首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
The study area, Nan Province, northern Thailand is geotectonically situated within the Nan-Uttaradit Suture, the once back-arc basin between the Sukhothai Zone and Indochina Block. Permian Fusulinacean fauna from limestone blocks within the suture has been investigated and the Nan area has been mapped in detail. These may provide the useful information for understanding the faunal assemblage and overall ge-ometry of stratigraphic successions in the basin. The strata were intensely folded and thrust. Scattered Per-mian limestones found in Nan area are blocks within shale interbedded with tuffaceous rock. The contact between this unit and the adjacent units, the strongly foliated shale and tuffaceous sedimentary strata that are mildly metamorphosed and giving phyllitic tex-tures, has been interpreted as a west-dipping normal fault, namely the Pha Sing Fault. This fault runs par-allel to the Highway no.1080 (Nan-Tha Wang Pha). Middle and early Late Permian fusulinacean fauna found in the Nan area contains Neoschwagerina, Pseudodoliolina, Colania, Lepidolina, and Colaniella. Additionally, late Early Permian fusulinacean and Middle Triassic radiolarian fauna have been reported in this area (e.g., Fontaine, 2002; Saesaengseerung et al. 2008). These paleontological data show the existence of Nan Back-arc Basin during late Early Permian (Artin-skian) to Middle Triassic. Moreover, the similarity of fusulinacean assemblage yielding Permian limestone blocks of the Nan Back-arc Basin and the ones of the Indochina Block has been interpreted that the Permian limestone blocks in the Nan Back-arc Basin were part of the continental shelf within the Indochina Block.  相似文献   

2.
<正>Dabashan complex tectonic belt is located in the junction of the Yangtze plate and North China plate,which is the composite products of the Indo-Chinese epoch,Yanshan epoch,Himalayan epoch thrust nappe.Experiencing multiphase complex structural movement,the tectonic belt has been regarded as a forbidden zone in the oil and gas exploration.And it is also a blank area of oil  相似文献   

3.
The site of final closure of Paleo-Tethys Ocean during the Triassic-Jurassic was marked by the colli-sional event between the Shan Massif and Indochina plate, in eastern Myanmar. Previous site of consumption of Paleo-Tethys is now occupied by a complex zone of suturing and deformation along Than Lwin River and in the east of it, formed by drastic tectonic evolution. It is geographically located approximately between longitudes 98E and 100E, and it extends northwards to Yunnan and southwards into West Thailand. The sigmoidal wrench struc-tures of suture zone is situated in the east of step-like structures of Shan Massif, and the western boundary of the suture zone must be immediately on the west side of Than Lwin River and the eastern boundary is near the east border of Myanmar. The area is largely covered by younger rocks of Paleozoic and Mesozoic age. The Upper Pa-leozoic units of Carboniferous to Permian comprise limestone and dolomite of the Plateau Limestone overlying unconformably the Lower Paleozoic rocks. Metasedimentary rocks of the Carboniferous and their metamorphic equivalents and the flysch-like Triassic-Jurassic units are found as folded and thrusted beds in the area. Large complex of granitic rocks of Late Triassic are also found. Metavolcanics, gabbro and a large number of chromite occur along with these units. A preliminary delineation of a suture zone as the site of closure of Paleo-Tethys Ocean in Myanmar territory is made for the first time and this zone is believed to be a tectonic linkage between Changning-Menglian belt of West China and Inthanon Zone of West Thailand.  相似文献   

4.
The major tectonic zone that passes through the border regions of the Anhui, Zhejiang, and Jiangxi Provinces in southeast China has been commonly referred to as the Wan-Zhe-Gan fault zone. Geologically, this zone consists of several regional fault belts of various ages and orientations. We have categorized the faults into four age groups based on field investigations. The Neoproterozoic faults are northeast striking. They start from the northeast Jiangxi Province and extend northeastward to Fuchuan in Anhui Province, the same location of the northeast Jiangxi-Fuchuan ophiolite belt. The faults probably acted? during the Neoproterozoic as a boundary fault zone of a plate or a block suture with mélange along the faults. The nearly east-west- or east-northeast-striking faults are of Silurian ages (40Ar/39Ar age 429 Ma). This group includes the Qimen-Shexian fault and the Jiangwang-Jiekou ductile shear belt. They represent a major tectonic boundary in the basement because the two sides of the fault have clear dissimilarities. The third group of faults is north-northeast striking, having formed since the early-middle Triassic with 40Ar/39Ar ages of 230–254 Ma. They form a fault belt starting from Yiyang in northern Jiangxi and connect with the Wucheng as well as the Ningguo-Jixi faults. This fault belt is a key fault-magmatic belt controlling the formation of Jurassic-Cretaceous red basins, ore distribution, magmatic activity, and mineralization. When it reactivated during the late Cretaceous, the belt behaved as a series of reverse faults from southeast to northwest and composed the fourth fault group. Therefore, classifying the Wan-Zhe-Gan fault zone into four fault groups will help in the analysis of the tectonic evolution of the eastern segment of the Jiangnan orogen since the Neoproterozoic era.  相似文献   

5.
The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping  相似文献   

6.
The location of the Palaeo-tethys suture in Tibet has been in great dispute for past two decades. The Longmucuo-Shuanghu suture has long been considered as the Palaeo-tethys in Tibet. Restudy of the Carboniferous and Permian sequences in the north and south of this suture reveal that: (1) the Carboniferous and Permian se-quence of the North Qiangtang Block is characterized by containing compound corals and intact fusulinids zones from Moscovian Fusulinella, Fusulina to Changhsingian Palaeofusulina zones; (2) the Early Permian of the South Qiangtang Block is dominated by diamictites and the Middle Permian carbonates found there may deposit on the oceanic seamount.  相似文献   

7.
正Objective The Shangxu gold deposit is located in the south of the middle Bangong-Nujiang suture zone in northern Tibet.The origin of this deposit as an orogenic gold deposit is debatable.The study of the Shangxu deposit has a profound implication on gold exploration in the BangongNujiang metallogenic belt and can also improve our understanding of gold mineralization in northern Tibet.  相似文献   

8.
Gross compositions and distribution of saturated and aromatic hydrocarbons in Carboniferous sandstone reservoire rocks in oil and water zones for Tzhong-10 well of the Zhongyang Uplift in the Tarim Basin were studied in dteail by means of Rock-Eval Pyrolysis,thin-chromatograph-flame ionization detection(TLC-FID),gas chromatography,gas chromatography-mass spectrometry.The results suggest that the gross composition of reservoir hydrocarbons between the oil zone and the water zone show significant differences,Water wahing has a dramatic effect on saturated hydrocarbon blomarkers,especially drimane series compounds,Drimane series compounds in the water zone have been depleted completely.However,the contents of tricyclic iterpanes and pentacyclic triterpanes tend to decrease slightly,but the water-zone reservoir hydrocarbons contian a large amount of gammacerane.This suggests that gammacerane be more resistant to water washing than diterpanes and homohopanes.The contents of pregnane,homopregrane,diasteranes relastively decrease as a result of water washing.Water washing has a noticeable effect on polycyclic aromatic hydrocarbon compounds,especially aromatic sulfur compounds,and the contents of dibenzothiophene series compounds and benzonaplyiothipophene decrease significantly as a result of water washing.However,the conterts of bicyclic and tricyclic aromatic hydrocarbons decrase slightly and those of tetracyclic and pentacyclic aromatic hydrocarbons,especially benzofluoranthene and benzopyrenes,increase markedly owing to adecrease in light aromatie hydrocarbons as a result of water washing.  相似文献   

9.
The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still controversial with two main different proposals of late Permian to early Triassic, and late Devonian. This study reports integrated wholerock geochemistry and LA-ICP-MS zircon U-Pb ages of sedimentary rocks from the Silurian Xuniwusu Formation, the Devonian Xilingol Complex and the Permian Zhesi Formation in the Hegenshan-Xilinhot-Linxi area in central Inner Mongolia, China. The depositional environment, provenance and tectonic setting of the Silurian-Devonian and the Permian sediments are compared to constrain the tectonic evolution of the Solonker suture zone and its neighboring zones. The protoliths of the silty slates from the Xuniwusu Formation in the Baolidao zone belong to wacke and were derived from felsic igneous rocks with steady-state weathering, poor sorting and compositional immaturity. The protoliths of metasedimentary rocks from the Xilingol Complex were wackes and litharenites and were sourced from predominantly felsic igneous rocks with variable weathering conditions and moderate sorting. The Xuniwusu Formation and Xilingol Complex samples both have two groups of detrital zircon that peak at ca. 0.9–1.0 Ga and ca. 420–440 Ma, with maximum deposition ages of late Silurian and middle Devonian age, respectively. Considering the ca. 484–383 Ma volcanic arc in the Baolidao zone, the Xuxiniwu Formation represents an oceanic trench sediment and is covered by the sedimentary rocks in the Xilingol Complex that represents a continental slope sediment in front of the arc. The middle Permian Zhesi Formation metasandstones were derived from predominantly felsic igneous rocks and are texturally immature with very low degrees of rounding and sorting, indicating short transport and rapid burial. The Zhesi Formation in the Hegenshan zone has a main zircon age peak of 302 Ma and a subordinate peak of 423 Ma and was deposited in a back-arc basin with an early marine transgression during extension and a late marine regression during contraction. The formation also crops out locally in the Baolidao zone with a main zircon age peak of 467 Ma and a minor peak of 359 Ma, and suggests it formed as a marine transgression sedimentary sequence in a restricted extensional basin and followed by a marine regressive event. Two obvious zircon age peaks of 444 Ma and 280 Ma in the Solonker zone and 435 Ma and 274 Ma in Ondor Sum are retrieved from the Zhesi Formation. This suggests as a result of the gradual closure of the Paleo-Asian Ocean a narrow ocean sedimentary environment with marine regressive sedimentary sequences occupied the Solonker and Ondor Sum zones during the middle Permian. A restricted ocean is suggested by the Permian strata in the Bainaimiao zone. Early Paleozoic subduction until ca. 381 Ma and renewed subduction during ca. 310–254 Ma accompanied by the opening and closure of a back-arc basin during ca. 298–269 Ma occurred in the northern accretionary zone. In contrast, the southern accretionary zone documented early Paleozoic subduction until ca. 400 Ma and a renewed subduction during ca. 298–246 Ma. The final closure of the Paleo-Asian ocean therefore lasted at least until the early Triassic and ended with the formation of the Solonker suture zone.  相似文献   

10.
The amalgamation of the southern Río de la Plata craton involves two possibly coeval Rhyacian sutures associated with the Transamazonian orogeny,rather than a single one as previously envisaged,i.e.the El Cortijo suture zone and the Salado suture.We circumscribe the Tandilia terrane to the region between these two sutures.The El Cortijo suture zone runs along a roughly WNW oriented magnetic low aligned along the southern boundary of the Tandilia terrane,i.e.boundary between the Tandilia and Balcarce terranes.This extensive magnetic low,ca.300 km long,and ca.90 km wide,would be caused by demagnetization associated with shearing.At a more local scale,the trend of the El Cortijo suture zone often turns toward the EeW.At this scale,WNW trending tholeiitic dykes of Statherian age are seen to cut the Rhyacian El Cortijo suture zone.Spatially associated with the El Cortijo suture zone,there are small magnetic highs interpreted to be related to unexposed basic bodies of ophiolitic nature related to those forming part of the El Cortijo Formation.We envisage the pre-Neoproterozoic evolution of the Tandilia belt to have been initiated by the extension of Neoarchean(w2650 Ma)crust occurred during Siderian times(2500e2300 Ma),causing the separation between the Balcarce,Tandilia and Buenos Aires terranes,and the development of narrow oceans at both north and south sides of the Tandilia terrane,accompanied by w2300e2200 Ma sedimentation over transitional econtinental to oceanice crust,and arc magmatism developed in the Tandilia terrane.The island arc represented by the El Cortijo Formation was also developed at this time.At late Rhyacian times,it occurred in both the closure of the narrow oceans developed previously,the entrapment of the El Cortijo island arc,as well as anatectic magmatism in the Balcarce terrane.  相似文献   

11.
内蒙古地域辽阔,全区跨越了西伯利亚、华北、哈萨克斯坦、塔里木四大板块。受多期构造运动影响,地质构造环境极其复杂。历年来关于华北板块、西伯利亚板块缝合带界限的位置,始终是地质工作者讨论的热点。笔者从地球物理学的角度,分析了华北板块与西伯利亚板块缝合带之地球物理场(重磁场)特征,认为西拉木伦河断裂带应是华北板块与西伯利亚板块的终极缝合带。  相似文献   

12.
杨文强  冯庆来  沈上越  Malila  K.  Chonglakmani  C. 《地球科学》2009,34(5):743-751
在泰国北部难河构造带Pha Som变质杂岩中发现保存很好的放射虫硅质岩、玄武岩地层层序.层状硅质岩含放射虫化石Follicucullus porrectus, 地质时代为中二叠世晚期至晚二叠世早期.其硅质岩SiO2含量均在92.5%以上, Al/ (Al+Fe+Mn) 平均比值为0.51, Ce/Ce*比值为1.14, 为大陆边缘型硅质岩.玄武岩具有富集大离子亲石元素与高场强元素以及轻稀土富集等洋岛玄武岩的特点.说明难河构造带中-晚二叠世之交存在洋岛型火山岩和靠近大陆边缘的深海盆地硅质岩, 代表了小洋盆的沉积组合.该构造带闭合时间应在晚二叠世与晚三叠世之间.   相似文献   

13.
The Nan Suture and the Sukhothai Fold Belt reflect the processes associated with the collision between the Shan-Thai and Indochina Terranes in southeast Asia. The Shan-Thai Terrane rifted from Gondwana in the Early Permian. As it drifted north a subduction complex developed along its northern margin. The Nan serpentinitic melange is a thrust slice within the Pha Som Metamorphic Complex and in total this unit is a Late Permian accretionary complex containing offscraped blocks from subducted oceanic crust of Carboniferous and Permian age. The deformational style within the Pha Som Metamorphic Complex supports a west-dipping subduction zone. The Late Permian to Late Triassic fore-arc basin sediments are preserved in the Sukhothai Fold Belt and include a near continuous sedimentary record, at least locally. The whole sequence was folded and complexly thrust in the Late Triassic as a result of the collision. Late syn- to post-kinematic granites place an upper limit of 200 Ma on the time of collision. Post-orogenic sediments prograded across the suture in the Jurassic.  相似文献   

14.
大湄公河次地区主要结合带的对比与连接   总被引:12,自引:4,他引:12       下载免费PDF全文
大湄公河次地区有多条结合带。根据它们及相关构造单元的时空演化和配置关系,对其南北延伸和连接提出了一些新的意见:(1)印缅山脉结合带向北延与葡萄-密支那结合带汇合后,西接雅鲁藏布江结合带;(2)葡萄-密支那结合带西接雅鲁藏布江结合带,向南西被实皆右行断裂错断,其错断部分为西缅中央火山弧带北段的夏杜苏-隆东带,其南段可能潜没在古近纪沉积层之下;(3)班公湖-怒江结合带南延接潞西-抹谷结合带,再南可能潜伏在墨吉群和抹谷群推覆体之下;(4)昌宁-孟连结合带南延接清迈结合带,并在南奔一带与澜沧江结合带相交汇,原先的昌宁-孟连-清迈洋可能与西藏地区的马利-同卡裂谷盆地和双湖-冈玛错小洋盆构成一个类似现今日本海、东海海槽和南海那样呈串珠状分布的盆地带;(5)澜沧江结合带主体为一隐伏在东达山-临沧-景栋花岗岩带推覆体之下的隐伏结合带,向南接清莱—湄他一带的隐伏结合带和马来半岛的文冬-劳勿结合带,向北在西金乌兰湖一带与可可西里-金沙江结合带相交汇,可可西里澜沧江-文冬-劳勿结合带构成晚古生代冈瓦纲大陆和劳亚大陆的分界;(6)难河-程逸结合带向北延至思茅西边小黑江一带,可能终止在小黑江以北地区,向南接沙缴和贡布-何仙结合带;(7)哀牢山-斯雷博河结合带是新厘定的结合带,从哀牢山向南经南乌河带、老挝奠边府的镁铁质和超镁铁质岩线接黎府结合带和斯雷博河结合带;(8)马江结合带同哀牢山带一样,是一个早、晚古生代两个结合带相叠合的带,早古生代的结合带西接金沙江-哀牢山带,向东经红河左行断裂完全复位后可接越北的斋江结合带(华南洋俯冲形成),与之相应的,它们北面的右江裂谷盆地可与黑河裂谷盆地(或小洋盆)和甘孜-理塘小洋盆相对应,构成一个围绕峨眉地幔柱,并受其影响而形成的晚古生代末—早中生代的盆地带。  相似文献   

15.
雅鲁藏布江缝合带开合演化模式的探讨   总被引:5,自引:0,他引:5  
通过对雅鲁藏布江缝合带的蛇绿岩、构造混杂岩的地质调查及其岩石化学、地球化学特征的分析,进一步证实了雅鲁藏布江缝合带萨嘎分岔的存在,探讨了雅鲁藏布江缝合带的演化模式。将雅鲁藏布江缝合带分为南、北两带,南带起始于二叠纪末期印度板块向北漂移过程中的伸展作用,到三叠纪末-早侏罗世,雅鲁藏布江缝合带南带伸展作用加剧,并伴有洋壳的裂陷和蛇绿岩的侵位,在较短暂的双向俯冲、碰撞后焊接了仲巴陆块。晚侏罗世到早白垩世之后,雅鲁藏布江缝合带北带再次扩张、俯冲,直到始新世晚期整个缝合带开始剧烈碰撞、造山、隆起,形成了雄伟的青藏高原。  相似文献   

16.
滇西古特提斯多岛洋的结构及其南北延伸   总被引:42,自引:3,他引:39  
在深化滇西古特提斯构造古地理格局研究基础上 ,提出了区分多岛洋与多岛海的时、空尺度标准。根据藏北羌塘、泰国北部与滇西古特提斯沉积地质学的比较研究 ,论证了滇西昌宁—孟连带北延连接冈玛错缝合带 ,南延与泰国北部隐蔽缝合带相接。泰国东北部著名的难河—程逸缝合带北延很可能潜伏于思茅盆地中新生代红层之下 ,因此古特提斯阶段并不存在稳定的“思茅地块”。泰国西北部湄萨良带存在洋盆硅质岩、海山碳酸盐岩和被动陆缘碎屑岩的构造混杂沉积组合 ,原属“泥盆系”的硅质岩中已发现早石炭世和晚三叠世卡尼期放射虫动物群 ,启示了古特提斯东段存在双子星座式主支洋盆的构造古地理格局。湄萨良带北延最可能与保山地块、腾冲地块之间的潞西三台山蛇绿混杂带相连。滇西北地区原属晚三叠世哈工组内侏罗纪放射虫化石的发现等 ,启示了青藏高原三江带在古、新特提斯转折期古地理演化的复杂性  相似文献   

17.
李洪梁  黄海  李元灵  张佳佳  王灵  李宝幸 《地球科学》2022,47(12):4523-4545
板块缝合带作为特殊类型的“断层”,其地质灾害效应是工程地质与灾害地质研究的重要内容,对工程建设具有重大现实意义.受特提斯洋复杂而漫长的构造演化制约,川藏交通廊道穿越了7条板块缝合带,但对其地质灾害效应的研究却鲜有涉及.为此,在搜集整理已有研究成果的基础上,结合野外地质调查和室内研究,简要分析了川藏交通廊道沿线板块缝合带的地质灾害效应,并探讨其内在机理.结果表明:板块缝合带地质灾害效应主要表现在塑造地貌、创造地形条件,劣化岩体、提供物质来源,控制地质灾害的分布和诱发地质灾害(链)等4方面.构造混杂岩因其复杂的地质演化过程和特殊的岩石类型与组合特征,使其天然具有易灾性,而板块缝合带就位过程中的构造运动是地质灾害效应的内生动力.板块缝合带的地质灾害效是贯穿于川藏交通廊道沿线板块缝合带构造演化过程中的内、外动力地质作用耦合的外在表现形式.板块缝合带地质灾害效应研究目前处于起步阶段,建议在加强基础地质与灾害地质精细化调查的基础上深化其认识;川藏交通建设工程应加强板块缝合带工程效应研究,加大地质灾害监测预警系统研发,以确保其安全施工与后期平稳运行.   相似文献   

18.
雅鲁藏布江航磁异常带性质及其意义   总被引:5,自引:6,他引:5  
航磁概查发现雅鲁藏布江航磁异常带东西相连长达1400km,它由北、南2条线性异常带构成,并认为它由沿雅鲁藏布江缝合带侵位的北、南2条蛇绿岩带引起,且以北带为主,即雅鲁藏布江缝合带是由2条蛇绿岩带组成,而不是过去地学界所认同的一条。航磁异常带实质上是雅鲁藏布江缝合带存在的客观反映,不仅为识别缝合带提供了比较典型的磁场模式,也为探讨新特提斯洋演化、可能存在2次开合过程,提供了新的依据。  相似文献   

19.
勉县--略阳带大地构造属性之探讨   总被引:5,自引:1,他引:4  
本文从剖析勉略带南北两侧泥盆纪-石炭纪沉积入手,指出南北两侧同属于华南古生物地理区,在沉积相、沉积建造和沉积充填序列方面基本相同,都是以浅海相碳酸盐岩-碎屑岩沉积建造和海进型充填序列为特征.其次,对所谓的"勉略蛇绿岩带"提出质疑;岩石组合和时代配置都不支持该蛇绿岩带作为分割性大洋盆地的残余,何况它有限的空间展布同样不支持上述观点.第三,将勉略带同典型的缝合带进行比较,认为勉略带缺乏典型缝合带内部及其两侧地质体的空间配置关系,诸如沟弧盆体系,俯冲杂岩及前陆盆地等.况且,根据相关的地球化学及地球物理资料,勉略带在泥盆纪-三叠纪期间不存在分割性大洋盆地,在印支运动中也没有形成缝合带.因此,提出勉略带在泥盆纪-石炭纪曾经是一个裂谷,印支运动以来历经多期构造作用形成一条构造混杂带,在陆内造山过程中可能发生过大规模的大陆地壳消减.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号