首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Miocene–Quaternary Jemez Mountains volcanic field(JMVF), the site of the Valles caldera, lies at the intersectionof the Jemez lineament, a Proterozoic suture, and the CenozoicRio Grande rift. Parental magmas are of two types: K-depletedsilica-undersaturated, derived from the partial melting of lithosphericmantle with residual amphibole, and tholeiitic, derived fromeither asthenospheric or lithospheric mantle. Variability insilica-undersaturated basalts reflects contributions of meltsderived from lherzolitic and pyroxenitic mantle, representingheterogeneous lithosphere associated with the suture. The Kdepletion is inherited by fractionated, crustally contaminatedderivatives (hawaiites and mugearites), leading to distinctiveincompatible trace element signatures, with Th/(Nb,Ta) and La/(Nb,Ta)greater than, but K/(Nb,Ta) similar to, Bulk Silicate Earth.These compositions dominate the mafic and intermediate lavas,and the JMVF is therefore derived largely, and perhaps entirely,from melting of fertile continental Jemez lineament lithosphereduring rift-related extension. Significant variations in Pband Nd isotope ratios (206Pb/204Pb = 17·20–18·93;143Nd/144Nd = 0·51244–0·51272) result fromcrustal contamination, whereas 87Sr/86Sr is low and relativelyuniform (0·7040–0·7048). We compare theeffects of contamination by low-87Sr/86Sr crust with assimilationof high-87Sr/86Sr granitoid by partial melting, with Sr retainedin a feldspathic residue. Both models satisfactorily reproducethe isotopic features of the rocks, but the lack of a measurableEu anomaly in most JMVF mafic lavas is difficult to reconcilewith a major role for residual plagioclase during petrogenesis. KEY WORDS: Jemez Mountains volcanic field; Rio Grande rift; lithospheric mantle; crustal contamination; trace elements; radiogenic isotopes  相似文献   

2.
Neogene plateau lavas in Patagonia, southern Argentina, eastof the volcanic gap between the Southern and Austral VolcanicZones at 46·5° and 49·5°S are linked withasthenospheric slab window processes associated with the collisionof a Chile Ridge segment with the Chile Trench at 12 Ma. Thestrong ocean-island basalt (OIB)-like geochemical signatures(La/Ta <20; Ba/La <20; 87Sr/86Sr = 0·7035–0·7046;143Nd/144Nd = 0·51290–0·51261; 206Pb/204Pb= 18·3–18·8; 207Pb/204Pb = 15·57–15·65;208Pb/204Pb = 38·4–38·7) of these Patagonianslab window lavas contrast with the mid-ocean ridge basalt (MORB)-like,depleted mantle signatures of slab window lavas elsewhere inthe Cordillera (e.g. Antarctic Peninsula; Baja California).The Patagonian lavas can be divided into a voluminous  相似文献   

3.
The volcanic history of Santo Antão, NW Cape Verde Islands,includes the eruption of basanite–phonolite series magmasbetween 7·5 and 0·3 Ma and (melilite) nephelinite–phonoliteseries magmas from 0·7 to 0·1 Ma. The most primitivevolcanic rocks are olivine ± clinopyroxene-phyric, whereasthe more evolved rocks have phenocrysts of clinopyroxene ±Fe–Tioxide ± kaersutite ± haüyne ± titanite± sanidine; plagioclase occurs in some intermediate rocks.The analysed samples span a range of 19–0·03% MgO;the most primitive have 37–46% SiO2, 2·5–7%TiO2 and are enriched 50–200 x primitive mantle in highlyincompatible elements; the basanitic series is less enrichedthan the nephelinitic series. Geochemical trends in each seriescan be modelled by fractional crystallization of phenocrystassemblages from basanitic and nephelinitic parental magmas.There is little evidence for mineral–melt disequilibrium,and thus magma mixing is not of major importance in controllingbulk-rock compositions. Mantle melting processes are modelledusing fractionation-corrected magma compositions; the modelssuggest 1–4% partial melting of a heterogeneous mantleperidotite source at depths of 90–125 km. Incompatibleelement enrichment among the most primitive magma types is typicalof HIMU OIB. The Sr, Nd and Pb isotopic compositions of theSanto Antão volcanic sequence and geochemical characterchange systematically with time. The older volcanic rocks (7·5–2Ma) vary between two main mantle source components, one of whichis a young HIMU type with 206Pb/204Pb = 19·88, 7/4 =–5, 8/4 0, 87Sr/86Sr = 0·7033 and 143Nd/144Nd= 0·51288, whereas the other has somewhat less radiogenicSr and Pb and more radiogenic Nd. The intermediate age volcanicrocks (2–0·3 Ma) show a change of sources to two-componentmixing between a carbonatite-related young HIMU-type source(206Pb/204Pb = 19·93, 7/4 = –5, 8/4 = –38,87Sr/86Sr = 0·70304) and a DM-like source. A more incompatibleelement-enriched component with 7/4 > 0 (old HIMU type) isprominent in the young volcanic rocks (0·3–0·1Ma). The EM1 component that is important in the southern CapeVerde Islands appears to have played no role in the petrogenesisof the Santo Antão magmas. The primary magmas are arguedto be derived by partial melting in the Cape Verde mantle plume;temporal changes in composition are suggested to reflect layeringin the plume conduit. KEY WORDS: radiogenic isotopes; geochemistry; mantle melting; Cape Verde  相似文献   

4.
An 40Ar/39Ar age of 45·1 Ma determined for lavas fromnorthern Saipan confirms that these high-silica rhyolites eruptedduring the ‘proto-arc’ stage of volcanism in theIzu–Bonin–Mariana system, which is characterizedelsewhere by eruption of boninitic lavas. Incompatible traceelement concentrations and Sr, Hf, Nd, and Pb isotope ratiosfor these rhyolites are transitional between those of c. 48Ma boninitic lavas and post-38 Ma ‘first-arc’ andesitesand dacites from Saipan and Rota that have typical subduction-relatedcompositions. These transitional compositions are modeled bycrystal fractionation of parental tholeiitic basalt combinedwith assimilation of young boninitic crust. A second stage ofRayleigh fractionation in the upper crust is required by SiO2concentrations that exceed 77 wt % and near-zero compatibleelement concentrations. First-arc magma compositions are consistentwith fractionation of basalt and assimilation of crust similarin composition to the first-arc magmas themselves. The mantlesources of the proto-arc and first-arc lavas from Saipan andRota are similar to those of Philippine back-arc basin basaltsbased on Nd and Hf isotopic compositions. The Pb isotope compositionsof these lavas are between those of Pacific sea-floor basaltsand Jurassic and younger cherty and clay-rich sediments. Thiscontrasts with the boninitic proto-arc volcanic rocks from Guamand Deep Sea Drilling Project Sites 458 and 459 that have Pbisotope compositions similar to Pacific basin basalts and volcaniclasticsediments. The preferred explanation for the difference in thenature of proto-arc volcanism between Saipan and other fore-arclocations is that the crust ceased extending 3–4 Myr earlierbeneath Saipan. This was caused by a change from mantle upwelling,fore-arc extension, and shallow melting to an environment dominatedby more normal mantle wedge convection, stable crust, and deepermelting. KEY WORDS: rhyolite; andesite; Mariana arc; isotope ratios; trace elements  相似文献   

5.
The East African Rift System is important to understanding plume-initiatedrifting as manifest in the geochemistry of mafic lavas eruptedalong the rift throughout its evolution. We present new datafrom high-MgO Tertiary lavas from Turkana, northern Kenya, toinvestigate regional melt source components, to identify thedepths and degrees of melting, and to characterize spatiallyand temporally the chemical structure of the underlying mantle.The Turkana area is a region of high lithospheric extensionthat sits between two topographic uplifts thought to be surfaceexpressions of one or more upwelling mantle plumes. Thinningof local crust is believed to be accompanied by widespread removalof the mantle lithosphere, causing the asthenosphere to be inclose contact with the overlying crust. New geochemical dataon basanites, picrites and basalts (MgO >7 wt %) tightlyconstrain the primary melt source regions of Tertiary volcanism.Initial isotopic signatures (143Nd/144Nd = 0·51267–0·51283,87Sr/86Sr = 0·7031–0·7036) and trace elementabundances (Ce/Pb 30, La/Nb = 0·6–0·8 andBa/Nb = 3–10) in these lavas are consistent with derivationfrom sub-lithospheric sources. Basalts and picrites eruptedbetween 23 and 20 Ma have Sr–Nd–Pb–He isotopiccharacteristics indicative of high-µ influence, recordhigh depths and degrees of partial melting, and are associatedwith rift propagation to the north and south. Accordingly, theselavas sample a source region that is geochemically distinctfrom that reflected both in Oligocene Ethiopian flood basaltsand in the modern Afar region. The geochemical data supportnumerical and theoretical models as well as tomographic resultsproviding for a complex thermal structure in the mantle beneathEast Africa and are interpreted to reflect isotopically distinctplume heads beneath Tanzania and Afar that are derived fromthe chemically heterogeneous South African superplume. KEY WORDS: East African Rift System; mantle plumes; HIMU; geochemistry; Afar  相似文献   

6.
Within the Zitácuaro–Valle de Bravo (ZVB) regionof the central Mexican Volcanic Belt (MVB), three lava serieshave erupted during the Quaternary: (1) high-K2O basaltic andesitesand andesites; (2) medium-K2O basaltic andesites, andesitesand dacites; (3) high-TiO2 basalts and basaltic andesites. Thedominant feature of the first two groups is the lack of plagioclaseaccompanying the various ferromagnesian phenocrysts (olivine,orthopyroxene, augite, and hornblende) in all but the dacites.This absence of plagioclase in the phenocryst assemblages ofthe high-K2O and medium-K2O intermediate lavas is significantbecause it indicates high water contents during the stage ofphenocryst equilibration. In contrast, the high-TiO2 group ischaracterized by phenocrysts of plagioclase and olivine. Thespatial distribution of these three lava series is systematic.The southern section of the ZVB transect, 280–330 km fromthe Middle America Trench (MAT), is characterized by high-K2Omelts that are relatively enriched in fluid-mobile elementsand have the highest 87Sr/86Sr ratios. Medium-K2O basaltic andesiteand andesite lavas are present throughout the transect, butthose closest to the MAT are MgO-rich (3·5–9·4wt %) and have phenocryst assemblages indicative of high magmaticwater contents (3·5–6·5 wt % water) andrelatively low temperatures (950–1000°C). In markedcontrast, the northern section of the ZVB transect (380–480km from the MAT) has high-TiO2, high field strength element(HFSE)-enriched magmas that have comparatively dry (< 1·5wt % magmatic water) and hot (1100–1200°C) phenocrystequilibration conditions. The central section of the ZVB transect(330–380 km from the MAT) is a transition zone and producesmoderately light rare earth element (LREE) and large ion lithophileelement (LILE)-enriched, medium-K2O lavas with phenocryst assemblagesindicative of intermediate (1·5–3·5 wt %)water contents and temperatures. The high-K2O series compositionsare the most enriched in LILE and LREE, with a narrow rangeof radiogenic 87Sr/86Sr from 0·704245 to 0·704507,143Nd/144Nd values ranging from 0·512857 to 0·512927(Nd = 4·27–5·63), and 208Pb/204Pb valuesfrom 38·248 to 38·442, 207Pb/204Pb values from15·563 to 15·585, and 206Pb/204Pb values from18·598 to 18·688. The medium-K2O series compositionsare only moderately enriched in the LILE and LREE, with a broaderrange of 87Sr/86Sr, but similar 143Nd/144Nd and 208Pb/204Pbvalues to those of the high-K2O series. In contrast, the high-TiO2series compositions have little enrichment in LILE or LREE andinstead are enriched in the HFSE and heavy rare earth elements(HREE). The high-TiO2 lavas are isotopically distinct in theirlower and narrower range of 143Nd/144Nd. The isotopic variationsare believed to reflect the upper mantle magma source regionsas the low content of phenocrysts in most lavas precludes significantupper crustal assimilation or magma mixing, other than thatrepresented by the presence of quartz xenocrysts (< 2 vol.%) with rhyolitic glass inclusions, which are found in manyof these lavas. The systematic spatial variation in compositionof the three lava series is a reflection of the underlying subduction-modifiedmantle and its evolution. KEY WORDS: central Mexico; geochemistry; isotopes; Quaternary volcanism; hydrous lavas  相似文献   

7.
Augustine Volcano, a Quaternary volcanic centre of the easternAleutian Arc, produces predominantly andesites and dacites oflow- to medium-K calc-alkaline composition. Mineralogical andmajor element characteristics of representative lavas suggestthat magmatic evolution has been influenced by both crystalfractionation and magma-mixing processes. However, incompatibletrace element variations (e.g. K/Rb) indicate that these evolvedlavas have been contaminated by the mafic arc crust of the underlyingTalkeetna accreted terrane. The limited range of isotope compositionsalso supports the assimilation of non-radiogenic mafic crust(e.g. 87Sr/86Sr = 0.7032–0.7034; 143Nd/144 Nd = 0.51301–0.5130).In addition, Pb-isotope compositions parallel the North Pacificmean oceanic trend (206Pb/204 Pb = 18.3–18.8; 207Pb/204Pb= 15.5–15.6; 208Pb/204Pb = 38.2–38.3) and do notrequire a subducted sediment component in the source. Relativelyhigh (Ba/La) N (0.79–18.10) and B/Be (14.5) ratios do,however, suggest a metasomatic fluid component derived fromthe dehydration of the subducting plate. The thickened continental crust (35 km) of the eastern AleutianArc prevents the ascent of basaltic melts, which fractionateand assimilate at various depths to produce andesitic magmas.These andesites evolve towards more silicic compositions byfractional crystallization. The absence of evidence for a largehigh-level crustal magma chamber implies that the magmatic systembeneath the volcano is young and at an immature stage of evolution. KEY WORDS: Augustine Volcano; Aleutians; assimilation; melasomatism; geochemistry *Corresponding author. Present address: Department of Geology and Geophysics, University of New Orleans, New Orleans, LA 70148, USA  相似文献   

8.
Major and trace element, and Sr, Nd and Pb isotopic compositionswere determined for whole-rock samples from the ‘isotopicallyanomalous’ Akagi volcano in the volcanic front of theNE Japan arc. Sr and Nd isotopic compositions of phenocrystswere also analyzed together with their major and trace elementcompositions. Compared with the other volcanoes from the volcanicfront, the whole-rock isotope compositions of Akagi show highlyenriched characteristics; 87Sr/86Sr = 0·7060–0·7088,  相似文献   

9.
Elemental, isotopic, and mineral compositions as well as rocktextures were examined in samples from Popocatépetl volcanoand immediately surrounding monogenetic scoria cones of theSierra Chichinautzin Volcanic Field, central Mexico. Magma generationis strongly linked to the active subduction regime to the south.Rocks range in composition from basalt to dacite, but Popocatépetlsamples are generally more evolved and have mineral compositionsand textures consistent with more complicated, multi-stage evolutionaryprocesses. High-Mg calc-alkaline and more alkaline primitivemagmas are present in the monogenetic cones. Systematic variationsin major and trace element compositions within the monogeneticsuite can mostly be explained by polybaric fractional crystallizationprocesses in small and short-lived magmatic systems. In contrast,Popocatépetl stratovolcano has produced homogeneous magmacompositions from a shallow, long-lived magma chamber that isperiodically replenished by primitive basaltic magmas. The currenteruption (1994–present) has produced silicic dome lavasand pumice clasts that display mingling of an evolved daciticcomponent with an olivine-bearing mafic component. The longevityof the magma chamber hosted in Cretaceous limestones has fosteredinteraction with these rocks as evidenced by the chemical andisotopic compositions of the different eruptive products, contact-metamorphosedxenoliths, and fumarolic gases. Popocatépetl volcanicproducts display a considerable range of 87Sr/86Sr (0·70397–0·70463)and Nd (+6·2 to +3·0) whereas Pb isotope ratiosare relatively homogeneous (206Pb/204Pb 18·61–18·70;207Pb/204Pb 15·56–15·60). KEY WORDS: Popocatépetl; Sierra Chichinautzin Volcanic Field; arc petrogenesis; radiogenic isotopes  相似文献   

10.
Geochronological (K–Ar or 40Ar/39Ar), major and traceelement, Sr–Nd–Pb isotopic and mineral chemicaldata are presented for newly discovered Cenozoic volcanic rocksin the western Qiangtang and central Lhasa terranes of Tibet.Alkali basalts of 65–45 Ma occur in the western Qiangtangterrane and represent primitive mantle melts as indicated byhigh mg-numbers [100 x Mg/(Mg + Fe)] (54–65), Cr (204–839ppm) and Ni (94–218 ppm) contents, and relatively lowratios of 87Sr/86Sr (0·7046–0·7061), 206Pb/204Pb(18·21–18·89), 207Pb/204Pb (15·49–15·61)and 208Pb/204Pb (38·42–38·89), and highratios of 143Nd/144Nd (0·5124–0·5127). Incontrast, younger volcanic rocks in the western Qiangtang terrane(  相似文献   

11.
A bimodal volcanic sequence of 230 m thickness on Skiff Bank,a western salient of the northern Kerguelen Plateau, was drilledduring ODP Leg 183. The sequence comprises three main units:a mafic unit of trachybasalt flows sandwiched between two unitsof trachytic or rhyolitic flows and volcaniclastic rocks. Althoughinterpretation is complicated by moderate to strong alterationof the rocks, their original chemical character can be establishedusing the least mobile major and trace elements (Al, Th, highfield strength elements and rare earth elements). High concentrationsof alkalis and incompatible trace elements indicate that bothmafic and felsic rocks are alkalic. The felsic rocks may havebeen derived by partial melting of mafic rocks, followed byfractionation of feldspar, clinopyroxene, Fe–Ti oxidesand apatite. The mafic and felsic rocks have similar Nd andPb isotopic compositions; 206Pb/204Pb ratios are low (17·5–18·0)but, like the 143Nd/144Nd ratios (0·5125–0·5126),they are comparable with those of basalts from the central andsouthern Kerguelen Plateau (e.g. Sites 747, 749, 750). The Srisotopic system is perturbed by later alteration. There is nochemical or isotopic evidence for a continental crustal component.The bimodal alkalic character and the presence of quartz-phyricrhyolites is interpreted to indicate that the sequence formspart of a shield volcano built upon the volcanic plateau. Theage of 68 Ma, obtained on Site 1139 rocks by Duncan (A timeframe for construction of the Kerguelen Plateau and Broken Ridge,Journal of Petrology 43, 1109–1119, 2002), provides onlya minimum age for the underlying flood volcanic rocks. The highage indicates none the less that Skiff Bank is not the presentlocation of the Kerguelen plume. KEY WORDS: Ocean Drilling Program; Kerguelen Plateau; Skiff Bank  相似文献   

12.
This paper presents field, geochemical and isotopic (Sr, Nd,Pb) results on basalts from the Antipodes, Campbell and ChathamIslands, New Zealand. New 40Ar/39Ar age determinations alongwith previous K–Ar dates reveal three major episodes ofvolcanic activity on Chatham Island (85–82, 41–35,5 Ma). Chatham and Antipodes samples comprise basanite, alkaliand transitional basalts that have HIMU-like isotopic (206Pb/204Pb>20·3–20·8, 87Sr/86Sr <0·7033,143Nd/144Nd >0·5128) and trace element affinities(Ce/Pb 28–36, Nb/U 34–66, Ba/Nb 4–7). Thegeochemistry of transitional to Q-normative samples from CampbellIsland is explained by interaction with continental crust. Thevolcanism is part of a long-lived (100 Myr), low-volume, diffusealkaline magmatic province that includes deposits on the Northand South Islands of New Zealand as well as portions of WestAntarctica and SE Australia. All of these continental areaswere juxtaposed on the eastern margin of Gondwanaland at >83Ma. A ubiquitous feature of mafic alkaline rocks from this regionis their depletion in K and Pb relative to other highly incompatibleelements when normalized to primitive mantle values. The inversionof trace element data indicates enriched mantle sources thatcontain variable proportions of hydrous minerals. We proposethat the mantle sources represent continental lithosphere thathost amphibole/phlogopite-rich veins formed by plume- and/orsubduction-related metasomatism between 500 and 100 Ma. Thestrong HIMU signature (206Pb/204Pb >20·5) is consideredto be an in-grown feature generated by partial dehydration andloss of hydrophile elements (Pb, Rb, K) relative to more magmaphileelements (Th, U, Sr) during short-term storage at the base ofthe lithosphere. KEY WORDS: continental alkaline basalts; lithospheric mantle, mantle metasomatism; New Zealand; OIB, HIMU; Sr, Nd and Pb isotopes; West Antarctica  相似文献   

13.
Miocene to Recent volcanism in northwestern Arabia producedthe largest intraplate volcanic field on the Arabian plate (HarratAsh Shaam, Jordan). The chemically and isotopically diversevolcanic field comprises mafic alkali basalts and basanites.The magmas underwent limited fractional crystallization of ol± cpx ± plag and rare samples have assimilatedup to 20% of Late Proterozoic crust en route to the surface.However, there are subtle Sr–Nd–Pb isotopic variations(87Sr/86Sr = 0·70305–0·70377, 143Nd/144Nd= 0·51297–0·51285, 206Pb/204Pb = 18·8–19·2),which exhibit marked correlations with major elements, incompatibletrace element ratios and abundances in relatively primitivebasalts (MgO >8·5 wt %), and cannot be explained byfractional crystallization and crustal contamination alone.Instead, the data require polybaric melting of heterogeneoussources. Semi-quantitative melt modelling suggests that thisheterogeneity is the result of small degree melts (2–5%)from spinel- and garnet-facies mantle, inferred to be shallowArabian lithosphere, that mixed with smaller degree melts (<1%)from a predominantly deep garnet-bearing asthenospheric(?) sourcewith ocean island basalt characteristics. The latter may bea ubiquitous part of the asthenosphere but is preferentiallytapped at small degrees of partial melting. Volcanism in Jordanappears to be the result of melting lithospheric mantle in responseto lithospheric extension. With time, thinning of the lithosphereallowed progressively deeper mantle (asthenosphere?) to be activatedand melts from this to mix with the shallower lithospheric mantlemelts. Although Jordanian intraplate volcanism is isotopicallysimilar to examples of Late Cenozoic volcanism throughout theArabian peninsula (Israel, Saudi Arabia), subtle chemical andisotopic differences between Yemen and Jordan intraplate volcanismsuggest that the Afar plume has not been channelled northwestwardsbeneath the Arabian plate and played no role in producing thenorthern Saudi Arabian and Jordan intraplate volcanic fields. KEY WORDS: asthenosphere; intraplate volcanism; Jordan; lithospheric mantle; Sr–Nd–Pb isotopes  相似文献   

14.
Major and trace element, Sr–Nd–Pb isotope and mineralchemical data are presented for newly discovered ultrapotassiclavas in the Tangra Yumco–Xuruco graben in southern Tibet.The ultrapotassic lavas are characterized by high MgO, K2O andTiO2, low Al2O3 and Na2O contents, and also have high molarK2O/Al2O3, molar (K2O + Na2O)/Al2O3 and K2O/Na2O ratios. Theirhigh abundances of incompatible trace elements such as largeion lithophile elements (LILE) and light rare earth elements(LREE) reach the extreme levels typical of lamproites. The lamproitesshow highly radiogenic 87Sr/86Sr (0· 7166–0·7363) and unradiogenic 143Nd/144Nd (0· 511796–0·511962), low 206Pb/204Pb (18· 459–18· 931),and elevated radiogenic 207Pb/204Pb (15· 6732–15·841) and 208Pb/204Pb (39· 557–40· 058) ratios.On the basis of their geochemical and isotopic systematics,the lamproites in south Tibet have a distinct magma source thatcan be differentiated from the sources of potassic lavas inthe east Lhasa and Qiangtang blocks. Their high Nb/Ta ratios(17· 10–19· 84), extremely high Th/U ratios(5· 70–13· 74) and distinctive isotope compositionsare compatible with a veined mantle source consisting of partialmelts of subducted Tethyan oceanic sediments and sub-continentallithospheric depleted mantle. Identification of the lamproitesand the delineation of their mantle source provide new evidencerelevant for models of the uplift and extension of the Tibetanplateau following the Indo-Asia collision. Metasomatism by partialmelts from isotopically evolved, old sediment subducted on theyoung Tethyan slab is an alternative explanation for PrecambrianNd and Pb model ages. In this model, differences in isotopiccomposition along-strike are attributed to differences in thetype of sediment being subducted, thus obviating the need formultiple metasomatic events over hundreds of million years.The distribution of lamproites, restricted within a north–south-trendinggraben, indicates that the initiation of east–west extensionin south Tibet started at 25 Ma. KEY WORDS: lamproites; subducted oceanic sediment; Tibetan active continental collision belt  相似文献   

15.
Pliocene volcanics on the island of Bequia comprise two interbeddedsuites of basalts and andesites. The isotopically homogeneoussuite (IHS) has a limited range of Sr—Nd—Pb isotopes(87Sr/86Sr 0.7040–0.7046, 143 Nd/144 Nd 0.5130 and 206Pb/204Pb 19.36–19.51), and mantle-like 18O values (5.5in clinopyroxene). The isotopically diverse suite (IDS) is characterizedby much wider ranges of radiogenic isotopes (87 Sr/86Sr 0.7048–0.7077,143 Nd/144 Nd 0.5128–0.5123 and 206 Pb/204 Pb 19.7–20.2),in which all of the Sr and Pb ratios are higher and Nd ratiosare lower than those of the IHS. The IDS is also characterizedby high 18 O values, up to 7.6 in clinopyroxene. The Sr andPb isotope ratios are too high, and the Nd isotope ratios aretoo low in the IDS for any of these lavas to be derived fromunmodified depleted mantle. Both suites are petrologically very similar and their majorelement compositions and phenocryst contents suggest that theywere formed largely by fractional crystallization of a hydroustholeiitic melt at pressures <3 kbar. The isotopic ratiosand enrichments in large ion lithophile elements (LILE), andto some extent light rare earth elements (LREE), as comparedwith mid-ocean ridge basalts (MORB), of the IHS lavas suggestthat they were derived from a depleted mantle source which hadbeen re-enriched by the addition of 1–4% of a subductioncomponent. This component probably comprised a mixture of dehydrationfluids, and perhaps minor siliceous melts, released from subductingsediments and mafic crust. The extreme isotopic ranges, largeenrichments in incompatible elements, more fractionated LREEpatterns and higher 18 O values of the IDS lavas are interpretedas resulting from 10–55% assimilation—fractionalcrystallization of sediments, derived from the Guyana Shield,which are present in the arc crust, by IHS type melts. KEY WORDS: trace elements; radiogenic isotopes; arc lavas; Lesser Antilles *Corresponding author.  相似文献   

16.
We present a combined Sr, Nd, Pb and Os isotope study of lavasand associated genetically related megacrysts from the Biu andJos Plateaux, northern Cameroon Volcanic Line (CVL). Comparisonof lavas and megacrysts allows us to distinguish between twocontamination paths of the primary magmas. The first is characterizedby both increasing 206Pb/204Pb (19·82–20·33)and 87Sr/86Sr (0·70290–0·70310), and decreasingNd (7·0–6·0), and involves addition of anenriched sub-continental lithospheric mantle-derived melt. Thesecond contamination path is characterized by decreasing 206Pb/204Pb(19·82–19·03), but also increasing 87Sr/86Sr(0·70290–0·70359), increasing 187Os/188Os(0·130–0·245) and decreasing Nd (7·0–4·6),and involves addition of up to 8% bulk continental crust. Isotopicsystematics of some lavas from the oceanic sector of the CVLalso imply the involvement of a continental crustal component.Assuming that the line as a whole shares a common source, wepropose that the continental signature seen in the oceanic sectorof the CVL is caused by shallow contamination, either by continent-derivedsediments or by rafted crustal blocks that became trapped inthe oceanic lithosphere during continental breakup in the Mesozoic. KEY WORDS: crustal contamination; CVL; megacrysts; ocean floor; osmium isotopes  相似文献   

17.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

18.
Whole-rock geochemical data on basaltic to rhyolitic samplesfrom 12 volcanic centers are used to constrain the role of continentalcrust in the genesis of magmas formed beneath the anomalouslywide subduction-related volcanic arc in Ecuador. Relativelyhomogeneous, mantle-like, isotopic compositions across the arcimply that the parental magmas in Ecuador were produced largelywithin the mantle wedge above the subduction zone and not byextensive melting of crustal rocks similar to those upon whichthe volcanoes were built. Cross-arc changes in 143Nd/144Nd and7/4Pb are interpreted to result from assimilation of geochemicallymature continental crust, especially in the main arc area, 330–360km from the trench. Mixing calculations limit the quantity ofassimilated crust to less than 10%. Most andesites and dacitesin Ecuador have adakite-like trace element characteristics (e.g.Y <18 ppm, Yb <2 ppm, La/Yb >20, Sr/Y >40). Availablewhole-rock data do not provide a clear basis for distinguishingbetween slab-melting and deep crustal fractionation models forthe genesis of Ecuador adakites; published data highlightinggeochemical evolution within individual volcanoes, and in magmaticrocks produced throughout Ecuador since the Eocene, appear tosupport the deep fractionation model for the genesis of mostevolved Ecuadoran lavas. A subset of andesites, which displaya combination of high Sr (>900 ppm), Nd >4·1 and7/4Pb <6·0, appear to be the best candidates amongEcuador lavas for slab-melts associated with the subductionof the relatively young, over-thickened, oceanic crust of theCarnegie Ridge. KEY WORDS: andesite; Ecuador; trace elements; isotopes; adakite  相似文献   

19.
BELL  K.; SIMONETTI  A. 《Journal of Petrology》1996,37(6):1321-1339
New Nd (0.51261–0.51268), Pb (206Pb/204Pb: 19.24–19.26),and Sr (0.70437–0.70446) isotopic compositions from tennatrocarbonatite lavas, collected in June 1993 from OldoinyoLengai, the only known active carbonatite volcano, are relativelyuniform, and are similar to data from the 1960 and 1988 flows.Three of the samples contain silicate spheroids, one of whichhas Nd and Sr isotopic ratios similar to host natrocarbonatite,consistent with an origin by liquid immiscibility or the mixingof melts with similar isotopic compositions. Pb isotope datafor two samples of trona are inconsistent with its involvementin the genesis of natrocarbonatite. New Pb isotope data fromsilicate volcanic and plutonic blocks (ijolite, nephelinite,phonolite, syenite) from Oldoinyo Lengai are highly variable(206Pb/204Pb, 17.75–19.34; 207Pb/204Pb, 15.41–15.67;208Pb/204Pb, 37.79–39.67), and define near-linear arraysin Pb-Pb diagrams. The isotopic data for the silicate rocksfrom Oldoinyo Lengai are best explained by invoking discretepartial melting events which generate undersaturated alkalinesilicate magmas with distinct isotopic ratios. Pb isotope ratiosfrom most ijolites and phonolites are predominantly lower andmore variable than from the natrocarbonatites, and are attributedto interaction between silicate melts involving HIMU and EMIsource components and an additional component, such as lower-crustalgranulites, DMM or PREMA (prevalent mantle). Variations in Nd,Pb and Sr isotope ratios from Oldoinyo Lengai, among the largestyet documented from a single volcano, are attributed to mantlesource heterogeneity involving mainly the mixing of HIMU andEMI mantle components. Based on the new isotopic data from OldoinyoLengai and data from other East African carbonatites, and mantlexenoliths, we propose a two-stage model in an attempt to explainthe isotope variations shown by carbonatites in this area. Themodel involves (I) the release of metasomatizing agents withHIMU-like signatures from upwelling mantle (‘plume’)source, which in turn metasomatize the sub-continental (old,isotopically enriched, EMI-like) lithosphere, and (2) variabledegrees and discrete partial melting of the resulting heterogeneous,metasomatized lithosphere. KEY WORDS: carbonatite; isotopes; Oldoinyo Lengai; mantle plumes *Telephone: (613) 788–2660, ext. 4419. Fax: (613) 788–4490. e-mail: kbell{at}ccs.carleton.ca  相似文献   

20.
Miocene to Pleistocene calc-alkaline volcanism in the East Carpathianarc of Romania was related to the subduction of a small oceanbasin beneath the continental Tisza–Dacia microlate. Volcanicproducts are predominantly andesitic to dadtic in composition,with rare basalts and rhyodacites (51–l71% SiO2; mg-number0.65–0.26) and have medium- to high-K calcalkaline andshoshonitic affinities. Mg, Cr and Ni are low in all rock-types,indicating the absence of primary erupted compositions. Detailedtrace element and Sr, Nd, Pb and 0 isotope data suggest thatmagmas were strongly crustally contaminated. Assimilation andfractional crystallization (AFC) calculations predict the consumptionof 5–35% local upper-crustal metasediments or sedimentsfrom the palaeo-accretionary wedge. Variations in the isotopiccomposition of the contaminants and parental magmas caused variationsin the mixing trajectories in different parts of the arc Themost primitive isotopic compositions are found in low-K dacitesof the northern Cdlimani volcanic centre and are interpretedas largely mantle derived. A second possible mantle reservoirof lower 149 Nd/144 Nd and lower 206 Pb/204 Pb is identifiedfrom back-arc basic calc-alkaline rocks in the south of thearc Both magmatic reservoirs have elevated isotopic characteristics,owing either to source bulk mixing (between depleted or enrichedasthenosphere and <1% average subducted local sediment) orlower-crustal contamination. KEY WORDS: Carpathians; assimilation; calc-alkaline; Sr-Nd-Pb-0 isotopes; laser flurination  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号