隙形成的机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号