首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Primary magmas at Oldoinyo Lengai: The role of olivine melilitites   总被引:3,自引:1,他引:3  
The paper describes olivine melilitites at Oldoinyo Lengai, Tanzania, and from tuff cones from the Tanzanian rift valley in the vicinity of Oldoinyo Lengai. Oldoinyo Lengai is the only active carbonatite volcano and is distinguished by its alkali-rich natrocarbonatites. Lengai is also unique for its extreme peralkaline silicate lavas related directly to the natrocarbonatites. Primitive olivine melilitites are, according to their Mg# and Ni, Cr contents, the only candidates in the Lengai area for primary melt compositions. Incompatible trace elements, including REE, constrain the melting process in their sub-lithospheric sources to very low degrees of partial melting in the garnet stability field. The strong peralkaline trend at Oldoinyo Lengai is already recognisable in these primary or near-primary melts. More evolved olivine melilitites, with Mg# < 60 allow the fractionation line in its major and trace element expressions to be followed. Nevertheless, a large compositional gap separates the olivine melilitites and olivine-poorer melilitites from the phonolites and nephelinites that form the bulk of the Lengai cone. These silicate lavas show a high degree of peralkalinity and are highly evolved with very low Mg, Ni and Cr. Prominent examples of the recent evolution are the combeite–wollastonite nephelinites that are unique for Lengai. In their Sr, Nd, and Pb isotope relationships the olivine melilitites define a distinct group with the most depleted Sr and Nd ratios and the most radiogenic Pb isotopes. They are closest to a supposed HIMU end member of the Lengai evolution, which is characterised by an extreme spread in isotopic ratios, explained as a mixing line between HIMU and EM1-like mantle components.  相似文献   

2.
SIMONETTI  A.; BELL  K. 《Journal of Petrology》1994,35(6):1597-1621
Initial Nd, Pb, and Sr isotopic data from carbonatites and associatedintrusive silica-undersaturated rocks from the early Jurassic,Chilwa Island complex, located in southern Malawi, central Africa,suggest melt derivation from a Rb/Sr- and Nd/Sm-depleted butTh/Pb- and U/Pb-enriched mantle source. Initial 143Nd/144Nd(0.51265–0.51270) isotope ratios from the Chilwa Islandcarbonatites are relatively constant, but their initial 87Sr/86Sr(0.70319–0.70361) ratios are variable. The 18Osmow (9.53–14.15%0)and 13CPDB (–3.27 to –1.50%0) isotope ratios ofthe carbonates are enriched relative to the range of mantlevalues, and there is a negative correlation between 18O andSr isotope ratios. The variations in Sr, C, and O isotopic ratiosfrom the carbonatites suggest secondary processes, such as interactionwith meteoric groundwater during late-stage carbonatite activity.The initial 143Nd/144Nd (0.51246 0.51269) and initial 87Sr/86Sr(0.70344–0.70383) isotope ratios from the intrusive silicaterocks are more variable, and the Sr more radiogenic than thosefrom the carbonatites. Most of the Pb isotope data from Chilwa Island plot to the rightof the geochron and close to the oceanic regression line definedby MORBs and OIBs. Initial Pb isotopic ratios from both carbonatites(207Pb/204Pb 15.63–15.71; 206Pb/204Pb 19.13–19.78)and silicate rocks (207Pb/204Pb 15.61–15.72; 206Pb/204Pb18.18–20.12) show pronounced variations, and form twogroups in Pb-Pb plots. The isotopic variations shown by Nd, Pb, and Sr for the ChilwaIsland carbonatites and intrusive silicates suggest that thesemelts underwent different evolutionary histories. The chemicaldata, including isotopic ratios, from the carbonatites and olivinenephelinites are consistent with magmatic differentiation ofa carbonated-nephelinite magma. A model is proposed in whichdifferentiation of the carbonatite magma was accompanied byfenitization (metasomatic alteration) of the country rocks bycarbonatite-derived fluids, and subsequent alteration of thecarbonatite by hydrothermal activity. The chemical and isotopicdata from the non-nephelinitic intrusive silicate rocks reveala more complex evolutionary history, involving either selectivebinary mixing of lower-crustal granulites and a nephelinitemagma, or incremental batch melting of a depleted source andsubsequent crustal contamination.  相似文献   

3.
This paper presents field, geochemical and isotopic (Sr, Nd,Pb) results on basalts from the Antipodes, Campbell and ChathamIslands, New Zealand. New 40Ar/39Ar age determinations alongwith previous K–Ar dates reveal three major episodes ofvolcanic activity on Chatham Island (85–82, 41–35,5 Ma). Chatham and Antipodes samples comprise basanite, alkaliand transitional basalts that have HIMU-like isotopic (206Pb/204Pb>20·3–20·8, 87Sr/86Sr <0·7033,143Nd/144Nd >0·5128) and trace element affinities(Ce/Pb 28–36, Nb/U 34–66, Ba/Nb 4–7). Thegeochemistry of transitional to Q-normative samples from CampbellIsland is explained by interaction with continental crust. Thevolcanism is part of a long-lived (100 Myr), low-volume, diffusealkaline magmatic province that includes deposits on the Northand South Islands of New Zealand as well as portions of WestAntarctica and SE Australia. All of these continental areaswere juxtaposed on the eastern margin of Gondwanaland at >83Ma. A ubiquitous feature of mafic alkaline rocks from this regionis their depletion in K and Pb relative to other highly incompatibleelements when normalized to primitive mantle values. The inversionof trace element data indicates enriched mantle sources thatcontain variable proportions of hydrous minerals. We proposethat the mantle sources represent continental lithosphere thathost amphibole/phlogopite-rich veins formed by plume- and/orsubduction-related metasomatism between 500 and 100 Ma. Thestrong HIMU signature (206Pb/204Pb >20·5) is consideredto be an in-grown feature generated by partial dehydration andloss of hydrophile elements (Pb, Rb, K) relative to more magmaphileelements (Th, U, Sr) during short-term storage at the base ofthe lithosphere. KEY WORDS: continental alkaline basalts; lithospheric mantle, mantle metasomatism; New Zealand; OIB, HIMU; Sr, Nd and Pb isotopes; West Antarctica  相似文献   

4.
Silicate--Carbonate Immiscibility at Oldoinyo Lengai   总被引:5,自引:0,他引:5  
For approximately the last 50 years eruptions at Oldoinyo Lengaihave produced passive natrocarbonatite lavas interspersed withmixed silicate-natrocarbonatite events approximately every 15–25years. In 1993 an unusual blocky lava erupted and preserveddetailed mixed silicate-natrocarbonatite textures clearly indicatingan immiscible origin. The 1993 blocky flow consists of natrocarbonatitewith small silicate crystal aggregates which constitute 2–5%of the rock. These inclusions are composed of nepheline, melanite,clinopyroxene and wollastonite occurring both as isolated crystalsand ijolite micro-xenoliths. Most significantly, these ijoliticinclusions are surrounded by ‘globules’ of a fine-grainedintergrowth of nepheline, wollastonite and gregoryite, interpretedas quenched melt. Petrographic textures are characteristic ofliquid immiscibility between coexisting natrocarbonatite andsilicate melts. The presence of gregoryite within the silicatemelt globules is particularly important as it represents thecommon liquidus phase between the silicate and natrocarbonatitemelts theoretically required to demonstrate immiscibility betweentwo conjugate liquids. This is the first time that liquid immiscibilityhas been so clearly demonstrated in natural rock samples fromOldoinyo Lengai and agrees very closely with recent experimentalwork. Our detailed model for the petrogenesis of the natrocarbonatitesat Oldoinyo Lengai involves extensive fractionation of a carbonate-richalkaline silicate magma followed by immiscible separation ofnatrocarbonatite at low pressures. KEY WORDS: Oldoinyo Lengai; natrocarbonatite; silicate-carbonate immiscibility; East Africa *Corresponding author. Present address: Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK  相似文献   

5.
Natrocarbonatite flows in the crater of the volcano Oldoinyo Lengai (Tanzania) are the only carbonatite magmas observed to erupt and have provided strong arguments in favor of a magmatic origin for carbonatite. The currently favored explanation for the genesis of these carbonatites by liquid immiscibility between a silicate and a carbonatite melt is questioned based on the extremely low eruption temperatures of 544-593 °C and compositional and mineralogical characteristics not in agreement with experimental constraints. Experimental investigations of the relationship between Oldoinyo Lengai natrocarbonatite and related silicate rock compositions do indicate that alkali-bearing peralkaline carbonatite with liquidus calcite can form by liquid immiscibility. At the same time, these experiments result in evidence which speaks against a liquid immiscibility origin for the highly alkaline and peralkaline Oldoinyo Lengai natrocarbonatite. On the carbonatite side of the miscibility gap, fractional crystallization cannot account for a liquid evolution from alkali-bearing peralkaline carbonatite to highly alkaline natrocarbonatite. Such an evolution does not seem to be compatible with the liquidus mineral assemblages and the chemistry of Oldoinyo Lengai natrocarbonatite. No natural silicate magma is known to produce natrocarbonatite compositions by liquid immiscibility. The best interpretation of the Oldoinyo Lengai natrocarbonatite flows involves expulsion of a cognate, mobile, alkaline, and CO2-rich fluid condensate. This conclusion is supported by recent studies of silicate and carbonatite melt inclusions in minerals of ultramafic alkaline complexes, trace element partitioning, isotopic constraints, and by experimental data on major element partitioning between coexisting H2O-CO2-rich fluid and carbonatitic melt. In contrast to all other suggested modes of formation, an origin of Oldoinyo Lengai natrocarbonatite from cognate fluid appears best to be in agreement with the field observations, the petrography, mineralogy, and geochemistry of Oldoinyo Lengai natrocarbonatite and the dynamics of the Oldoinyo Lengai natrocarbonatite extrusion.  相似文献   

6.
Petrogenetic models for the origin of lamproites are evaluatedusing new major element, trace element, and Sr, Nd, and Pb isotopedata for Holocene lamproites from the Gaussberg volcano in theEast Antarctic Shield. Gaussberg lamproites exhibit very unusualPb isotope compositions (206Pb/204Pb = 17·44–17·55and 207Pb/204Pb = 15·56–15·63), which incommon Pb isotope space plot above mantle evolution lines andto the left of the meteorite isochron. Combined with very unradiogenicNd, such compositions are shown to be inconsistent with an originby melting of sub-continental lithospheric mantle. Instead,a model is proposed in which late Archaean continent-derivedsediment is subducted as K-hollandite and other ultra-high-pressurephases and sequestered in the Transition Zone (or lower mantle)where it is effectively isolated for 2–3 Gyr. The high207Pb/204Pb ratio is thus inherited from ancient continent-derivedsediment, and the relatively low 206Pb/204Pb ratio is the resultof a single stage of U/Pb fractionation by subduction-relatedU loss during slab dehydration. Sr and Nd isotope ratios, andtrace element characteristics (e.g. Nb/Ta ratios) are consistentwith sediment subduction and dehydration-related fractionation.Similar models that use variable time of isolation of subductedsediment can be derived for all lamproites. Our interpretationof lamproite sources has important implications for ocean islandbasalt petrogenesis as well as the preservation of geochemicallyanomalous reservoirs in the mantle. KEY WORDS: lamproites; Pb isotopes; mantle Transition Zone; subducted sediment; anomalous mantle reservoirs  相似文献   

7.
Pliocene volcanics on the island of Bequia comprise two interbeddedsuites of basalts and andesites. The isotopically homogeneoussuite (IHS) has a limited range of Sr—Nd—Pb isotopes(87Sr/86Sr 0.7040–0.7046, 143 Nd/144 Nd 0.5130 and 206Pb/204Pb 19.36–19.51), and mantle-like 18O values (5.5in clinopyroxene). The isotopically diverse suite (IDS) is characterizedby much wider ranges of radiogenic isotopes (87 Sr/86Sr 0.7048–0.7077,143 Nd/144 Nd 0.5128–0.5123 and 206 Pb/204 Pb 19.7–20.2),in which all of the Sr and Pb ratios are higher and Nd ratiosare lower than those of the IHS. The IDS is also characterizedby high 18 O values, up to 7.6 in clinopyroxene. The Sr andPb isotope ratios are too high, and the Nd isotope ratios aretoo low in the IDS for any of these lavas to be derived fromunmodified depleted mantle. Both suites are petrologically very similar and their majorelement compositions and phenocryst contents suggest that theywere formed largely by fractional crystallization of a hydroustholeiitic melt at pressures <3 kbar. The isotopic ratiosand enrichments in large ion lithophile elements (LILE), andto some extent light rare earth elements (LREE), as comparedwith mid-ocean ridge basalts (MORB), of the IHS lavas suggestthat they were derived from a depleted mantle source which hadbeen re-enriched by the addition of 1–4% of a subductioncomponent. This component probably comprised a mixture of dehydrationfluids, and perhaps minor siliceous melts, released from subductingsediments and mafic crust. The extreme isotopic ranges, largeenrichments in incompatible elements, more fractionated LREEpatterns and higher 18 O values of the IDS lavas are interpretedas resulting from 10–55% assimilation—fractionalcrystallization of sediments, derived from the Guyana Shield,which are present in the arc crust, by IHS type melts. KEY WORDS: trace elements; radiogenic isotopes; arc lavas; Lesser Antilles *Corresponding author.  相似文献   

8.
Miocene to Pleistocene calc-alkaline volcanism in the East Carpathianarc of Romania was related to the subduction of a small oceanbasin beneath the continental Tisza–Dacia microlate. Volcanicproducts are predominantly andesitic to dadtic in composition,with rare basalts and rhyodacites (51–l71% SiO2; mg-number0.65–0.26) and have medium- to high-K calcalkaline andshoshonitic affinities. Mg, Cr and Ni are low in all rock-types,indicating the absence of primary erupted compositions. Detailedtrace element and Sr, Nd, Pb and 0 isotope data suggest thatmagmas were strongly crustally contaminated. Assimilation andfractional crystallization (AFC) calculations predict the consumptionof 5–35% local upper-crustal metasediments or sedimentsfrom the palaeo-accretionary wedge. Variations in the isotopiccomposition of the contaminants and parental magmas caused variationsin the mixing trajectories in different parts of the arc Themost primitive isotopic compositions are found in low-K dacitesof the northern Cdlimani volcanic centre and are interpretedas largely mantle derived. A second possible mantle reservoirof lower 149 Nd/144 Nd and lower 206 Pb/204 Pb is identifiedfrom back-arc basic calc-alkaline rocks in the south of thearc Both magmatic reservoirs have elevated isotopic characteristics,owing either to source bulk mixing (between depleted or enrichedasthenosphere and <1% average subducted local sediment) orlower-crustal contamination. KEY WORDS: Carpathians; assimilation; calc-alkaline; Sr-Nd-Pb-0 isotopes; laser flurination  相似文献   

9.
Geochronological (K–Ar or 40Ar/39Ar), major and traceelement, Sr–Nd–Pb isotopic and mineral chemicaldata are presented for newly discovered Cenozoic volcanic rocksin the western Qiangtang and central Lhasa terranes of Tibet.Alkali basalts of 65–45 Ma occur in the western Qiangtangterrane and represent primitive mantle melts as indicated byhigh mg-numbers [100 x Mg/(Mg + Fe)] (54–65), Cr (204–839ppm) and Ni (94–218 ppm) contents, and relatively lowratios of 87Sr/86Sr (0·7046–0·7061), 206Pb/204Pb(18·21–18·89), 207Pb/204Pb (15·49–15·61)and 208Pb/204Pb (38·42–38·89), and highratios of 143Nd/144Nd (0·5124–0·5127). Incontrast, younger volcanic rocks in the western Qiangtang terrane(  相似文献   

10.
We present the results of a comprehensive major element, traceelement and Sr–Nd–Pb–O isotopic study of post-glacialvolcanic rocks from the Neovolcanic zones on Iceland. The rocksstudied range in composition from picrites and tholeiites, whichdominate in the main rift systems, to transitional and alkalicbasalts confined to the off-rift and propagating rift systems.There are good correlations of rock types with geochemical enrichmentparameters, such as La/Sm and La/Yb ratios, and with long-termradiogenic tracers, such as Sr–Nd–Pb isotope ratios,indicating a long-lived enrichment/depletion history of thesource region. 87Sr/86Sr vs 143Nd/144Nd defines a negative array.Pb isotopes define well-correlated positive arrays on both 206Pb/204Pbvs 207Pb/204Pb and 208Pb/204Pb diagrams, indicating mixing ofat least two major components: an enriched component representedby the alkali basalts and a depleted component represented bythe picrites. In combined Sr–Nd–Pb isotopic spacethe individual rift systems define coherent mixing arrays withslightly different compositions. The enriched component hasradiogenic Pb (206Pb/204Pb > 19·3) and very similargeochemistry to HIMU-type ocean island basalts (OIB). We ascribethis endmember to recycling of hydrothermally altered upperbasaltic oceanic crust. The depleted component that is sampledby the picrites has unradiogenic Pb (206Pb/204Pb < 17·8),but geochemical signatures distinct from that of normal mid-oceanridge basalt (N-MORB). Highly depleted tholeiites and picriteshave positive anomalies in mantle-normalized trace element diagramsfor Ba, Sr, and Eu (and in some cases also for K, Ti and P),negative anomalies for Hf and Zr, and low 18Oolivine values(4·6–5·0) below the normal mantle range.All of these features are internally correlated, and we, therefore,interpret them to reflect source characteristics and attributethem to recycled lower gabbroic oceanic crust. Regional compositionaldifferences exist for the depleted component. In SW Icelandit has distinctly higher Nb/U (68) and more radiogenic 206Pb/204Pbratios (18·28–18·88) compared with the NErift (Nb/U 47; 206Pb/204Pb = 18·07–18·47).These geochemical differences suggest that different packagesof recycled oceanic lithosphere exist beneath each rift. A thirdand minor component with relatively high 87Sr/86Sr and 207Pb/204Pbis found in a single volcano in SE Iceland (Öræfajökullvolcano), indicating the involvement of recycled sediments inthe source locally. The three plume components form an integralpart of ancient recycled oceanic lithosphere. The slope in theuranogenic Pb diagram indicates a recycling age of about 1·5Ga with time-integrated Th/U ratios of 3·01. Surprisingly,there is little evidence for the involvement of North AtlanticN-MORB source mantle, as would be expected from the interactionof the Iceland plume and the surrounding asthenosphere in formof plume–ridge interaction. The preferential samplingof the enriched and depleted components in the off-rift andmain rift systems, respectively, can be explained by differencesin the geometry of the melting regions. In the off-rift areas,melting columns are truncated deeper and thus are shorter, whichleads to preferential melting of the enriched component, asthis starts melting deeper than the depleted component. In contrast,melting proceeds to shallower depths beneath the main rifts.The longer melting columns also produce significant amountsof melt from the more refractory (lower crustal/lithospheric)component. KEY WORDS: basalts; trace element and Sr, Nd, Pb, O isotope geochemistry; Iceland plume; isotope ratios; oceanic crustal recycling; partial melting; plume–ridge interaction  相似文献   

11.
The South Auckland Volcanic Field is a Pleistocene (1·59–0·51Ma) basaltic intraplate, monogenetic field situated south ofAuckland City, North Island, New Zealand. Two groups of basaltsare distinguished based on mineralogy and geochemical compositions,but no temporal or spatial patterns exist in the distributionof various lava types forming each group within the field: GroupA basalts are silica-undersaturated transitional to quartz-tholeiiticbasalts with relatively low total alkalis (3·0–4·6wt %), Nb (7–29 ppm), and (La/Yb)N (3·4–7·6);Group B basalts are strongly silica-undersaturated basanitesto nepheline-hawaiites with high total alkalis (3·3–7·9wt %), Nb (32–102 ppm), and (La/Yb)N (12–47). GroupA has slightly higher 87Sr/86Sr, similar Nd, and lower 206Pb/204Pbvalues compared with Group B. Contrasting geochemical trendsand incompatible element ratios (e.g. K/Nb, Zr/Nb, Ce/Pb) areconsistent with separate evolution of Groups A and B from dissimilarparental magmas derived from distinct sub-continental lithosphericmantle sources. Differentiation within each group was controlledby olivine and clinopyroxene fractionation. Group B magmas weregenerated by <8% melting of an ocean island basalt (OIB)-likegarnet peridotite source with high 238U/204Pb mantle (HIMU)and enriched mantle (EMII) characteristics possibly inheritedfrom recycled oceanic crust. Group A magmas were generated by<12% melting of a spinel peridotite source also with HIMUand EMII signatures. This source type may have resulted fromsubduction-related metasomatism of the sub-continental lithospheremodified by a HIMU plume. These events were associated withMesozoic or earlier subduction- and plume-related magmatismwhen New Zealand was at the eastern margin of the Gondwana supercontinent. KEY WORDS: continental intraplate basalts; geochemistry; HIMU, EMII; Sr, Nd, and Pb isotopes; South Auckland; sub-continental lithospheric sources  相似文献   

12.
The Serbian province of Tertiary ultrapotassic volcanism isrelated to a post-collisional tectonic regime that followedthe closure of the Tethyan Vardar Ocean by Late Cretaceous subductionbeneath the southern European continental margin. Rocks of thisprovince form two ultrapotassic groups; one with affinitiesto lamproites, which is concentrated mostly in the central partsof the Vardar ophiolitic suture zone, and the other with affinitiesto kamafugites, which crops out in volcanoes restricted to thewestern part of Serbia. The lamproitic group is characterizedby a wide range of 87Sr/86Sri (0·70735–0·71299)and 143Nd/144Ndi (0·51251–0·51216), whereasthe kamafugitic group is isotopically more homogeneous witha limited range of 87Sr/86Sri (0·70599–0·70674)and 143Nd/144Ndi (0·51263–0·51256). ThePb isotope compositions of both groups are very similar (206Pb/204Pb18·58–18·83, 207Pb/204Pb 15·62–15·70and 208Pb/204Pb 38·74–38·99), falling withinthe pelagic sediment field and resembling Mesozoic flysch sedimentsfrom the Vardar suture zone. The Sr and Nd isotopic signaturesof the primitive lamproitic rocks correlate with rare earthelement fractionation and enrichment of most high field strengthelements (HFSE), and can be explained by melting of a heterogeneousmantle source consisting of metasomatic veins with phlogopite,clinopyroxene and F-apatite that are out of isotopic equilibriumwith the peridotite wall-rock. Decompression melting, with varyingcontributions from depleted peridotite and ultramafic veinsto the final melt, accounts for consistent HFSE enrichment andisotopic variations in the lamproitic group. Conversely, themost primitive kamafugitic rocks show relatively uniform Srand Nd isotopic compositions and trace element patterns, andsmall but regular variations of HFSE, indicating variable degreesof partial melting of a relatively homogeneously metasomatizedmantle source. Geochemical modelling supports a role for phlogopite,apatite and Ti-oxide in the source of the kamafugitic rocks.The presence of two contrasting ultrapotassic suites in a restrictedgeographical area is attributable to the complex geodynamicsituation involving recent collision of a number of microcontinentswith contrasting histories and metasomatic imprints in theirmantle lithosphere. The geochemistry of the Serbian ultrapotassicrocks suggests that the enrichment events that modified thesource of both lamproitic and kamafugitic groups were relatedto Mesozoic subduction events. The postcollisional environmentof the northern Balkan region with many extensional episodesis consistent at regional and local levels with the occurrenceof ultrapotassic rocks, providing a straightforward relationshipbetween geodynamics and volcanism. KEY WORDS: kamafugite; lamproite; Mediterranean; Serbia; mantle metasomatism; veined mantle; petrogenesis  相似文献   

13.
The volcanic history of Santo Antão, NW Cape Verde Islands,includes the eruption of basanite–phonolite series magmasbetween 7·5 and 0·3 Ma and (melilite) nephelinite–phonoliteseries magmas from 0·7 to 0·1 Ma. The most primitivevolcanic rocks are olivine ± clinopyroxene-phyric, whereasthe more evolved rocks have phenocrysts of clinopyroxene ±Fe–Tioxide ± kaersutite ± haüyne ± titanite± sanidine; plagioclase occurs in some intermediate rocks.The analysed samples span a range of 19–0·03% MgO;the most primitive have 37–46% SiO2, 2·5–7%TiO2 and are enriched 50–200 x primitive mantle in highlyincompatible elements; the basanitic series is less enrichedthan the nephelinitic series. Geochemical trends in each seriescan be modelled by fractional crystallization of phenocrystassemblages from basanitic and nephelinitic parental magmas.There is little evidence for mineral–melt disequilibrium,and thus magma mixing is not of major importance in controllingbulk-rock compositions. Mantle melting processes are modelledusing fractionation-corrected magma compositions; the modelssuggest 1–4% partial melting of a heterogeneous mantleperidotite source at depths of 90–125 km. Incompatibleelement enrichment among the most primitive magma types is typicalof HIMU OIB. The Sr, Nd and Pb isotopic compositions of theSanto Antão volcanic sequence and geochemical characterchange systematically with time. The older volcanic rocks (7·5–2Ma) vary between two main mantle source components, one of whichis a young HIMU type with 206Pb/204Pb = 19·88, 7/4 =–5, 8/4 0, 87Sr/86Sr = 0·7033 and 143Nd/144Nd= 0·51288, whereas the other has somewhat less radiogenicSr and Pb and more radiogenic Nd. The intermediate age volcanicrocks (2–0·3 Ma) show a change of sources to two-componentmixing between a carbonatite-related young HIMU-type source(206Pb/204Pb = 19·93, 7/4 = –5, 8/4 = –38,87Sr/86Sr = 0·70304) and a DM-like source. A more incompatibleelement-enriched component with 7/4 > 0 (old HIMU type) isprominent in the young volcanic rocks (0·3–0·1Ma). The EM1 component that is important in the southern CapeVerde Islands appears to have played no role in the petrogenesisof the Santo Antão magmas. The primary magmas are arguedto be derived by partial melting in the Cape Verde mantle plume;temporal changes in composition are suggested to reflect layeringin the plume conduit. KEY WORDS: radiogenic isotopes; geochemistry; mantle melting; Cape Verde  相似文献   

14.
The Miocene–Quaternary Jemez Mountains volcanic field(JMVF), the site of the Valles caldera, lies at the intersectionof the Jemez lineament, a Proterozoic suture, and the CenozoicRio Grande rift. Parental magmas are of two types: K-depletedsilica-undersaturated, derived from the partial melting of lithosphericmantle with residual amphibole, and tholeiitic, derived fromeither asthenospheric or lithospheric mantle. Variability insilica-undersaturated basalts reflects contributions of meltsderived from lherzolitic and pyroxenitic mantle, representingheterogeneous lithosphere associated with the suture. The Kdepletion is inherited by fractionated, crustally contaminatedderivatives (hawaiites and mugearites), leading to distinctiveincompatible trace element signatures, with Th/(Nb,Ta) and La/(Nb,Ta)greater than, but K/(Nb,Ta) similar to, Bulk Silicate Earth.These compositions dominate the mafic and intermediate lavas,and the JMVF is therefore derived largely, and perhaps entirely,from melting of fertile continental Jemez lineament lithosphereduring rift-related extension. Significant variations in Pband Nd isotope ratios (206Pb/204Pb = 17·20–18·93;143Nd/144Nd = 0·51244–0·51272) result fromcrustal contamination, whereas 87Sr/86Sr is low and relativelyuniform (0·7040–0·7048). We compare theeffects of contamination by low-87Sr/86Sr crust with assimilationof high-87Sr/86Sr granitoid by partial melting, with Sr retainedin a feldspathic residue. Both models satisfactorily reproducethe isotopic features of the rocks, but the lack of a measurableEu anomaly in most JMVF mafic lavas is difficult to reconcilewith a major role for residual plagioclase during petrogenesis. KEY WORDS: Jemez Mountains volcanic field; Rio Grande rift; lithospheric mantle; crustal contamination; trace elements; radiogenic isotopes  相似文献   

15.
The Lead, Neodymium and Strontium Isotopic Structure of Ocean Ridge Basalts   总被引:2,自引:5,他引:2  
Pb-, Nd- and Sr-isotope compositions and U, Pb, Sm, Nd, Rb andSr concentrations are reported for samples of basaltic glassand altered substrates from spreading centres in the Atlantic,Indian and Pacific Oceans. Correlations are shown to exist between208, 207, 206Pb/204Pb ratios, and 87Sr/86Sr and 143Nd/144Ndratios in basaltic glasses, but they are dominated by samplesfrom the Mid-Atlantic Ridge. Whereas basaltic glasses from EastPacific spreading centres exhibit smaller variability in Pb,Sr and Nd isotope compositions than Atlantic samples, seamountsamples from the E. Pacific have a similar range of Pb-isotopecompositions as Mid-Atlantic Ridge glasses. Contamination ofbasaltic magmas by altered oceanic crust or sediments is notconsidered to be of prime importance in determining the isotopicstructures of MORB glasses. It is proposed that the isotopicheterogeneity in the mantle beneath the Pacific and Atlanticis similar, but magma generation processes associated with fastspreading ridges of the East Pacific more effectively eradicateheterogeneities in the erupted basalts. Alteration of oceanic crust is further investigated with respectto the relative response of the U–Pb, Sm–Nd andRb–Sr systems, and the role of recycled oceanic crustin producing the mantle heterogeneities is evaluated.  相似文献   

16.
The geologic evolution of the New Zealand microcontinent was characterised by intermittent Cretaceous to Quaternary episodes of intraplate volcanism. To evaluate the corresponding mantle evolution beneath New Zealand with a specific focus on the tectonic evolution, we performed a combined major and trace element and Hf, Nd, Pb, Sr isotope investigation on a suite of representative intraplate volcanic rocks from both main islands and the Chatham Islands. Isotopically, the data set covers a range between “HIMU-like” end member compositions (206Pb/204Pb: 20.57, 207Pb/204Pb: 15.77, 87Sr/86Sr: 0.7030, εHf: + 3.8, εNd: + 4.2), compositions tending towards MORB (206Pb/204Pb: 19.01, 207Pb/204Pb: 15.62, 87Sr/86Sr: 0.7028, εHf: + 9.9, εNd: + 7.0) and compositions reflecting the influence of subducted sediments (206Pb/204Pb: 18.99, 207Pb/204Pb: 15.67, 87Sr/86Sr: 0.7037, εHf: + 4.4, εNd: + 3.9). Whereas volcanism on the Chatham Islands constitutes the HIMU end member of our data set, intraplate volcanic rocks from the North Island are dominated by MORB-like compositions with relatively radiogenic 206Pb/204Pb signatures. Volcanic rocks from the South Island form a trend between the three end members. Assuming a polybaric melting column model, the primary melt compositions reflect variations in the degree of melting, coupled to variable average melting depths. As the three isotope and trace element end members occur throughout the volcanic episodes, the “HIMU-like” and the sediment influenced signatures most likely originate from a heterogeneous subcontinental lithospheric mantle, whereas an asthenospheric origin is inferred for the MORB-like component. For the South Island, affinities to HIMU wane with decreasing average melting depths whereas MORB and sediment-like signatures become more distinct. We therefore propose a polybaric melting model involving upper asthenospheric mantle and a lithospheric mantle source that has been modified by subduction components and veins of fossil “HIMU-like” asthenospheric melts. The proportion of asthenospheric versus lithospheric source components is controlled by variations in lithospheric thickness and heat flow, reflecting the different tectonic settings and rates of extension. Generally, low degree melts preferentially tap enriched vein material with HIMU signatures. The widespread occurrence of old Gondwana-derived lithospheric mantle beneath intraplate volcanic fields in East Gondwana is suggested by overall similarities between New Zealand intraplate volcanic rocks and volcanic rocks in East Australia and Antarctica. The petrogenetic model proposed here may therefore serve as a general model for the petrogenesis of Cretaceous to Recent intraplate volcanic rocks in former East Gondwana. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The Benue Trough is a continental rift related to the openingof the equatorial domain of the South Atlantic which was initiatedin Late Jurassic-Early Cretaceous times. Highly diversifiedand volumetrically restricted Mesozoic to Cenozoic magmaticproducts are scattered throughout the rift. Three periods ofmagmatic activity have been recognized on the basis of 40 Ar-39Ar ages: 147–106 Ma, 97–81 Ma and 68–49 Ma.Trace element and Sr, Nd and Pb isotope determinations, performedon selected basaltic samples, allow two groups of basaltic rocksto be identified: (1) a group with a tholeiitic affinity, withZr/Nb=7–11.1; La/Nb = 0.77–1; 87Sr/86Sr; =0.7042–0.7065143Nd/144Nd;i = 0.5125–0.5127; 206Pb/204Pbi = 17.59–18.48;(2) a group with an alkaline affinity, with Zr/Nb = 3.6–6.8;La/Nb=0.53–0.66; 87Sr/86 Sri=0.7029–0.7037; 143Nd/144Ndi=0.5126–0.5129;206Pb/204Pbi = 18.54–20.42. The geochemical data leadto the conclusion that three types of mantle sources were involvedin the genesis of the Mesozoic to Cenozoic basaltic rocks ofthe Benue, without significant crustal contamination: (1) anenriched subcontinental lithospheric mantle from which the tholeiiticbasalts were derived; (2) a HIMU-type (plume) component fromwhich the alkaline basalticrocks originated; (3) a depletedasthenospheric mantle (N-MORB-type source), which was involvedin the genesis of the alkaline basaltic magmas. According to(1) the postulated location of the St Helena hot spot in theEquatorial Atlantic at about 130 Ma and (2) the isotopic compositionof the alkaline basaltic rocks of the Benue Trough and theirgeochemical similarity with the basalts of St Helena, we concludethat the St Helena plume was involved in the genesis of thealkaline magmatism of the Benue at the time of opening of theEquatorial Atlantic. Moreover, the geochemical similarity betweenthe alkaline magmatism of the Benue Trough and that of the CameroonLine suggests that both magmatic provinces were related to theSt Helena plume. Finally, the temporal change of the mantlesources observed in the Benue Trough can be accounted for bythe recent models of plume dynamics, in the general frameworkof opening of the Equatorial Atlantic. KEY WORDS: Benue Trough; Mesozoic to Cenozoic magmatism; Equatorial Atlantic; mantle sources; St Helena plume *;Corresponding author.  相似文献   

18.
Numerous minette dykes intersect the Precambrian crystallinebasement of Schirmacher Oasis, East Antarctica. This study presentsnew Sr, Nd, Pb and O isotope data for 11 minette samples fromfour different dykes. The samples are characterized by relativelyhigh 87Sr/86Sr (0·7077–0·7134), 207Pb/204Pb(15·45–15·55) and 208Pb/204Pb (37·8–39·8),combined with low 143Nd/144Nd (  相似文献   

19.
Lavas from Heard Island, located on the Kerguelen Plateau inthe southern Indian Ocean, exhibit the largest range (e.g.,87Sr/86Sr=0.7047–0.7079) of isotopic compositions yetobserved on a single oceanic island. Isotopic compositions arewell correlated and are accompanied by systematic changes inincompatible trace element ratios, particularly those involvingNb. These variations are interpreted as resulting from mixingbetween two components. One is characterized by high 87Sr/86Sr,low 206Pb/204Pb and 143Nd/144Nd ratios, and negative Nb andEu anomalies, and is derived ultimately from the upper continentalcrust. The other has lower 87Sr/86Sr, and higher 206Pb/204Pband 143Nd/144Nd ratios, and lacks the depletions in Nb and Eu.Two possible compositions are considered for the low-87Sr/86Srcomponent of the source. The first is at the low-87Sr/86Sr endof the Heard Island data array, represented most closely bylavas from the Laurens Peninsula. However, trace element variationssuggest that these lavas might not be representive of the Heardplume. The second is close to the low-87Sr/86Sr end of the isotopicarray for lavas from the main volcano. In this case a lithosphericmantle origin is suggested for the Laurens Peninsula lavas.The relationships between isotopic data, major element compositions,and incompatible trace element ratios indicate that the continent-derivedmaterial is probably present in the mantle source, where itmakes a maximum contribution of <4 wt.% for all but one HeardIsland sample. However, if the Kerguelen Plateau is a submergedcontinental block, shallow-level contamination cannot be ruledout. The binary mixing model developed to explain the Heard Islandgeochemical variations is extended to include other Indian Oceanoceanic island and mid-ocean ridge basalts (OIB and MORB). Weshow that isotopic compositions of Indian Ocean OIB are consistentwith sampling of a regional reservoir in which the same twocomponents exist in variable proportions (generally 1–5wt.% of the continent-derived component). The distinctive isotopiccompositions of Indian Ocean MORB are consistent with mixingof a similar component into an Atlantic-or Pacific-like MORBmantle source. The relatively unradiogenic 206Pb/204Pb isotopiccompositions of these ‘enriched’ Indian Ocean mantlecomponents are unlike any present-day marine sediments and indicatethat their source has had 238U/204Pb ratios (µ) much lowerthan typical upper continental crust for > 1 Ga. These agespre-date the formation of Gondwana (600-130 Ma) and thereforedo not support sediment subduction beneath Gondwana as the causeof enrichment in the sub-Indian Ocean mantle. We propose thatthe enrichment of Indian Ocean OIB sources was due to subductionof upper-crustal material beneath a Proterozoic precursor ofGondwana at 1–2 Ga. The enrichment of the Indian OceanMORB sources could have had a similar origin, or could havebeen derived from sub-continental lithospheric mantle returnedto the asthenospheric mantle, perhaps during the break-up ofGondwana (200–130 Ma).  相似文献   

20.
The Cameroon line comprises a 1600-km long Y-shaped chain of< 30 m.y. old volcanoes and <70 m.y. old plutons extendinginto mainland Africa from the Atlantic island of Pagalu. Thedistribution of basaltic volcanic centres is ideal for comparingsub-continental and sub-oceanic sources for basalts and forstudying the influence of the lithosphere on magma generation.We report Nd, Sr, Pb and O isotopic data for more than thirty(principally basaltic) samples from all the main volcanic centrestogether with data for two granulite facies xenoliths. Thosebasalts which display no obvious evidence of crustal contaminationyield initial 87Sr/86Sr ratios ranging from 0.7029 to 0.7035,Nd between +2 and +7 and 206Pb/204Pb between 19?0 and 20?6.The Nd and Sr isotopic compositions define a field on the lefthand side of the ‘mantle array’ (that is with relativelyunradiogenic Sr) and include some data which show overlap withcompositions observed for St. Helena. 208Pb/204Pb ratios extendto 40?4—amongst the more radiogenic observed for alkalibasalts. The Nd and Sr isotopic data are similar in oceanicand continental sectors indicating that the magmas are derivedfrom generally similar mantle sources. Despite this overallsimple picture, the source of the Cameroon line volcanics hasin fact been variable in both time and space. Pb is less radiogenicand Sr is more radiogenic in transitional to hypersthene-normativecompositions. There is a progression to more radiogenic leadisotopic compositions with time for the Cameroon line as a wholethat is most strikingly displayed in the 30 m.y. eruptive historyof Principe. These space-time data are difficult to reconcilewith conventional plume models or with some dispersed ‘plumpudding’ models. The heterogeneities require isolationtimes considerably longer than the age of the south Atlanticsea floor (120 Ma). The eruptive lavas with the most radiogenicPb observed (accompanied by unradiogenic Nd) precisely straddlethe continental edge (i.e. occur in both oceanic and continentalsectors) with no dependency on Nd and Pb concentrations. A modelis proposed which links these observations with the destructionof lithosphere, and the impregnation of the uppermost mantleby the St. Helena hot spot during the formation of the SouthAtlantic ocean. This mantle was subsequently melted to formthe Cameroon line which appears to be derived from a risinghot zone initiated by the early plume activity. The magmaticproducts reflect the mantle mixing that took place during continentalbreakup, the consequent cooling and thickening of the lithosphereand the continued interaction between rising plume componentsand this lithosphere. The depth from which magmas are currentlybeing tapped at the continent/ocean boundary is estimated atless that 150 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号