首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 548 毫秒
1.
The Serbian province of Tertiary ultrapotassic volcanism isrelated to a post-collisional tectonic regime that followedthe closure of the Tethyan Vardar Ocean by Late Cretaceous subductionbeneath the southern European continental margin. Rocks of thisprovince form two ultrapotassic groups; one with affinitiesto lamproites, which is concentrated mostly in the central partsof the Vardar ophiolitic suture zone, and the other with affinitiesto kamafugites, which crops out in volcanoes restricted to thewestern part of Serbia. The lamproitic group is characterizedby a wide range of 87Sr/86Sri (0·70735–0·71299)and 143Nd/144Ndi (0·51251–0·51216), whereasthe kamafugitic group is isotopically more homogeneous witha limited range of 87Sr/86Sri (0·70599–0·70674)and 143Nd/144Ndi (0·51263–0·51256). ThePb isotope compositions of both groups are very similar (206Pb/204Pb18·58–18·83, 207Pb/204Pb 15·62–15·70and 208Pb/204Pb 38·74–38·99), falling withinthe pelagic sediment field and resembling Mesozoic flysch sedimentsfrom the Vardar suture zone. The Sr and Nd isotopic signaturesof the primitive lamproitic rocks correlate with rare earthelement fractionation and enrichment of most high field strengthelements (HFSE), and can be explained by melting of a heterogeneousmantle source consisting of metasomatic veins with phlogopite,clinopyroxene and F-apatite that are out of isotopic equilibriumwith the peridotite wall-rock. Decompression melting, with varyingcontributions from depleted peridotite and ultramafic veinsto the final melt, accounts for consistent HFSE enrichment andisotopic variations in the lamproitic group. Conversely, themost primitive kamafugitic rocks show relatively uniform Srand Nd isotopic compositions and trace element patterns, andsmall but regular variations of HFSE, indicating variable degreesof partial melting of a relatively homogeneously metasomatizedmantle source. Geochemical modelling supports a role for phlogopite,apatite and Ti-oxide in the source of the kamafugitic rocks.The presence of two contrasting ultrapotassic suites in a restrictedgeographical area is attributable to the complex geodynamicsituation involving recent collision of a number of microcontinentswith contrasting histories and metasomatic imprints in theirmantle lithosphere. The geochemistry of the Serbian ultrapotassicrocks suggests that the enrichment events that modified thesource of both lamproitic and kamafugitic groups were relatedto Mesozoic subduction events. The postcollisional environmentof the northern Balkan region with many extensional episodesis consistent at regional and local levels with the occurrenceof ultrapotassic rocks, providing a straightforward relationshipbetween geodynamics and volcanism. KEY WORDS: kamafugite; lamproite; Mediterranean; Serbia; mantle metasomatism; veined mantle; petrogenesis  相似文献   

2.
BELL  K.; SIMONETTI  A. 《Journal of Petrology》1996,37(6):1321-1339
New Nd (0.51261–0.51268), Pb (206Pb/204Pb: 19.24–19.26),and Sr (0.70437–0.70446) isotopic compositions from tennatrocarbonatite lavas, collected in June 1993 from OldoinyoLengai, the only known active carbonatite volcano, are relativelyuniform, and are similar to data from the 1960 and 1988 flows.Three of the samples contain silicate spheroids, one of whichhas Nd and Sr isotopic ratios similar to host natrocarbonatite,consistent with an origin by liquid immiscibility or the mixingof melts with similar isotopic compositions. Pb isotope datafor two samples of trona are inconsistent with its involvementin the genesis of natrocarbonatite. New Pb isotope data fromsilicate volcanic and plutonic blocks (ijolite, nephelinite,phonolite, syenite) from Oldoinyo Lengai are highly variable(206Pb/204Pb, 17.75–19.34; 207Pb/204Pb, 15.41–15.67;208Pb/204Pb, 37.79–39.67), and define near-linear arraysin Pb-Pb diagrams. The isotopic data for the silicate rocksfrom Oldoinyo Lengai are best explained by invoking discretepartial melting events which generate undersaturated alkalinesilicate magmas with distinct isotopic ratios. Pb isotope ratiosfrom most ijolites and phonolites are predominantly lower andmore variable than from the natrocarbonatites, and are attributedto interaction between silicate melts involving HIMU and EMIsource components and an additional component, such as lower-crustalgranulites, DMM or PREMA (prevalent mantle). Variations in Nd,Pb and Sr isotope ratios from Oldoinyo Lengai, among the largestyet documented from a single volcano, are attributed to mantlesource heterogeneity involving mainly the mixing of HIMU andEMI mantle components. Based on the new isotopic data from OldoinyoLengai and data from other East African carbonatites, and mantlexenoliths, we propose a two-stage model in an attempt to explainthe isotope variations shown by carbonatites in this area. Themodel involves (I) the release of metasomatizing agents withHIMU-like signatures from upwelling mantle (‘plume’)source, which in turn metasomatize the sub-continental (old,isotopically enriched, EMI-like) lithosphere, and (2) variabledegrees and discrete partial melting of the resulting heterogeneous,metasomatized lithosphere. KEY WORDS: carbonatite; isotopes; Oldoinyo Lengai; mantle plumes *Telephone: (613) 788–2660, ext. 4419. Fax: (613) 788–4490. e-mail: kbell{at}ccs.carleton.ca  相似文献   

3.
Eclogite xenoliths from the Colorado Plateau, interpreted asfragments of the subducted Farallon plate, are used to constrainthe trace element and Sr–Nd–Pb isotopic compositionsof oceanic crust subducted into the upper mantle. The xenolithsconsist of almandine-rich garnet, Na-clinopyroxene, lawsoniteand zoisite with minor amounts of phengite, rutile, pyrite andzircon. They have essentially basaltic bulk-rock major elementcompositions; their Na2O contents are significantly elevated,but K2O contents are similar to those of unaltered mid-oceanridge basalt (MORB). These alkali element characteristics areexplained by spilitization or albitization processes on thesea floor and during subduction-zone metasomatism in the fore-arcregion. The whole-rock trace element abundances of the xenolithsare variable relative to sea-floor-altered MORB, except forthe restricted Zr/Hf ratios (36·9–37·6).Whole-rock mass balances for two Colorado Plateau eclogite xenolithsare examined for 22 trace elements, Rb, Cs, Sr, Ba, Y, rareearth elements, Pb, Th and U. Mass balance considerations andmineralogical observations indicate that the whole-rock chemistriesof the xenoliths were modified by near-surface processes afteremplacement and limited interaction with their host rock, aserpentinized ultramafic microbreccia. To avoid these secondaryeffects, the Sr, Nd and Pb isotopic compositions of mineralsseparated from the xenoliths were measured, yielding 0·70453–0·70590for 87Sr/86Sr, –3·1 to 0·5 for Nd and 18·928–19·063for 206Pb/204Pb. These isotopic compositions are distinctlymore radiogenic for Sr and Pb and less radiogenic for Nd thanthose of altered MORB. Our results suggest that the MORB-likeprotolith of the xenoliths was metasomatized by a fluid equilibratedwith sediment in the fore-arc region of a subduction zone andthat this metasomatic fluid produced continental crust-likeisotopic compositions of the xenoliths. KEY WORDS: Colorado Plateau; eclogite xenolith; geochemistry; subducted oceanic crust  相似文献   

4.
The effects of source composition and source evolution duringprogressive partial melting on the chemistry of mantle-derivedmid-ocean ridge basalt (MORB) melts were tested using a comprehensivegeochemical and Sr–Nd–Pb isotopic dataset for fresh,magnesian basaltic glasses from the Miocene Macquarie Islandophiolite, SW Pacific. These glasses: (1) exhibit clear parent–daughterrelationships; (2) allow simple reconstruction of primary meltcompositions; (3) show exceptional compositional diversity (e.g.K2O/TiO2 0·09–0·9; La/Yb 1·5–22;206Pb/204Pb 18·70–19·52); (4) preserve changesin major element and isotope compositions, which are correlatedwith the degree of trace element enrichment (e.g. La/Sm). Conventionalmodels for MORB genesis invoke melting of mantle that is heterogeneouson a small scale, followed by binary mixing of variably lithophileelement-enriched melt batches. This type of model fails to explainthe compositions of the Macquarie Island glasses, principallybecause incompatible element ratios (e.g. Nb/U, Sr/Nd) and Pbisotope ratios vary non-systematically with the degree of enrichment.We propose that individual melt batches are produced from instantaneous‘parental’ mantle parageneses, which change continuouslyas melting and melt extraction proceeds. This concept of a ‘dynamicsource’ combines the models of small-scale mantle heterogeneitiesand fractional melting. A dynamic source is an assemblage oflocally equilibrated mantle solids and a related melt fraction.Common MORB magmas that integrate the characteristics of numerousmelt batches therefore tend to conceal the chemical and isotopicidentity of a dynamic source. This study shows that isotoperatios of poorly mixed MORB melts are a complex function ofthe dynamic source evolution, and that the range in isotoperatios within a single MORB suite does not necessarily requiremixing of diverse components. KEY WORDS: mid-ocean ridge basalt; Macquarie Island; radiogenic isotopes; mantle; geochemistry  相似文献   

5.
The Benue Trough is a continental rift related to the openingof the equatorial domain of the South Atlantic which was initiatedin Late Jurassic-Early Cretaceous times. Highly diversifiedand volumetrically restricted Mesozoic to Cenozoic magmaticproducts are scattered throughout the rift. Three periods ofmagmatic activity have been recognized on the basis of 40 Ar-39Ar ages: 147–106 Ma, 97–81 Ma and 68–49 Ma.Trace element and Sr, Nd and Pb isotope determinations, performedon selected basaltic samples, allow two groups of basaltic rocksto be identified: (1) a group with a tholeiitic affinity, withZr/Nb=7–11.1; La/Nb = 0.77–1; 87Sr/86Sr; =0.7042–0.7065143Nd/144Nd;i = 0.5125–0.5127; 206Pb/204Pbi = 17.59–18.48;(2) a group with an alkaline affinity, with Zr/Nb = 3.6–6.8;La/Nb=0.53–0.66; 87Sr/86 Sri=0.7029–0.7037; 143Nd/144Ndi=0.5126–0.5129;206Pb/204Pbi = 18.54–20.42. The geochemical data leadto the conclusion that three types of mantle sources were involvedin the genesis of the Mesozoic to Cenozoic basaltic rocks ofthe Benue, without significant crustal contamination: (1) anenriched subcontinental lithospheric mantle from which the tholeiiticbasalts were derived; (2) a HIMU-type (plume) component fromwhich the alkaline basalticrocks originated; (3) a depletedasthenospheric mantle (N-MORB-type source), which was involvedin the genesis of the alkaline basaltic magmas. According to(1) the postulated location of the St Helena hot spot in theEquatorial Atlantic at about 130 Ma and (2) the isotopic compositionof the alkaline basaltic rocks of the Benue Trough and theirgeochemical similarity with the basalts of St Helena, we concludethat the St Helena plume was involved in the genesis of thealkaline magmatism of the Benue at the time of opening of theEquatorial Atlantic. Moreover, the geochemical similarity betweenthe alkaline magmatism of the Benue Trough and that of the CameroonLine suggests that both magmatic provinces were related to theSt Helena plume. Finally, the temporal change of the mantlesources observed in the Benue Trough can be accounted for bythe recent models of plume dynamics, in the general frameworkof opening of the Equatorial Atlantic. KEY WORDS: Benue Trough; Mesozoic to Cenozoic magmatism; Equatorial Atlantic; mantle sources; St Helena plume *;Corresponding author.  相似文献   

6.
Within the Zitácuaro–Valle de Bravo (ZVB) regionof the central Mexican Volcanic Belt (MVB), three lava serieshave erupted during the Quaternary: (1) high-K2O basaltic andesitesand andesites; (2) medium-K2O basaltic andesites, andesitesand dacites; (3) high-TiO2 basalts and basaltic andesites. Thedominant feature of the first two groups is the lack of plagioclaseaccompanying the various ferromagnesian phenocrysts (olivine,orthopyroxene, augite, and hornblende) in all but the dacites.This absence of plagioclase in the phenocryst assemblages ofthe high-K2O and medium-K2O intermediate lavas is significantbecause it indicates high water contents during the stage ofphenocryst equilibration. In contrast, the high-TiO2 group ischaracterized by phenocrysts of plagioclase and olivine. Thespatial distribution of these three lava series is systematic.The southern section of the ZVB transect, 280–330 km fromthe Middle America Trench (MAT), is characterized by high-K2Omelts that are relatively enriched in fluid-mobile elementsand have the highest 87Sr/86Sr ratios. Medium-K2O basaltic andesiteand andesite lavas are present throughout the transect, butthose closest to the MAT are MgO-rich (3·5–9·4wt %) and have phenocryst assemblages indicative of high magmaticwater contents (3·5–6·5 wt % water) andrelatively low temperatures (950–1000°C). In markedcontrast, the northern section of the ZVB transect (380–480km from the MAT) has high-TiO2, high field strength element(HFSE)-enriched magmas that have comparatively dry (< 1·5wt % magmatic water) and hot (1100–1200°C) phenocrystequilibration conditions. The central section of the ZVB transect(330–380 km from the MAT) is a transition zone and producesmoderately light rare earth element (LREE) and large ion lithophileelement (LILE)-enriched, medium-K2O lavas with phenocryst assemblagesindicative of intermediate (1·5–3·5 wt %)water contents and temperatures. The high-K2O series compositionsare the most enriched in LILE and LREE, with a narrow rangeof radiogenic 87Sr/86Sr from 0·704245 to 0·704507,143Nd/144Nd values ranging from 0·512857 to 0·512927(Nd = 4·27–5·63), and 208Pb/204Pb valuesfrom 38·248 to 38·442, 207Pb/204Pb values from15·563 to 15·585, and 206Pb/204Pb values from18·598 to 18·688. The medium-K2O series compositionsare only moderately enriched in the LILE and LREE, with a broaderrange of 87Sr/86Sr, but similar 143Nd/144Nd and 208Pb/204Pbvalues to those of the high-K2O series. In contrast, the high-TiO2series compositions have little enrichment in LILE or LREE andinstead are enriched in the HFSE and heavy rare earth elements(HREE). The high-TiO2 lavas are isotopically distinct in theirlower and narrower range of 143Nd/144Nd. The isotopic variationsare believed to reflect the upper mantle magma source regionsas the low content of phenocrysts in most lavas precludes significantupper crustal assimilation or magma mixing, other than thatrepresented by the presence of quartz xenocrysts (< 2 vol.%) with rhyolitic glass inclusions, which are found in manyof these lavas. The systematic spatial variation in compositionof the three lava series is a reflection of the underlying subduction-modifiedmantle and its evolution. KEY WORDS: central Mexico; geochemistry; isotopes; Quaternary volcanism; hydrous lavas  相似文献   

7.
Major and trace element, Sr–Nd–Pb isotope and mineralchemical data are presented for newly discovered ultrapotassiclavas in the Tangra Yumco–Xuruco graben in southern Tibet.The ultrapotassic lavas are characterized by high MgO, K2O andTiO2, low Al2O3 and Na2O contents, and also have high molarK2O/Al2O3, molar (K2O + Na2O)/Al2O3 and K2O/Na2O ratios. Theirhigh abundances of incompatible trace elements such as largeion lithophile elements (LILE) and light rare earth elements(LREE) reach the extreme levels typical of lamproites. The lamproitesshow highly radiogenic 87Sr/86Sr (0· 7166–0·7363) and unradiogenic 143Nd/144Nd (0· 511796–0·511962), low 206Pb/204Pb (18· 459–18· 931),and elevated radiogenic 207Pb/204Pb (15· 6732–15·841) and 208Pb/204Pb (39· 557–40· 058) ratios.On the basis of their geochemical and isotopic systematics,the lamproites in south Tibet have a distinct magma source thatcan be differentiated from the sources of potassic lavas inthe east Lhasa and Qiangtang blocks. Their high Nb/Ta ratios(17· 10–19· 84), extremely high Th/U ratios(5· 70–13· 74) and distinctive isotope compositionsare compatible with a veined mantle source consisting of partialmelts of subducted Tethyan oceanic sediments and sub-continentallithospheric depleted mantle. Identification of the lamproitesand the delineation of their mantle source provide new evidencerelevant for models of the uplift and extension of the Tibetanplateau following the Indo-Asia collision. Metasomatism by partialmelts from isotopically evolved, old sediment subducted on theyoung Tethyan slab is an alternative explanation for PrecambrianNd and Pb model ages. In this model, differences in isotopiccomposition along-strike are attributed to differences in thetype of sediment being subducted, thus obviating the need formultiple metasomatic events over hundreds of million years.The distribution of lamproites, restricted within a north–south-trendinggraben, indicates that the initiation of east–west extensionin south Tibet started at 25 Ma. KEY WORDS: lamproites; subducted oceanic sediment; Tibetan active continental collision belt  相似文献   

8.
The processes operating in the development of chemical zonationin silicic magma chambers have been addressed with a Sr–Nd–Pb–Hf–Thisotope study of the chemically zoned trachyte pumice depositof the Fogo A eruption, Fogo volcano, Azores. Sr isotopic variationis observed in whole rocks, glass separates and sanidine phenocrysts(whole-rock 87Sr/86Sr: 0·7049–0·7061; glass87Sr/86Sr: 0·7048–0·7052; sanidine 87Sr/86Sr:0·7048–0·7062). Thorium isotopic variationis observed in glass separates, with (230Th/232Th)o rangingfrom 0·8737 to 0·8841, and exhibiting a negativecorrelation with Sr isotopes. The Nd, Pb and Hf isotopic compositionsof the whole-rock trachytic pumices are invariant and indistinguishablefrom basalts flanking the volcano. The Sr isotope variationsin the whole rocks are proposed to be the result of three distinctprocesses: contamination of the Fogo A magma by assimilationof radiogenic seawater-altered syenite wall rock, to explainthe Sr and Th isotopic compositions of the glass separates;incorporation of xenocrysts into the trachytic magma, requiredto explain the range in feldspar Sr isotopic compositions; andpost-eruptive surface alteration. This study emphasizes theimportance of determining the isotopic composition of glassand mineral separates rather than whole rocks when pre-eruptivemagmatic processes are being investigated. KEY WORDS: Azores; open-system processes; Sr isotopes; trachytic pumices; zoned magma chambers  相似文献   

9.
We report Sr-, Nd- and Pb-isotopic compositions for the lavasof Mauritius, the second youngest volcanic island in the Réunionhotspot. The lavas of the Older Series (7·8–5·5Ma) have identical isotopic compositions (87Sr/86Sr = 0·70411to 0·70422,143Nd/144Nd = 0·512865 to 0·512854,and 206Pb/204Pb = 19·016 to 19·041) to those ofRéunion, where the center of volcanic activity is currentlylocated. The lavas of the Intermediate Series (3·5–1·9Ma) and Younger Series (0·70–0·17 Ma) areshifted to lower Sr-isotopic compositions (0·70364–0·70394,with 143Nd/144Nd = 0·512813 to 0·512948 and 206Pb/204Pb= 18·794 to 18·984). The Intermediate Series lavashave similar trace-element characteristics (e.g. Zr–Nb,Ba–Y) to those of Rodrigues, in both cases requiring theinvolvement of an enriched mantle-like component in the mantlesource. During the volcanic history of Mauritius, the magmaslost the principal isotopic characteristics of the Réunionhotspot with time, and became gradually imprinted with the isotopicsignature of a shallower mantle source that produced the CentralIndian Ridge basalts. KEY WORDS: hotspot; isotopes; Mauritius; Réunion; trace element  相似文献   

10.
The volcanic history of Santo Antão, NW Cape Verde Islands,includes the eruption of basanite–phonolite series magmasbetween 7·5 and 0·3 Ma and (melilite) nephelinite–phonoliteseries magmas from 0·7 to 0·1 Ma. The most primitivevolcanic rocks are olivine ± clinopyroxene-phyric, whereasthe more evolved rocks have phenocrysts of clinopyroxene ±Fe–Tioxide ± kaersutite ± haüyne ± titanite± sanidine; plagioclase occurs in some intermediate rocks.The analysed samples span a range of 19–0·03% MgO;the most primitive have 37–46% SiO2, 2·5–7%TiO2 and are enriched 50–200 x primitive mantle in highlyincompatible elements; the basanitic series is less enrichedthan the nephelinitic series. Geochemical trends in each seriescan be modelled by fractional crystallization of phenocrystassemblages from basanitic and nephelinitic parental magmas.There is little evidence for mineral–melt disequilibrium,and thus magma mixing is not of major importance in controllingbulk-rock compositions. Mantle melting processes are modelledusing fractionation-corrected magma compositions; the modelssuggest 1–4% partial melting of a heterogeneous mantleperidotite source at depths of 90–125 km. Incompatibleelement enrichment among the most primitive magma types is typicalof HIMU OIB. The Sr, Nd and Pb isotopic compositions of theSanto Antão volcanic sequence and geochemical characterchange systematically with time. The older volcanic rocks (7·5–2Ma) vary between two main mantle source components, one of whichis a young HIMU type with 206Pb/204Pb = 19·88, 7/4 =–5, 8/4 0, 87Sr/86Sr = 0·7033 and 143Nd/144Nd= 0·51288, whereas the other has somewhat less radiogenicSr and Pb and more radiogenic Nd. The intermediate age volcanicrocks (2–0·3 Ma) show a change of sources to two-componentmixing between a carbonatite-related young HIMU-type source(206Pb/204Pb = 19·93, 7/4 = –5, 8/4 = –38,87Sr/86Sr = 0·70304) and a DM-like source. A more incompatibleelement-enriched component with 7/4 > 0 (old HIMU type) isprominent in the young volcanic rocks (0·3–0·1Ma). The EM1 component that is important in the southern CapeVerde Islands appears to have played no role in the petrogenesisof the Santo Antão magmas. The primary magmas are arguedto be derived by partial melting in the Cape Verde mantle plume;temporal changes in composition are suggested to reflect layeringin the plume conduit. KEY WORDS: radiogenic isotopes; geochemistry; mantle melting; Cape Verde  相似文献   

11.
SIMONETTI  A.; BELL  K. 《Journal of Petrology》1994,35(6):1597-1621
Initial Nd, Pb, and Sr isotopic data from carbonatites and associatedintrusive silica-undersaturated rocks from the early Jurassic,Chilwa Island complex, located in southern Malawi, central Africa,suggest melt derivation from a Rb/Sr- and Nd/Sm-depleted butTh/Pb- and U/Pb-enriched mantle source. Initial 143Nd/144Nd(0.51265–0.51270) isotope ratios from the Chilwa Islandcarbonatites are relatively constant, but their initial 87Sr/86Sr(0.70319–0.70361) ratios are variable. The 18Osmow (9.53–14.15%0)and 13CPDB (–3.27 to –1.50%0) isotope ratios ofthe carbonates are enriched relative to the range of mantlevalues, and there is a negative correlation between 18O andSr isotope ratios. The variations in Sr, C, and O isotopic ratiosfrom the carbonatites suggest secondary processes, such as interactionwith meteoric groundwater during late-stage carbonatite activity.The initial 143Nd/144Nd (0.51246 0.51269) and initial 87Sr/86Sr(0.70344–0.70383) isotope ratios from the intrusive silicaterocks are more variable, and the Sr more radiogenic than thosefrom the carbonatites. Most of the Pb isotope data from Chilwa Island plot to the rightof the geochron and close to the oceanic regression line definedby MORBs and OIBs. Initial Pb isotopic ratios from both carbonatites(207Pb/204Pb 15.63–15.71; 206Pb/204Pb 19.13–19.78)and silicate rocks (207Pb/204Pb 15.61–15.72; 206Pb/204Pb18.18–20.12) show pronounced variations, and form twogroups in Pb-Pb plots. The isotopic variations shown by Nd, Pb, and Sr for the ChilwaIsland carbonatites and intrusive silicates suggest that thesemelts underwent different evolutionary histories. The chemicaldata, including isotopic ratios, from the carbonatites and olivinenephelinites are consistent with magmatic differentiation ofa carbonated-nephelinite magma. A model is proposed in whichdifferentiation of the carbonatite magma was accompanied byfenitization (metasomatic alteration) of the country rocks bycarbonatite-derived fluids, and subsequent alteration of thecarbonatite by hydrothermal activity. The chemical and isotopicdata from the non-nephelinitic intrusive silicate rocks reveala more complex evolutionary history, involving either selectivebinary mixing of lower-crustal granulites and a nephelinitemagma, or incremental batch melting of a depleted source andsubsequent crustal contamination.  相似文献   

12.
Geochemical Evidence for Slab Melting in the Trans-Mexican Volcanic Belt   总被引:3,自引:0,他引:3  
Geochemical studies of Plio-Quaternary volcanic rocks from theValle de Bravo–Zitácuaro volcanic field (VBZ) incentral Mexico indicate that slab melting plays a key role inthe petrogenesis of the Trans-Mexican Volcanic Belt. Rocks fromthe VBZ are typical arc-related high-Mg andesites, but two differentrock suites with distinct trace element patterns and isotopiccompositions erupted concurrently in the area, with a traceelement character that is also distinct from that of other Mexicanvolcanoes. The geochemical differences between the VBZ suitescannot be explained by simple crystal fractionation and/or crustalassimilation of a common primitive magma, but can be reconciledby the participation of different proportions of melts derivedfrom the subducted basalt and sediments interacting with themantle wedge. Sr/Y and Sr/Pb ratios of the VBZ rocks correlateinversely with Pb and Sr isotopic compositions, indicating thatthe Sr and Pb budgets are strongly controlled by melt additionsfrom the subducted slab. In contrast, an inverse correlationbetween Pb(Th)/Nd and 143Nd/144Nd ratios, which extend to lowerisotopic values than those for Pacific mid-ocean ridge basalts,indicates the participation of an enriched mantle wedge thatis similar to the source of Mexican intraplate basalts. In addition,a systematic decrease in middle and heavy rare earth concentrationsand Nb/Ta ratios with increasing SiO2 contents in the VBZ rocksis best explained if these elements are mobilized to some extentin the subduction flux, and suggests that slab partial fusionoccurred under garnet amphibolite-facies conditions. KEY WORDS: arcs; mantle; Mexico; sediment melting; slab melting  相似文献   

13.
Elemental, isotopic, and mineral compositions as well as rocktextures were examined in samples from Popocatépetl volcanoand immediately surrounding monogenetic scoria cones of theSierra Chichinautzin Volcanic Field, central Mexico. Magma generationis strongly linked to the active subduction regime to the south.Rocks range in composition from basalt to dacite, but Popocatépetlsamples are generally more evolved and have mineral compositionsand textures consistent with more complicated, multi-stage evolutionaryprocesses. High-Mg calc-alkaline and more alkaline primitivemagmas are present in the monogenetic cones. Systematic variationsin major and trace element compositions within the monogeneticsuite can mostly be explained by polybaric fractional crystallizationprocesses in small and short-lived magmatic systems. In contrast,Popocatépetl stratovolcano has produced homogeneous magmacompositions from a shallow, long-lived magma chamber that isperiodically replenished by primitive basaltic magmas. The currenteruption (1994–present) has produced silicic dome lavasand pumice clasts that display mingling of an evolved daciticcomponent with an olivine-bearing mafic component. The longevityof the magma chamber hosted in Cretaceous limestones has fosteredinteraction with these rocks as evidenced by the chemical andisotopic compositions of the different eruptive products, contact-metamorphosedxenoliths, and fumarolic gases. Popocatépetl volcanicproducts display a considerable range of 87Sr/86Sr (0·70397–0·70463)and Nd (+6·2 to +3·0) whereas Pb isotope ratiosare relatively homogeneous (206Pb/204Pb 18·61–18·70;207Pb/204Pb 15·56–15·60). KEY WORDS: Popocatépetl; Sierra Chichinautzin Volcanic Field; arc petrogenesis; radiogenic isotopes  相似文献   

14.
The Dominique drill hole has penetrated the volcanic shieldof Eiao island (Marquesas) down to a depth of 800 m below thesurface and 691•5 m below sea-level with a percentage ofrecovery close to 100%. All the lavas encountered were emplacedunder subaerial conditions. From the bottom to the top are distinguished:quartz and olivine tholeiites (800–686 m), hawaiites,mugearites and trachyte (686–415 m), picritic basalts,olivine tholeiites and alkali basalts (415–0 m). The coredvolcanic pile was emplaced between 5•560•07 Ma and5•220•06 Ma. Important chemical changes occurred during this rather shorttime span (0•34 0•13 Ma). In particular, the lowerbasalts differ from the upper ones in their lower concentrationsof incompatible trace elements and their Sr, Nd and Pb isotopicsignature being closer to the HIMU end-member, whereas the upperbasalts are EM II enriched. The chemical differences betweenthe two basalt groups are consistent with a time-related decreasein the degree of partial melting of isotopically heterogeneoussources. It seems unlikely that these isotopic differences reflectchanges in plume dynamics occurring in such a short time span,and we tentatively suggest that they result from a decreasingdegree of partial melting of a heterogeneous EM II–HIMUmantle plume. Some of the intermediate magmas (the uppermost hawaiites andmugearites) are likely to be derived from parent magmas similarto the associated upper basalts through simple fractionationprocesses. Hawaiites, mugearites and a trachyte from the middlepart of the volcanic sequence have Sr–Nd isotopic signaturessimilar to those of the lower basalts but they differ from themin their lower 206Pb/204Pb ratios, resulting in an increasedDMM signature. Some of the hawaiites-mugearites also displayspecific enrichments in P2O5, Sr and REE which are unlikelyto result from simple fractionation processes. The isotopicand incompatible element compositions of the intermediate rocksare consistent with the assimilation of MORB-derived wall rocksduring fractional crystallization. The likely contaminant correspondsto Pacific oceanic crust, locally containing apatite-rich veinsand hydrothermal sulphides. We conclude that a possible explanationfor the DMM signature in ocean island basalts is a chemicalcontribution from the underlying oceanic crust and that studiesof intermediate rocks may be important to document the originof the isotopic features of plume-derived magmas. KEY WORDS: alkali basalt; assimilation; mantle heterogeneity; Marquesas; tholeiile *Corresponding author  相似文献   

15.
Detailed petrographic and geochemical data and Sr and Nd isotopecompositions of enclaves and host-granite are reported for oneof the largest strongly peraluminous cordierite-bearing intrusionsof the Hercynian Sardinia-Corsica Batholith: the San BasilioGranite. Compared with other peraluminous series, the San BasilioGranite has a ‘non-minimum melt’ composition andshows variations primarily owing to fractionation of early-crystallizedplagioclase, quartz and biotite. Crystallization age is constrainedat 305 Ma, by Rb-Sr whole-rock age [30523 Ma with (87Sr/86Sr)i= 0.711050.00041], and occurred during late Hercynian tectonicevents. Nd(305Ma) values range from –7.8 to –7.5.The San Basilio Granite contains both magmatic and metamorphicenclaves. Magmatic enclaves, similar to mafic microgranularenclaves common in calc-alkaline granitoids, are tonalitic incomposition and show a variation in silica content from 60.3to 67.7 wt % correlating with a variation in (87Sr/86 Sr) (305Ma)and Nd (305 Ma) from 0.7092 to 0.7109 and from –6.6 to–7.4, respectively. Together with petrographic and othergeochemical data, the Sr and Nd isotopic data record differentstages in a complex homogenization process of an unrelated maficmagma with a crustal melt. A process of simple mixing may accountfor the variations of nonalkali elements and, to some extent,of Sr and Nd isotopes, whereas the distribution of alkali elementsrequires diffusioncontrolled mass transfer. Petrographic andmineralogical data on metamorphic enclaves and geochemical modellingfor trace elements in granite indicate melt generation by high-degreepartial melting involving biotite breakdown of a dominantlyquartzo-feldspathic protolith at about T>750–800Cand P>6 kbar leaving a granulite facies garnet-bearing residue,followed by emplacement at 3 kbar. Nd(305Ma) values of thegranite fall within the range defined by the pre-existing metamorphicrocks but (87Sr/86Sr) (305Ma) ratios are lower, indicating involvementof at least two distinct components: a dominant crustal componentand a minor well-mixed mafic end-member. These data point toa decoupling between the Sr-Nd isotope systematics and majorand trace element compositions, suggesting that the effect ofthe mafic component was minor on granite major and trace elementconcentrations, but significant on Sr and Nd isotopes. The studyof the magmatic enclaves and the isotopic evidence demonstratethat unrelated mafic magmas, probably derived from the mantle,had a close spatial and temporal association with the productionof ‘on-minimum melt’ strongly peraluminous granites,and support the proposal that heat from the mafic magma contributedto crustal melting. KEY WORDS: cordierite-bearing granite; enclaves; felsic-mafic interaction; Sardinia-Corsica Batholith; Sr and Nd isotopes *Corresponding author.  相似文献   

16.
Major and trace element and Sr–Nd–Pb isotopic variationsin mafic volcanic rocks hve been studied in a 220 km transectacross the Kamchatka arc from the Eastern Volcanic Front, overthe Central Kamchatka Depression to the Sredinny Ridge in theback-arc. Thirteen volcanoes and lava fields, from 110 to 400km above the subducted slab, were sampled. This allows us tocharacterize spatial variations and the relative amount andcomposition of the slab fluid involved in magma genesis. TypicalKamchatka arc basalts, normalized for fractionation to 6% MgO,display a strong increase in large ion lithophile, light rareearth and high field strength elements from the arc front tothe back-arc. Ba/Zr and Ce/Pb ratios, however, are nearly constantacross the arc, which suggests a similar fluid input for Baand Pb. La/Yb and Nb/Zr increase from the arc front to the back-arc.Rocks from the Central Kamchatka Depression range in 87Sr/86Srfrom 0·70334 to 0·70366, but have almost constantNd isotopic compositions (143Nd/144Nd 0·51307–0·51312).This correlates with the highest U/Th ratios in these rocks.Pb-isotopic ratios are mid-ocean ridge basalt (MORB)-like butdecrease slightly from the volcanic front to the back-arc. Theinitial mantle source ranged from N-MORB-like in the volcanicfront and Central Kamchatka Depression to more enriched in theback-arc. This enriched component is similar to an ocean-islandbasalt (OIB) source. Variations in (CaO)6·0–(Na2O)6·0show that degree of melting decreases from the arc front tothe Central Kamchatka Depression and remains constant from thereto the Sredinny Ridge. Calculated fluid compositions have asimilar trace element pattern across the arc, although minordifferences are implied. A model is presented that quantifiesthe various mantle components (variably depleted N-MORB-mantleand enriched OIB-mantle) and the fluid compositions added tothis mantle wedge. The amount of fluid added ranges from 0·7to 2·1%. The degree of melting changes from  相似文献   

17.
Several spinel peridotite xenoliths from Spitsbergen have Sr–Ndisotopic compositions that plot to the right of the ‘mantlearray’ defined by oceanic basalts and the DM end-member(depleted mantle, with low 87Sr/86Sr and high 143Nd/144Nd).These xenoliths also show strong fractionation of elements withsimilar compatibility (e.g. high La/Ce), which cannot be producedby simple mixing of light rare earth element-depleted peridotiteswith ocean island basalt-type or other enriched mantle melts.Numerical simulations of porous melt flow in spinel peridotitesapplied to Sr–Nd isotope compositions indicate that thesefeatures of the Spitsbergen peridotites can be explained bychemical fractionation during metasomatism in the mantle. ‘Chromatographic’effects of melt percolation create a transient zone where thehost depleted peridotites have experienced enrichment in Sr(with a radiogenic isotope composition) but not in Nd, thusproducing Sr–Nd decoupling mainly controlled by partitioncoefficients and abundances of Sr and Nd in the melt and theperidotite. Therefore, Sr–Nd isotope decoupling, earlierreported for some other mantle peridotites worldwide, may bea signature of metasomatic processes rather than a source-relatedcharacteristic, contrary to models that invoke mixing with hypotheticalSr-rich fluids derived from subducted oceanic lithosphere. Pbisotope compositions of the Spitsbergen xenoliths do not appearto be consistently affected by the metasomatism. KEY WORDS: Spitsbergen; lithospheric mantle; metasomatism; radiogenic isotopes; theoretical modelling  相似文献   

18.
An 40Ar/39Ar age of 45·1 Ma determined for lavas fromnorthern Saipan confirms that these high-silica rhyolites eruptedduring the ‘proto-arc’ stage of volcanism in theIzu–Bonin–Mariana system, which is characterizedelsewhere by eruption of boninitic lavas. Incompatible traceelement concentrations and Sr, Hf, Nd, and Pb isotope ratiosfor these rhyolites are transitional between those of c. 48Ma boninitic lavas and post-38 Ma ‘first-arc’ andesitesand dacites from Saipan and Rota that have typical subduction-relatedcompositions. These transitional compositions are modeled bycrystal fractionation of parental tholeiitic basalt combinedwith assimilation of young boninitic crust. A second stage ofRayleigh fractionation in the upper crust is required by SiO2concentrations that exceed 77 wt % and near-zero compatibleelement concentrations. First-arc magma compositions are consistentwith fractionation of basalt and assimilation of crust similarin composition to the first-arc magmas themselves. The mantlesources of the proto-arc and first-arc lavas from Saipan andRota are similar to those of Philippine back-arc basin basaltsbased on Nd and Hf isotopic compositions. The Pb isotope compositionsof these lavas are between those of Pacific sea-floor basaltsand Jurassic and younger cherty and clay-rich sediments. Thiscontrasts with the boninitic proto-arc volcanic rocks from Guamand Deep Sea Drilling Project Sites 458 and 459 that have Pbisotope compositions similar to Pacific basin basalts and volcaniclasticsediments. The preferred explanation for the difference in thenature of proto-arc volcanism between Saipan and other fore-arclocations is that the crust ceased extending 3–4 Myr earlierbeneath Saipan. This was caused by a change from mantle upwelling,fore-arc extension, and shallow melting to an environment dominatedby more normal mantle wedge convection, stable crust, and deepermelting. KEY WORDS: rhyolite; andesite; Mariana arc; isotope ratios; trace elements  相似文献   

19.
Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountainsvolcanic field (Montana, USA), derived from the lower lithosphereof the Wyoming craton, can be divided based on textural criteriainto tectonite and cumulate groups. The tectonites consist ofstrongly depleted spinel lherzolites, harzburgites and dunites.Although their mineralogical compositions are generally similarto those of spinel peridotites in off-craton settings, somecontain pyroxenes and spinels that have unusually low Al2O3contents more akin to those found in cratonic spinel peridotites.Furthermore, the tectonite peridotites have whole-rock majorelement compositions that tend to be significantly more depletedthan non-cratonic mantle spinel peridotites (high MgO, low CaO,Al2O3 and TiO2) and resemble those of cratonic mantle. Thesecompositions could have been generated by up to 30% partialmelting of an undepleted mantle source. Petrographic evidencesuggests that the mantle beneath the Wyoming craton was re-enrichedin three ways: (1) by silicate melts that formed mica websteriteand clinopyroxenite veins; (2) by growth of phlogopite fromK-rich hydrous fluids; (3) by interaction with aqueous fluidsto form orthopyroxene porphyroblasts and orthopyroxenite veins.In contrast to their depleted major element compositions, thetectonite peridotites are mostly light rare earth element (LREE)-enrichedand show enrichment in fluid-mobile elements such as Cs, Rb,U and Pb on mantle-normalized diagrams. Lack of enrichment inhigh field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf)suggests that the tectonite peridotites have been metasomatizedby a subduction-related fluid. Clinopyroxenes from the tectoniteperidotites have distinct U-shaped REE patterns with strongLREE enrichment. They have 143Nd/144Nd values that range from0·5121 (close to the host minette values) to 0·5107,similar to those of xenoliths from the nearby Highwood Mountains.Foliated mica websterites also have low 143Nd/144Nd values (0·5113)and extremely high 87Sr/86Sr ratios in their constituent phlogopite,indicating an ancient (probably mid-Proterozoic) enrichment.This enriched mantle lithosphere later contributed to the formationof the high-K Eocene host magmas. The cumulate group rangesfrom clinopyroxene-rich mica peridotites (including abundantmica wehrlites) to mica clinopyroxenites. Most contain >30%phlogopite. Their mineral compositions are similar to thoseof phenocrysts in the host minettes. Their whole-rock compositionsare generally poorer in MgO but richer in incompatible traceelements than those of the tectonite peridotites. Whole-rocktrace element patterns are enriched in large ion lithophileelements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb,Ta Zr and Hf) as in the host minettes, and their Sr–Ndisotopic compositions are also identical to those of the minettes.Their clinopyroxenes are LREE-enriched and formed in equilibriumwith a LREE-enriched melt closely resembling the minettes. Thecumulates therefore represent a much younger magmatic event,related to crystallization at mantle depths of minette magmasin Eocene times, that caused further metasomatic enrichmentof the lithosphere. KEY WORDS: ultramafic xenoliths; Montana; Wyoming craton; metasomatism; cumulates; minette  相似文献   

20.
This paper presents field, geochemical and isotopic (Sr, Nd,Pb) results on basalts from the Antipodes, Campbell and ChathamIslands, New Zealand. New 40Ar/39Ar age determinations alongwith previous K–Ar dates reveal three major episodes ofvolcanic activity on Chatham Island (85–82, 41–35,5 Ma). Chatham and Antipodes samples comprise basanite, alkaliand transitional basalts that have HIMU-like isotopic (206Pb/204Pb>20·3–20·8, 87Sr/86Sr <0·7033,143Nd/144Nd >0·5128) and trace element affinities(Ce/Pb 28–36, Nb/U 34–66, Ba/Nb 4–7). Thegeochemistry of transitional to Q-normative samples from CampbellIsland is explained by interaction with continental crust. Thevolcanism is part of a long-lived (100 Myr), low-volume, diffusealkaline magmatic province that includes deposits on the Northand South Islands of New Zealand as well as portions of WestAntarctica and SE Australia. All of these continental areaswere juxtaposed on the eastern margin of Gondwanaland at >83Ma. A ubiquitous feature of mafic alkaline rocks from this regionis their depletion in K and Pb relative to other highly incompatibleelements when normalized to primitive mantle values. The inversionof trace element data indicates enriched mantle sources thatcontain variable proportions of hydrous minerals. We proposethat the mantle sources represent continental lithosphere thathost amphibole/phlogopite-rich veins formed by plume- and/orsubduction-related metasomatism between 500 and 100 Ma. Thestrong HIMU signature (206Pb/204Pb >20·5) is consideredto be an in-grown feature generated by partial dehydration andloss of hydrophile elements (Pb, Rb, K) relative to more magmaphileelements (Th, U, Sr) during short-term storage at the base ofthe lithosphere. KEY WORDS: continental alkaline basalts; lithospheric mantle, mantle metasomatism; New Zealand; OIB, HIMU; Sr, Nd and Pb isotopes; West Antarctica  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号