首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composite Meghri–Ordubad and Bargushat plutons of the Zangezur–Ordubad region in the southernmost Lesser Caucasus consist of successive Eocene to Pliocene magmatic pulses, and host two stages of porphyry Cu–Mo deposits. New high-precision TIMS U–Pb zircon ages confirm the magmatic sequence recognized by previous Rb–Sr isochron and whole-rock K–Ar dating. A 44.03 ± 0.02 Ma-old granite and a 48.99 ± 0.07 Ma-old granodiorite belong to an initial Eocene magmatic pulse, which is coeval with the first stage of porphyry Cu–Mo formation at Agarak, Hanqasar, Aygedzor and Dastakert. A subsequent Oligocene magmatic pulse was constrained by U–Pb zircon ages at 31.82 ± 0.02 Ma and 33.49 ± 0.02 Ma for a monzonite and a gabbro, and a late Miocene porphyritic granodioritic and granitic pulse yielded ages between 22.46 ± 0.02 Ma and 22.22 ± 0.01 Ma, respectively. The Oligo-Miocene magmatic evolution broadly coincides with the second porphyry-Cu–Mo ore deposit stage, including the major Kadjaran deposit at 26–27 Ma.Primitive mantle-normalized spider diagrams with negative Nb, Ta and Ti anomalies support a subduction-like nature for all Cenozoic magmatic rocks. Eocene magmatic rocks have a normal arc, calc-alkaline to high-K calc-alkaline composition, early Oligocene magmatic rocks a high-K calc-alkaline to shoshonitic composition, and late Oligocene to Mio-Pliocene rocks are adakitic and have a calc-alkaline to high-K calc-alkaline composition. Radiogenic isotopes reveal a mantle-dominated magmatic source, with the mantle component becoming more predominant during the Neogene. Trace element ratio and concentration patterns (Dy/Yb, Sr/Y, La/Yb, Eu/Eu*, Y contents) correlate with the age of the magmatic rocks. They reveal combined amphibole and plagioclase fractionation during the Eocene and the early Oligocene, and amphibole fractionation in the absence of plagioclase during the late Oligocene and the Mio-Pliocene, consistent with Eocene to Pliocene progressive thickening of the crust or increasing pressure of magma differentiation. Characteristic trace element and isotope systematics (Ba vs. Nb/Y, Th/Yb vs. Ba/La, 206Pb/204Pb vs. Th/Nb, Th/Nb vs. δ18O, REE) indicate that Eocene magmatism was dominated by fluid-mobile components, whereas Oligocene and Mio-Pliocene magmatism was dominated by a depleted mantle, compositionally modified by subducted sediments.A two-stage magmatic and metallogenic evolution is proposed for the Zangezur–Ordubad region. Eocene normal arc, calc-alkaline to high-K calc-alkaline magmatism was coeval with extensive Eocene magmatism in Iran attributed to Neotethys subduction. Eocene subduction resulted in the emplacement of small tonnage porphyry Cu–Mo deposits. Subsequent Oligocene and Miocene high-K calc-alkaline and shoshonitic to adakitic magmatism, and the second porphyry Cu–Mo deposit stage coincided with Arabia–Eurasia collision to post-collision tectonics. Magmatism and ore formation are linked to asthenospheric upwelling along translithospheric, transpressional regional faults between the Gondwana-derived South Armenian block and the Eurasian margin, resulting in decompression melting of lithospheric mantle, metasomatised by sediment components added to the mantle during the previous Eocene subduction event.  相似文献   

2.
《Gondwana Research》2014,26(4):1570-1598
Granitic rocks are commonly used as means to study chemical evolution of continental crust, particularly, their isotopic compositions, which reflect the relative contributions of mantle and crustal components in their genesis. New SIMS and K–Ar geochronology, isotope, geochemical, and mineral chemistry data are presented for the granitoid rocks located in and around Gabal Dara in the Northern Eastern Desert of Egypt. The granitoid suite comprises quartz diorites, Muscovite (Mus) trondhjemites, and granodiorites intruded by biotite-hornblende (BH) granites and alkali feldspar (AF) granites. Mus trondhjemite, granodiorite and BH granite exhibit I-type calc alkaline affinities. Mus trondhjemite and granodiorite show medium-K calc-alkaline and metaluminous/mildy peraluminous affinities, whereas BH granites have high-K calc-alkaline and metaluminous character. Concordant 206Pb/238U weighted mean ages together with geochemical peculiarities suggest that Mus trondhjemites (741 Ma) followed by granodiorites (720 Ma) are genetically unrelated, and formed in subduction-related regime by partial melting of lower oceanic crust together with a significant proportion of mantle melt. The genesis of Mus trondhjemites is correlated with the main event in the evolution of the Eastern Desert, called “~750 Ma crust forming event”.The field and geochemical criteria together with age data assign the high-K calc-alkaline BH granites (608–590 Ma) and alkaline AF granites (600–592 Ma) as post-collisional granites. The differences in geochemical traits, e.g. high-K calc-alkaline versus alkaline/peralkaline affinities respectively, suggest that BH granites and AF granites are genetically unrelated. The age overlap indicating coeval generation of calc-alkaline and alkaline melts, which in turn suggests that magma genesis was controlled by local composition of the source. The high-K calc-alkaline BH granites are most likely generated from lithospheric mantle melt which have been hybridized by crustal melts produced by underplating process. AF granites exhibit enrichment in K2O, Rb, Nb, Y, and Th, and depletion in Al2O3, TiO2, MgO, CaO, FeO, P2O5, Sr, and Ba as well as alkaline/peralkaline affinity. These geochemical criteria combined with the moderately fractionated rare earth elements pattern (LaN/YbN = 9–14) suggest that AF granite magma might have been generated by partial melting of Arabian–Nubian Shield (ANS) arc crust in response of upwelling of hot asthenospheric mantle melts, which became in direct contact with lower ANS continental crust material due to delamination. Furthermore, a minor role of crystal fractionation of plagioclase, amphibole, biotite, zircon, and titanomagnetite in the evolution of AF granites is also suggested. The low initial 87Sr/86Sr ratios (0.7033–0.7037) and positive εNd(T) values (+ 2.32 to + 4.71) clearly reflect a significant involvement of depleted mantle source in the generation of the post-collision granites and a juvenile nature for the ANS.  相似文献   

3.
The petrology, geochemistry, geochronology, and Sr–Nd–Hf isotopes of the backarc granitoids from the central part of the Qilian block are studied in the present work. Both S- and I-type granitoids are present. In petrographic classification, they are granite, alkali feldspar granite, felsic granite, diorite, quartz diorite, granodiorite, and albite syenite. The SHRIMP ages are 402–447 Ma for the S-type and 419–451 Ma for the I-type granitoids. They are mostly high-K calc-alkaline granitoids. The S-type granitoids are weakly to strongly peraluminous and are characterized by negative Eu anomalies (Eu/Eu* = 0.18–0.79). The I-type granitoids are metaluminous to weakly peraluminous and are characterized mostly by small negative to small positive Eu anomalies (Eu/Eu* = 0.71–1.16). The initial (87Sr/86Sr) values are 0.708848–0.713651 for the S-type and 0.704230–0.718108 for the I-type granitoids. The εNd(450 Ma) values are − 8.9–−4.1 and − 9.7–+ 1.9 for the S-type and I-type granitoids, respectively. The TDM values are 1.5–2.4 Ga for the S-type and 1.0–2.3 Ga for the I-type granitoids. For the Qilian block, the backarc granitoid magmatism took place approximately 60 million years after the onset of the southward subduction of the north Qilian oceanic lithosphere and lasted approximately 50 million years. Partial melting of the source rocks consisting of the Neoproterozoic metasedimentary rocks of the Huangyuan Group and the intruding lower Paleozoic basaltic rocks could produce the S-type granitoid magmas. Partial melting of basaltic rocks mixed with lower continental crustal materials could produce the I-type granitoid magmas. Major crustal growth occurred in the late Archean and Meso-Paleoproterozoic time for the Qilian block. The magma generation was primarily remelting of the crustal rocks with only little addition of the mantle materials after 1.0 Ga for the Qilian block.  相似文献   

4.
《Chemical Geology》2007,236(1-2):42-64
Carboniferous volcanic rocks in the Alataw area, Northern Tianshan Range (Xinjiang), consist of early Carboniferous (ca. 320 Ma) adakites and Nb-enriched arc basalts and basaltic andesites (NEBs), and late Carboniferous (ca. 306–310 Ma) mainly high-K calc-alkaline andesites, dacites and rhyolites. The adakites are calc-alkaline, and characterized by high Na2O/K2O (1.52–3.32) ratios, negligible to positive Eu anomalies, strong depletion of heavy rare earth elements (e.g., Yb = 0.74–1.47 ppm) and Y (6.7–14.9 ppm), positive Sr and Ba but negative Nb and Ti anomalies, and relatively constant εNd(T) values (+ 3.4–+ 6.6) and (87Sr/86Sr)i ratios (0.7035–0.7042). Some andesitic and dacitic adakite samples exhibit high MgO contents similar to magnesian andesites. The NEBs are sodium-rich (Na2O/K2O = 2.03–8.06), and differ from the vast majority of arc basalts in their higher Nb, Zr, TiO2 and P2O5 contents and Nb/Th, Nb/La and Nb/U ratios, and minor negative to positive anomalies in Ba, Nb, Sr, Zr and Ti. They have the highest εNd(T) values (+ 6.4–+ 11.6) but varying (87Sr/86Sr)i ratios (0.7007–0.7063). The high-K calc-alkaline suite is similar to typical ‘normal’ arc volcanic rocks in terms of moderately fractionated rare earth abundance and distinctly negative Eu, Nb, Sr and Ti anomalies. They have εNd(T) values (+ 1.2–+ 6.4) and (87Sr/86Sr)i ratios (0.7018–0.7059). Geochemically, they are similar to coeval I-type granitoids in the Alataw area. Given the presence of early Carboniferous ophiolites in the Northern Tianshan Range, and the isotopically inappropriate compositions of Proterozoic metamorphic basement in the Alataw area, we argue that the Alataw adakites were most probably related to the melting of young subducted crust of the Northern Tianshan Ocean. The NEBs likely originated from mantle wedge peridotites metasomatized by adakites and minor slab-derived fluids. The later high-K calc alkaline suite was generated by AFC processes that acted on melts derived from a mantle wedge metasomatized by hydrous fluids. The larger range of isotopic compositions exhibited by both the NEB and high-K suite, relative to the adakites, suggests that the mantle wedge was heterogeneous prior to slab- or fluid-mediated metasomatism.Continental crustal growth of the Central Asian orogenic belt was dominated by contributions of the juvenile materials from the depleted mantle prior to 270 Ma and possibly afterwards. The results of this study suggest that other Carboniferous Nb-enriched basalts in the Tianshan Range were generated by subduction processes rather than by intraplate tectonics as previously proposed.  相似文献   

5.
In situ zircon U–Pb ages and Hf isotope data, major and trace elements and Sr–Nd–Pb isotopic compositions are reported for coeval syenite–granodiorites–dacite association in South China. The shoshonitic syenites are characterized by high K2O contents (5.9–6.1 wt.%) and K2O/Na2O ratios (1.1–1.2), negative Eu anomalies (Eu/Eu* = 0.65 to 0.77), enrichments of Rb, K, Nb, Ta, Zr and Hf, but depletion of Sr, P and Ti. The adakitic granodiorite and granodiorite porphyry intrusions are characterized by high Al2O3 contents (15.0–16.8 wt.%), enrichment in light rare earth elements (LREEs), strongly fractionated LREEs (light rare earth elements) to HREEs (heavy rare earth elements), high Sr (438–629 ppm), Sr/Y (29.2–53.6), and low Y (11.7–16.8 ppm) and HREE contents (e.g., Yb = 1.29–1.64 ppm). The calc-alkaline dacites are characterized by LREE enrichment, absence of negative Eu anomalies, and enrichment of LILEs such as Rb, Ba, Th, U and Pb, and depletion of HFSEs such as Nb, Ta, P and Ti.Geochemical and Sr–Nd–Hf isotopic compositions of the syenites suggest that the shoshonitic magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and feldspar. The parent magmas may have originated from partial melting of the lithospheric mantle with small amount contribution from crustal materials. The adakitic granodiorite and granodiorite porphyry have Sr–Nd–Pb isotopic compositions that are comparable to that of the mafic lower crust. They have low Mg# and MgO, Ni and Cr contents, abundant inherited zircons, low εNd(t) and εHf(t) values as well as old whole-rock Nd and zircon Hf model ages. These granodiorites were likely generated by partial melting of Triassic underplated mafic lower crust. The Hf isotopic compositions of the dacites are relatively more depleted than the Cathaysia enriched mantle, suggesting those magmas were derived from the partial melting of subduction-modified mantle sources. The coeval shoshonitic, high-K calc-alkaline and calc-alkaline rocks in Middle to Late Jurassic appear to be associated with an Andean-type subduction. This subduction could have resulted in the upwelling of the asthenosphere beneath the Cathaysia Block, which induced partial melting of the mantle as well as the mafic lower crust, and formed an arc regime in the coastal South China during Middle to Late Jurassic.  相似文献   

6.
The Chalukou porphyry Mo deposit, located in the northern Great Xing'an Range, is the largest Mo deposit in the Xing'an–Mongolia orogenic belt. Its ore bodies are mainly hosted in the intermediate-felsic complex and Jurassic volcanic sedimentary rocks, of which Late Jurassic granite porphyry, quartz porphyry and fine-grained granite are closely associated with Mo mineralization. The Middle Jurassic monzogranite belongs to shoshonite series, with SiO2 and Al2O3 contents of 69.48 to 74.98% and 12.35 to 14.48%, respectively. The total alkali (K2O + Na2O) content ranges from 7.67 to 10.42%, with K2O/Na2O ratios between 1.07 and 2.81. These rocks are strongly enriched in Rb and K but are depleted in Ta, Nb, P and Ti, with negative Eu anomalies and positive εHf(t). The Late Jurassic granite porphyry, quartz porphyry and fine-grained granite are shoshonite or high-K calc-alkaline series. Their SiO2 and Al2O3 contents range from 73.87 to 78.95% and 10.35 to 13.47%, respectively. The total alkali (K2O + Na2O) contents range from 8.06 to 10.02%, with K2O/Na2O ratios from 1.03 to 8.20. These rocks are strongly enriched in Rb, K and Th, but are depleted in P, Ti, Ba and Sr, indicating clear negative Eu anomalies and positive εHf(t). The Middle–Late Jurassic granitoids in the Chalukou deposit are highly fractionated I-type granitoids, and derived from juvenile lower crust materials that originated from the Neoproterozoic depleted mantle. These granitoids formed in the extension tectonic setting of the post-collision stage of the Mongol–Okhotsk orogenic belt, probably superposed by the back-arc extension related to the subduction of the Paleo-Pacific Plate.  相似文献   

7.
Porphyry Cu deposits occurred in the southern West Junggar of Xinjiang, NW China and are represented by the Baogutu and newly-discovered Jiamantieliek porphyry Cu deposits. Petrographical and geochemical studies show that both Jiamantieliek and Baogutu ore-bearing intrusions comprise main-stage diorite stock and minor late-stage diorite porphyry dikes and are the calc-alkaline intermediate intrusions. Based on U–Pb zircon SHRIMP analyses, the Jiamantieliek intrusion formed in 313 ± 4 Ma and 310 ± 5 Ma, while, based on U–Pb zircon SIMS analyses, the Baogutu intrusion formed in 313 ± 2 Ma and 312 ± 2 Ma. Rocks in the Jiamantieliek intrusion are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE) with negative Nb anomaly. Their isotopic compositions (εNd(t) = +1.6 to +3.4, (87Sr/86Sr)i = 0.70369–0.70401, (207Pb/204Pb)i = 15.31–5.41) suggest a mixing origin from depleted to enriched mantle sources. In the Baogutu intrusion, the rocks are similar to those of the Jiamantieliek intrusion. Their Sr-Nd-Pb isotopic composition (εNd(t) = +4.4 to +6.0, (87Sr/86Sr)i = 0.70368–0.70385, (207Pb/204Pb)i = 15.34–5.42) shows a more depleted mantle source. These features suggest generation in an island arc. The Jiamantieliek and Baogutu intrusions have similar characteristics, indicating that a relatively uniform and integrated source region has existed in the southern West Junggar since the Palaeozoic. A larger contribution of calc-alkaline magma would be required to generate the Jiamantieliek intrusion, which may reflect the development of magma arc maturation towards the western section of the southern West Junggar.  相似文献   

8.
Extensive Early Cretaceous post-collisional igneous rocks, especially the large volume of granitoids developed in the Dabie orogen. Some of these granitic rocks are spatially, temporally, and genetically associated with economically important molybdenum deposits. The Tangjiaping large-scale (> 0.1 million ton) porphyry Mo deposit is located in the northwest of the Northern Dabie Complex unit. The Mo mineralization is mainly hosted in molybdenite-bearing quartz veinlets and stockworks in the Tangjiaping granite porphyry, which intruded into Proterozoic biotite-plagioclase gneiss and amphibole-plagioclase gneiss. Two alteration zones from the porphyry centre outwards and downwards can be recognized: (1) K-silicate alteration-silicification zone; (2) silicification-phyllic alteration zone. The Tangjiaping ore-bearing granite porphyry occurs as an individual stock with an outcrop of 0.4 km2. LA-ICP-MS zircon U-Pb dating of the Tangjiaping granite porphyry yields crystallization age of 115 ± 1 Ma, which is consistent with the molybdenite Re-Os age of the deposit given by previous studies. The Tangjiaping granitic rocks are metaluminous and belong to high-K calc-alkaline and shoshonitic series. They are relatively enriched in light rare earth elements and have moderately negative Eu anomalies. Geochemical and mineralogical characteristics indicate that the Tangjiaping granite is an A-type granite and was generated by partial melting of intermediate-felsic rocks at pressures of ca. 0.4–0.8 GPa. There are high initial 87Sr/86Sr ratios ranging from 0.707367 to 0.709410 and negative εNd(t) values varying from − 15.0 to − 14.2 for the Tangjiaping granite. In situ zircon Hf isotopic analyses show that the εHf(t) values of zircons from the Tangjiaping granite porphyry vary from − 17.0 to − 6.0. The geochemical data and Sr-Nd-Hf isotopes, coupled with the Neoproterozoic inherited zircon age (652 ± 21 Ma), indicate that the Tangjiaping granite porphyry was most likely derived from partial melting of the Northern Dabie gneiss with some relatively enriched mantle materials involved. The Tangjiaping Mo ore-forming granite porphyry was formed in an extensional setting. The Early Cretaceous asthenospheric upwelling might have played an important role in the formation of the approximately coeval Mo-bearing magmas in the Dabie orogen.  相似文献   

9.
The polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu deposits in the Kapan, Alaverdi and Mehmana mining districts of Armenia and the Nagorno–Karabakh region form part of the Tethyan belt. They are hosted by Middle Jurassic rocks of the Lesser Caucasus paleo-island arc, which can be divided into the Kapan Zone and the Somkheto–Karabakh Island Arc. Mineralization in Middle Jurassic rocks of this paleo-island arc domain formed during the first of three recognized Mesozoic to Cenozoic metallogenic epochs. The Middle Jurassic to Early Cretaceous metallogenic epoch comprises porphyry Cu, skarn and epithermal deposits related to Late Jurassic and Early Cretaceous intrusions. The second and third metallogenic epochs of the Lesser Caucasus are represented by Late Cretaceous volcanogenic massive sulfide (VMS) deposits with transitional features towards epithermal mineralization and by Eocene to Miocene world-class porphyry Mo–Cu and epithermal precious metal deposits, respectively.The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are poorly understood and previous researchers named them as copper–pyrite, Cu–Au or polymetallic deposits. Different genetic origins were proposed for their formation, including VMS and porphyry-related scenarios. The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are characterized by diverse mineralization styles, which include polymetallic veins, massive stratiform replacement ore bodies at lithological contacts, and stockwork style mineralization. Sericitic, argillic and advanced argillic alteration assemblages are widespread in the deposits which have intermediate to high-sulfidation state mineral parageneses that consist of tennantite–tetrahedrite plus chalcopyrite and enargite–luzonite–colusite, respectively. The ore deposits are spatially associated with differentiated calc-alkaline intrusions and pebble dykes are widespread. Published δ34S values for sulfides and sulfates are in agreement with a magmatic source for the bulk sulfur whereas published δ34S values of sulfate minerals partly overlap with the isotopic composition of contemporaneous seawater. Published mineralization ages demonstrate discrete ore forming pulses from Middle Jurassic to the Late Jurassic–Early Cretaceous boundary, indicating time gaps of 5 to 20 m.y. in between the partly subaqueous deposition of the host rocks and the epigenetic mineralization.Most of the described characteristics indicate an intrusion-related origin for the ore deposits in Middle Jurassic rocks of the Lesser Caucasus, whereas a hybrid VMS–epithermal–porphyry scenario might apply for deposits with both VMS- and intrusion-related features.The volcanic Middle Jurassic host rocks for mineralization and Middle to Late Jurassic intrusive rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone show typical subduction-related calc-alkaline signature. They are enriched in LILE such as K, Rb and Ba and show negative anomalies in HFSE such as Nb and Ta. The ubiquitous presence of amphibole in Middle Jurassic volcanic rocks reflects magmas with high water contents. Flat REE patterns ([La/Yb]N = 0.89–1.23) indicate a depleted mantle source, and concave-upward (listric-shaped) MREE–HREE patterns ([Dy/Yb]N = 0.75–1.21) suggest melting from a shallow mantle reservoir. Similar trace element patterns of Middle Jurassic rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone indicate that these two tectonic units form part of one discontinuous segmented arc. Similar petrogenetic and ore-forming processes operated along its axis and Middle Jurassic volcanic and volcanosedimentary rocks constitute the preferential host for polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu mineralization, both in the Somkheto–Karabakh Island Arc and the Kapan Zone.  相似文献   

10.
The Gaoligong belt is located in the southeastern margin of the Tibetan plateau, and is bound by the Tengchong and Baoshan blocks. This paper presents new data from zircon geochronology, geochemistry, and whole-rock Sr–Nd–Pb–Hf isotopes to evaluate the tectonic evolution of the Gaoligong belt. The major rock types analysed in the present study are granitic gneiss, granodiorite, and granite. They are metaluminous to peraluminous and belong to high-K, calc-alkaline series. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) analyses of zircons from nine granitic rocks yielded crystallization ages of 495–487 Ma, 121 Ma, 89 Ma, and 70–63 Ma. The granitoids can be subdivided into the following four groups. (1) Early Paleozoic granitic gneisses with high εNd(t) and εHf(t) values of − 1.06 to − 3.45 and − 1.16 to 2.09, and model ages of 1.16 Ga to 1.33 Ga and 1.47 Ga to 1.63 Ga, respectively. Their variable 87Sr/86Sr and Pb values resemble the characteristics of the Early Paleozoic Pinghe granite in the Baoshan block. Our data suggest that the rocks were derived from the break-off of the Proto-Tethyan oceanic slab between the outboard continent and the Baoshan block, which induced the partial melting of Mesoproterozoic pelitic sources mixed with depleted mantle materials. (2) Early Cretaceous granodiorites with low εNd(t) and εHf(t) values of − 8.92 and − 4.91 with Nd and Hf model ages of 1.41 Ga and 1.49 Ga, respectively. These rocks have high initial 87Sr/86Sr (0.711992) and lower crustal Pb values, suggesting that they were derived from Mesoproterozoic amphibolites with tholeiitic signature, leaving behind granulite residue at the lower crust. (3) Early Late Cretaceous granites with low εNd(t) and εHf(t) values of − 9.58 and − 4.61 with Nd and Hf model ages of 1.43 Ga and 1.57 Ga, respectively. These rocks have high initial 87Sr/86Sr (0.713045) and lower crustal Pb isotopic values. These rocks were generated from the partial melting of Mesoproterozoic metapelitic sources resulting from the delamination of thickened lithosphere, following the closure of the Bangong–Nujiang Ocean and collision of the Lhasa–Qiangtang blocks. (4) Late Cretaceous to Paleogene granitic gneisses with low εNd(t) and εHf(t) values of − 4.41 to − 10 and − 5.95 to − 8.71, Nd model ages ranging from 1.08 Ga to 1.43 Ga, and Hf model ages from 1.53 Ga to 1.67 Ga, respectively. These rocks show high initial 87Sr/86Sr (0.713201 and 714662) and lower crustal Pb values. The data suggest that these rocks are likely related to the eastward subduction of the Neo-Tethyan Oceanic slab, which induced partial melting of Mesoproterozoic lower crustal metagreywacke. The results presented in this study from the Gaoligong belt offer important insights on the evolution of the Proto-Tethyan, Bangong–Nujiang, and Neo-Tethyan oceans in the southeastern margin of the Tibetan Plateau.  相似文献   

11.
The newly discovered Dadaoshan Sn deposit is located in the eastern Guangdong Sn–W province, coastal SE China. The Sn mineralization, hosted in Jurassic porphyritic granite and the Lower Jurassic Jinji Formation sedimentary wall rocks, is considered to be granite-related. In this study, the porphyritic granite was LA–ICP–MS zircon U–Pb dated to be 153.2 ± 1.2 Ma, consistent with the syn-mineralization molybdenite Re–Os age of 152.6 ± 1.8 Ma. The porphyritic granite samples are weakly peraluminous (A/CNK = 1.0–1.1) and high-K calc-alkaline. The rocks contain high SiO2 (72.9–75.6 wt%), moderate Rb/Sr (5–9) and low ΣREE (136–223 ppm). They are enriched in F, Li, Rb and Sn, depleted in Ba, Sr, P, Zr, Th, Nb and Y, and have distinct negative Eu anomalies (δEu = 0.09–0.18), suggesting that the porphyritic granite is highly fractionated I-type granite. The calculated initial 87Sr/86Sr (0.711582–0.715173), relatively low ɛNd(t) (−9.48 to −8.54; TDM2 = 1638–1814 Ma), and the zircon εHf(t) (−14.2 to −5.1; two-stage model ages = 1528–2103 Ma) all suggest that the granite was mainly crustal-derived with little mantle input. Sulfur isotopic compositions for the sulfides (arsenopyrite and chalcopyrite: δ34S = −1.1 to 1.4‰, average = −0.1) imply a dominantly magmatic sulfur source. The calculated zircon Ce4+/Ce3+ and EuN/EuN1 ratios of the Dadaoshan granite range from 1.0 to 112 (mean = 31.7) and from 0.04 to 0.37 (mean = 0.14), respectively, indicating a low oxygen fugacity for the magma. The reducing and highly fractionated nature of the Dadaoshan granitic magma may have played a key role in the Sn mineralization.It was previously argued that the Jurassic Sn–W mineralization and its causative magmatism were largely confined in the South China interior, e.g., the Nanling Range. Our new data suggest that the Late Jurassic Sn–W mineralization and its causative magmatism actually extended to the SE China coastal area. The Dadaoshan granite may have been generated from partial crustal melting led by underplating of mantle-derived magmas in an extensional environment. Regional extension may have been related to the west-directed, flat-slab subduction and delamination of the Paleo-Pacific (Izanagi) plate beneath the South China block. Another suite of Early Cretaceous Sn–W-bearing granitic rocks in eastern Guangdong may have mainly been crustal-derived with minor mantle input, and likely occurred under back-arc extensional setting led by the Paleo-Pacific subduction rollback.  相似文献   

12.
As part of Central Asian Orogenic Belt (CAOB), the Central Tianshan zone plays a crucial role in the reconstruction of the tectonic evolution of the CAOB. Furthermore, it is bordered by the Tarim Craton to the south, and the comparable evolutionary history between them enables the Central Tianshan zone to provide essential information on the crustal evolution of the Tarim Craton. The eastern segment of the Central Tianshan tectonic zone is characterized by the presence of numerous Precambrian metamorphic rocks, among which the Xingxingxia Group is the most representative one. The granitoids gneisses, intruded into the Xingxingxia Group, consist of two major lithological assemblages: (1) biotite-monzonitic gneisses and (2) biotite-plagioclase gneisses. These metamorphosed granitoid rocks are characterized by enrichment in SiO2, Al2O3 and K2O and depletion in MgO and FeOT. The Rittmann index (σ) spreads between 1.44 and 2.21 and ACNK (Al2O3/(CaO + Na2O + K2O)) ranges from 1.03 to 1.08, indicating that these granitoid gneisses are high-K calc-alkaline and peraluminous. Trace element data indicate that the studied samples are enriched in LREE with moderate REE fractionated patterns ((La/Yb)N = 10.5–75.3). The concentrations of HREE of the garnet-bearing gneisses are significantly higher than those of garnet-free gneisses. The former show pronounced negative Eu anomalies (Eu/Eu* = 0.32–0.57), while the latter are characterized by negligible negative Eu anomalies to moderate positive Eu anomalies (Eu/Eu* = 0.80–1.35). In addition, the enrichment of LILE (Rb, Th, K, Pb) and depletion of HFSE (Ta, Nb, P, Ti) of the examined granitoid gneisses are similar to typical volcanic-arc granites. Zircons U–Pb dating on the biotite monzonitic gneiss yields a weighted mean 206Pb/238U age of 942.4 ± 5.1 Ma, suggesting their protoliths were formed in the early Neoproterozoic, which is compatible with the time of the assembly of supercontinent Rodinia. The zircons have a large εHf(t) variation from −5.6 to +3.2, suggesting that both old crust-derived magmas and mantle-derived juvenile materials contributed to the formation of their protoliths. Based on field observation, and petrological, geochemical and geochronological investigations, we infer that the granitoid gneisses from Xingxingxia were probably formed on a continental arc that resulted from the interaction of Australia and the Tarim Craton during the assembly of the Rodinia supercontinent, and that the Central Tianshan zone was a part of the Tarim Craton during that time. Besides, the Grenvillian orogenic events may have developed better in the Tarim Craton than previously expected.  相似文献   

13.
We performed zircon U–Pb dating and analyses of major and trace elements, and Sr–Nd–Pb isotopes for granitoids in the Bengbu area, central China, with the aim of constraining the magma sources and tectonic evolution of the eastern North China Craton (NCC). The analyzed zircons show typical fine-scale oscillatory zoning, indicating a magmatic origin. Zircon U–Pb dating reveals granitoids of two ages: Late Jurassic and Early Cretaceous (206Pb/238U ages of 160 Ma and 130–110 Ma, respectively). The Late Jurassic rocks (Jingshan intrusion) consist of biotite-syenogranite, whereas the Early Cretaceous rocks (Huaiguang, Xilushan, Nushan, and Caoshan intrusions) are granodiorite, syenogranite, and monzogranite. The Late Jurassic biotite-syenogranites and Early Cretaceous granitoids have the following common geochemical characteristics: SiO2 = 70.35–74.56 wt.%, K2O/Na2O = 0.66–1.27 (mainly < 1.0), and A/CNK = 0.96–1.06, similar to I-type granite. The examined rocks are characterized by enrichment in light rare earth elements, large ion lithophile elements, and U; depletion in heavy rare earth elements, Nb, and Ta; and high initial 87Sr/86Sr ratios (0.7081–0.7110) and low εNd (t) values (? 14.40 to ? 22.77), indicating a crustal origin.The occurrence of Neoproterozoic magmatic zircons (850 Ma) and inherited early Mesozoic (208–228 Ma) metamorphic zircons within the Late Jurassic biotite-syenogranites, together with the occurrence of Neoproterozoic magmatic zircons (657 and 759 Ma) and inherited early Mesozoic (206–231 Ma) metamorphic zircons within the Early Cretaceous Nushan and Xilushan granitoids, suggests that the primary magmas were derived from partial melting of the Yangtze Craton (YC) basement. In contrast, the occurrence of Paleoproterozoic and Paleoarchean inherited zircons within the Huaiguang granitoids indicates that their primary magmas mainly originated from partial melting of the NCC basement. The occurrence of YC basement within the lower continental crust of the eastern NCC indicates that the YC was subducted to the northwest beneath the NCC, along the Tan-Lu fault zone, during the early Mesozoic.  相似文献   

14.
The Haisugou Mo deposit is located in the northern part of the Xilamulun Mo–Cu metallogenic belt in northeastern China. The Mo mineralization mainly occurs as quartz-molybdenite veins within the Haisugou granite, which was emplaced into rocks of the Early Permian Qingfengshan Formation. Zircon U–Pb dating by LA–ICP-MS of the granite yields a crystallization age of 137.6 ± 0.9 Ma, suggesting emplacement during the peak time of Mo mineralization in eastern China, broadly constrained to ca. 150–130 Ma, when tectonic stresses shifted from compression to extension. Whole-rock geochemical data suggest that the granite belongs to the high-K calc-alkaline series, and is characterized by relatively high LREE; low HREE; depletion of Ti, Ba, and Nb; and a moderate negative Eu anomaly. The zircon εHf(t) and whole-rock εNd(t) values for the intrusion range from +4.5 to +10.0 and +0.2 to +1.6, respectively, indicating that the magma originated from the juvenile lower crust source derived from depleted mantle, with some component of ancient continental crust. The granite is also characterized by initial (87Sr/86Sr)i ratios ranging from 0.7040 to 0.7074, which suggest some contamination by the upper crust during the ascent of the primitive magma. Moreover, it can be recognized from the whole-rock major and trace element data that significant fractional crystallization occurred during magmatic evolution, with the separation of plagioclase and K-feldspar. Because Mo is an incompatible element and tends to concentrate in the melt during crystallization, fractionation processes likely played an important role in the formation of the Haisugou Mo deposit.  相似文献   

15.
Early–Middle Jurassic igneous rocks (190–170 Ma) are distributed in an E–W-trending band within the Nanling Tectonic Belt, and have a wide range of compositions but are only present in limited volumes. This scenario contrasts with the uniform but voluminous Middle–Late Jurassic igneous rocks (165–150 Ma) in this area. The Early–Middle Jurassic rocks include oceanic-island basalt (OIB)-type alkali basalts, tholeiitic basalts and gabbros, bimodal volcanic rocks, syenites, A-type granites, and high-K calc–alkaline granodiorites. Geochemical and isotopic data indicate that alkaline and tholeiitic basalts and syenites were derived from melting of the asthenospheric mantle, with asthenosphere-derived magmas mixing with variable amounts of magmas derived from melting of metasomatized lithospheric mantle. In comparison, A-type granites in the study area were probably generated by shallow dehydration-related melting of hornblende-bearing continental crustal rocks that were heated by contemporaneous intrusion of mantle-derived basaltic magmas, and high-K calc-alkaline granodiorites resulted from the interaction between melts from upwelling asthenospheric mantle and the lower crust. The Early–Middle Jurassic magmatic event is spatially variable in terms of lithology, geochemistry, and isotopic systematics. This indicates that the deep mantle sources of the magmas that formed these igneous rocks were significantly heterogeneous, and magmatism had a gradual decrease in the involvement of the asthenospheric mantle from west to east. These variations in composition and sourcing of magmas, in addition to the spatial distribution and the thermal structure of the crust–mantle boundary during this magmatic event, indicates that these igneous rocks formed during a period of rifting after the Indosinian Orogeny rather than during subduction of the paleo-Pacific oceanic crust.  相似文献   

16.
《Gondwana Research》2010,18(4):676-687
Ediacaran syenogranites from the Águas Belas pluton, Borborema Province, Northeastern Brazil were investigated in this work. The studied granitoids show high SiO2, Fe# [FeO / (FeO + MgO)], total alkalis (K2O + Na2O) and BaO contents and medium Sr and low Nb contents. They show gentle fractionated rare earth patterns with discrete Eu negative anomalies. Major and trace element data point to chemical features of transitional high-K calc-alkaline to alkaline post-collisional magmatism. Structural data coupled with geochronological data suggest that NNE–SSW-trending sinistral movements at shear zones were initiated at ca. 590 Ma and have activated E–W pre-existing structures at the current crustal level. The synchronism of these shear zones allowed the dilation to generate the necessary space for the emplacement of the Águas Belas pluton.U–Pb SHRIMP zircon data show a cluster of ages around 588 ± 4 Ma which is interpreted as the crystallization age. Some zircon grain cores yielded ages within 2060–1860 Ma and 1670–1570 Ma intervals. Oxygen isotope compositions of zircon grains with distinct ages were measured using SHRIMP techniques. Twenty three analyses in the same zircon spots previously analyzed for U–Pb show δ18O values ranging from 5.79‰ to 10.30‰ SMOW. This large range of values results from variations both between grains and within grains (core–mantle/rim), and is interpreted as the result of mixing of components with distinct oxygen isotope compositions. The U–Pb zircon ages and the δ18O values associated with Paleoproterozoic Nd TDM model ages suggest that the protolith of these granitoids involved a mantle component (Paleoproterozoic lithospheric mantle), Paleoproterozoic and Mesoproterozoic igneous rocks. Interactions with Mesoproterozoic or Neoproterozoic supracrustal rocks, may have occurred during the intrusion. The resulting magma evolved through biotite and K-feldspar fractionation.  相似文献   

17.
The southern Qiangtang magmatic belt was formed by the north-dipping subduction of the Bangong–Nujiang Tethyan Ocean during Mesozoic. To better understand the petrogenesis, time–space distribution along the length of this belt, 21 samples of several granitoid bodies, from west to east, in the Bangong Co, Gaize, Dongqiao and Amdo areas were selected for in-situ zircon U–Pb dating, Hf isotopic and whole-rock chemical analyses. The results suggest a prolonged period of magmatic activity (185–84 Ma) with two major stages during the Jurassic (185–150 Ma) and the Early Cretaceous (126–100 Ma). Both the Jurassic and Cretaceous granitoids are high-K calc-alkaline I-type rocks, except the Cretaceous two-mica granite from Amdo in the east, which belongs to S-type. The granitoids are generated from different source materials as indicated by zircon Hf isotopic compositions. The Bangong Co and Dongqiao granitoids show high zircon εHf(t) values of − 1.3–13.6 with younger TDMC ages of 293–1263 Ma, suggesting a relatively juvenile source; whereas the Gaize and Amdo granitoids have low εHf(t) values of − 16.1–2.9 with older TDMC ages of 999–2024 Ma, indicating an old crustal contribution. These source rocks melt at different P–T conditions as suggested by Sr/Y ratio and TZr. The Sr/Y ratio of both stage granitoids increases with decreasing age. However, the TZr of the Jurassic granitoids decreases, whereas the TZr of the Cretaceous granitoids increases with decreasing age. The contrasting geochemical signatures of these granitoids may be controlled by the varying contribution of slab-derived fluids involved in the generation of the Jurassic and Cretaceous granitic magmas; i.e. increasing amount of fluids in the Jurassic, whereas decreasing amount of fluids in the Cretaceous. Therefore, it is proposed that the Jurassic and Cretaceous magmatism may be related to subduction and closure of the Bangong–Nujiang Tethyan Ocean, respectively. The age pattern of the Jurassic and Cretaceous granitoids suggests an oblique subduction of the Bangong–Nujiang Tethyan Ocean and a diachronous collision between the Lhasa and Qiangtang blocks.  相似文献   

18.
Hasandağ and Erciyes stratovolcanoes, which produced both calc-alkaline and alkaline eruptive products, are the two important volcanic complexes in Central Anatolia. There are three geochemical evolution stages in the history of the Hasandağ strato volcanic complex: (1) Keçikalesi tholeiitic, (2) Hasandağ calc-alkaline and (3) Hasandağ alkaline. Volcanologic and petrologic characteristics of the Hasandağ and Erciyes calc-alkaline series show that water played an important role on the genesis of these rocks. These rocks are phenocryst-rich with vesicular texture, and contain hydrous mineral phases. The approximate pressure and temperature estimates obtained from the mineral chemistry studies of the Hasandağ strato volcanic complex indicate crystallization temperature of 1100 °C with 2.5–3.4 kbar pressure interval for the first stage of Keçikalesi tholeiitic volcanism, and about 850 °C temperatures with 4.3–9.6 kbar pressure intervals for the second stage of Hasandağ calc-alkaline volcanism.The geochemical evolution of Erciyes volcanic complex also exhibits three distinct evolutionary stages: (1) Koçdağ alkaline, (2) Koçdağ calc-alkaline and (3) Erciyes calc-alkaline. The temperature of Koçdağ alkaline volcanism is 1097–1181 °C and in a range of 5.1–6.7 kbar pressure, for Koçdağ calc-alkaline volcanism 850–1050 °C temperature to 2.0–6.6 kbar pressure interval, and for Erciyes calc-alkaline volcanism about 950 °C temperature, to 3.2–7.9 kbar pressure intervals were calculated. Polybaric origin of magma chambers for calc-alkaline and alkaline rocks and disequilibrium parameters observed in phenocrysts indicate that the rocks were affected by magma mixing processes in crustal magma chambers. The disequilibrium features of amphibole and plagioclase phenocrysts in these rocks point the latent heat in magma chambers and periodic recharging with mafic magma chambers and also show that magmas reequilibrate before the eruption.  相似文献   

19.
The present study reports new zircon LA–ICP–MS U–Pb ages, trace element and Hf isotope data, and whole-rock major and trace element data from Cambrian metarhyolites from Zhaqian and Zhakang in the central Lhasa subterrane of southern Tibet. One sample from Zhakang provides a weighted mean 206Pb/238U age of 510.4 ± 4.0 Ma and two samples from Zhaqian yield weighted mean 206Pb/238U ages of 510.6 ± 2.6 Ma and 524.8 ± 2.9 Ma, indicating that the Zhaqian and Zhakang metarhyolites were contemporaneous. Both are characterized by high SiO2 and K2O and low Na2O. They are also primarily high-K calc-alkaline, are enriched in Th, U, and light rare earth elements (LREEs), and are depleted in Nb, Ta, Ti, and P. Thus, they are geochemically similar to typical arc volcanic rocks. Moreover, the Zhaqian metarhyolites exhibit varying zircon εHf(t) values (−3.8 to +0.3) that are comparable to those of the Zhakang metarhyolites (−4.9 to −1.0). Both metarhyolites are interpreted as resulting from partial melting of Proterozoic metasedimentary rocks with mantle-derived magma contributions. Contemporaneous magmatism in the early Paleozoic has also been recognized in other microcontinents along the Gondwana proto-Tethyan margin. The emplacement of these magmatic rocks and the development of a Cambro–Ordovician angular unconformity in the central Lhasa subterrane can be attributed to subduction of proto-Tethys Ocean lithosphere in a Andean-type magmatic arc setting following the assembly of various continental components within the Gondwana supercontinent.  相似文献   

20.
Uranium–Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu–Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (εNd(t) range from + 3.1 to + 7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have < 1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu–Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium–Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu–Au deposits are ~ 372 Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu–Au mineralization are ~ 366 Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu–Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu–Au deposits from younger magmatic suites in the district.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号