首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 357 毫秒
1.
Kent C. Condie 《Earth》1976,12(4):393-417
Progressive alteration, diagenesis, and low-grade metamorphism of Archean greenstone belts often leads to redistribution of alkali and related trace elements. Transition metals and rare earths are relatively resistant to these processes and hence are most useful in evaluating petrologic problems.Depleted Archean tholeiite (DAT) exhibits flat REE distributions and low LIL-element contents while enriched Archean tholeiite (EAT) exhibits slightly enriched REE patterns and moderate LIL-element contents. DAT is grossly similar to modern rise and are tholeiites and EAT to cale-alkaline and oceanic island tholeiites. Archean and esites fall into three categories: depleted Archean andesite (DAA) exhibits flat REE patterns, negative Eu anomalies and low LIL-element contents; low-alkali Archean andesite (LAA) shows minor light REE enrichment and low LIL-element contents; and high-alkali Archean andesite (HAA) shows light REE enrichment and high LIL-element contents. LAA is grossly similar to modern cale-alkaline andesites, but DAA and HAA do not have modern analogues. Archean depleted siliceous volcanics (DSV) exhibit depletion in heavy REE and Y compared to modern siliceous volcanics whereas undepleted varieties (USV) are similar to modern ones. Almost all Archean volcanic rocks, regardless of composition, are enriched in transition metals compared to modern varieties. Archean graywackes are similar in composition to Phanerozoic graywackes. Rock associations in Archean greenstones suggest the existence of two tectonic settings.Magma model studies indicate that partial melting has left the strongest imprint on trace-element distributions in greenstone volcanics. Three magma source rocks are necessary (listed in order of decreasing importance): ultramafic rock, eclogite, and siliceous granulite. Trace-element studies of Archean graywackes indicate a mixed volcanic—granitic provenance with minor ultramafic contributions.Alkali and related trace-element contents of Archean volcanics have been interpreted in terms of both undepleted and depleted upper mantle sources. Preferential enrichment of transition metals in Archean volcanics may have resulted from upward movement of immiscible liquid sulfide droplets with Archean magmas, depleting the source area in these elements. Initial Sr isotope distributions in Archean volcanics indicate the upper mantle during the Archean was heterogeneous in terms of its Rb/Sr ratio.  相似文献   

2.
Rare-earth element distributions in Archean volcanic rocks from the South Pass (Wyoming), Yellowknife (NW Canada) and Abitibi (Quebec) greenstone belts and from the Upper Fig Tree Group of the Barberton (S. Africa) greenstone belt reveal two distinct types of Archean volcanism. One type, herein referred to as the arc-type, is characterized by flat (or slightly enriched) REE distributions in tho leiites and enrichment in total and light REE and a variable negative Eu anomaly in more siliceous volcanic members. The second type, herein referred to as the Abitibi-type, is characterized by rather flat REE patterns and negative Eu anomalies in all volcanic rock types.REE distributions in the arc-type volcanic successions can be produced by either progressive shallow fractional crystallization of tholeiitic magma or by decreasing amounts of equilibrium melting of a plagioclase-bearing mantle source. REE distributions in the Abitibi volcanic rocks are most readily explained in terms of progressively decreasing amounts of fractional melting of a source area in which REE are contained chiefly in minor minerals (with low melting temperatures) that are depleted in Eu. The melting models seem to necessitate the existence of one or more pre-greenstone magmatic episodes as well as a continuously replenished mantle source. Replenishment of source material could be accomplished in either of the melting models in subduction zones but the analogy to Phanerozoic plate tectonics should be used with caution. Melting models also imply either (or both) a decreasing geothermal gradient with time or systematic changes in mantle source-area composition.  相似文献   

3.
The Archean Shawmere Anorthosite Complex, at the southern end of the Kapuskasing Structural Zone, consists dominantly of anorthosite (An65 –85) with minor gabbroic and ultramafic units, which are completely enclosed and cut by tonalites. Both the anorthosites and the tonalites are themselves cut by narrow dikes of gabbroic anorthosite. All of the rocks have undergone high grade metamorphism and are recrystallized so that few igneous textures remain.The anorthosites, gabbros and ultramafic rocks of this complex are cumulates which contain calcic plagioclase (An65–95) and have atomic Mg/(Mg + Fe2+) ratios (Mg#) greater than 0.6; less than 3 ppm Rb; 150–210 ppm Sr; and less than 60 ppm Ba. REE abundanees range from 0.2 to 10 times chondritic and exhibit both light-enriched and light-depleted REE patterns. The lower Mg# for the samples having more enriched light REE indicates substantial fractions of ferromagnesian minerals crystallized in addition to plagioclase during fractional crystallization, suggesting that the parent magma was basaltic, and not anorthositic. The ranges in Sr, Ba and REE abundances required for the magmas are typical of those for tholeiitic basalts from Archean greenstone belts. Thus the Shawmere Anorthosite Complex may represent cumulates of a crustal-level magma chamber which could have been the immediate source of basic Archean volcanics.One gabbroic anorthositic dike sample has a steeply fractionalted REE pattern with heavy REE abundances less than chondrites and a large positive Eu anomaly. The proposed interpretations is that this rock formed by partial melting of mafic cumulates, perhaps those of the Shawmere Anorthosite Complex itself.  相似文献   

4.
The Rainy Lake area in northern Minnesota and southwestern, Ontario is a Late Archean (2.7 Ga) granite-greenstone belt within the Wabigoon subprovince of the Canadian Shield. In Minnesota the rocks include mafic and felsic volcanic rocks, volcaniclastic, chemical sedimentary rocks, and graywacke that are intrucded by coeval gabbro, tonalite, and granodiorite. New data presented here focus on the geochemistry and petrology of the Minnesota part of the Rainy Lake area. Igneous rocks in the area are bimodal. The mafic rocks are made up of three distinct suites: (1) low-TiO2 tholeiite and gabbro that have slightly evolved Mg-numbers (63–49) and relatively flat rare-earth element (REE) patterns that range from 20–8 x chondrites (Ce/YbN=0.8–1.5); (2) high-TiO2 tholeiite with evolved Mg-numbers (46–29) and high total REE abundances that range from 70–40 x chondrites (Ce/YbN=1.8–3.3), and (3) calc-alkaline basaltic andesite and geochemically similar monzodiorite and lamprophyre with primitive Mg-numbers (79–63), enriched light rare-earth elements (LREE) and depleted heavy rare-earth elements (HREE). These three suites are not related by partial melting of a similar source or by fractional crystallization of a common parental magma; they resulted from melting of heterogeneous Archean mantle. The felsic rocks are made up of two distinct suites: (1)low-Al2O3 tholeiitic rhyolite, and (2) high-Al2O3 calc-alkaline dacite and rhyolite and consanguineous tonalite. The tholeiitic felsic rocks are high in Y, Zr, Nb, and total REE that are unfractionated and have pronounced negative Eu anomalies. The calcalkaline felsic rocks are depleted in Y, Zr, and Nb, and the REE that are highly fractionated with high LREE and depleted HREE, and display moderate negative Eu anomalies. Both suites of felsic rocks were generated by partial melting of crustal material. The most reasonable modern analog for the paleotectonic setting is an immature island arc. The bimodal volcanic rocks are intercalated with sedimentary rocks and have been intruded by pre- and syntectonic granitoid rocks. However, the geochemistry of the mafic rocks does not correlate fully with that of mafic rocks in modern are evvironments. The low-TiO2 tholeiite is similar to both N-type mid-ocean-ridge basalt (MORB) and low-K tholeiite from immature marginal basins. The calc-alkaline basaltic andesite is like that of low-K calc-alkaline mafic volcanic rocks from oceanic volcanic arcs; however, the high-TiO2 tholeiite is most similar to modern E-type MORB, which occurs in oceanic rifts. The conundrum may be explained by: (1) rifting of a pre-existing immature arc system to produce the bimodal volcanic rocks and high-TiO2 tholeiite; (2) variable enrichment of a previously depleted Archean mantle, to produce both the low- and high-TiO2 tholeiite and the calc-alkaline basaltic andesite, and/or (3) enrichment of the parental rocks of the high-TiO2 tholeiite by crustal contamination.  相似文献   

5.
The Late Cenozoic volcanics of the Lesser Caucasus have similar trace-element and REE patterns with negative anomalies of Nb, Ta, Hf, and Zr. They are highly enriched in Rb, Ba, Th, and La and depleted in Ti, Yb, and Y with respect to N-MORB, which indicates their formation from the subduction-metasomatized lithospheric mantle. Partial melting of the subcontinental mantle lithosphere and crustal assimilation and fractional crystallization controlled the magma evolution in the collisional magmatic belts.  相似文献   

6.
The last 10,000 years of activity at the Medicine Lake volcanic center in northern California is characterized by bimodal mafic and siliceous volcanism. Interflow element variations are complex and exhibit a discontinuity for most elements between 57 and 62 per cent SiO2. No simple linear or curvilinear element trends exist between the mafic (Modoc) and siliceous (glass) volcanics.The geochemical variation patterns exhibited by volcanic rocks from the Medicine Lake volcanic center preclude any simple model for magma origin involving either varying degrees of melting or of fractional crystallization. A model is tentatively invoked for the andesites and basalts involving ? 35 per cent melting of eclogite (of altered rise tholeiite composition) in a descending slab followed by varying amounts of fractional crystallization and perhaps magma mixing. Up to 20 per cent of shallow fractional crystallization of plagioclase and minor Ti-magnetite seems to be required by the Sr, Eu anomaly, and TiO2 distributions.Compositional variation and high δO18 values in most dacite glass flows are best interpreted in terms of a crustal origin involving up to 50 per cent partial melting of average continental crust. Rhyolite glasses may have formed by small degrees of melting (20–30 per cent) of this crust followed by 5–10 per cent of shallow fractional crystallization (removing dominantly plagioclase) or by 40–50 per cent fractional crystallization of a dacite parent (~63 per cent SiO2) produced in the crust. The shallow fractional crystallization is necessary to explain the low Sr contents and large negative Eu anomalies in the rhyolites. Dacites from the Composite Flow are tentatively interpreted to have formed by shallow mixing of a hybrid magma (composed of varying amounts of andesite and dacite) with rhyolite prior to and during eruption.  相似文献   

7.
The Carboniferous volcanic rocks in western Hainan Island consist of a series of oceanic tholeite and rhyoporphyrite,showing bimodal nature.Similar geochemical characters,in terms of abun-daces and relative rations of incompatible elements and REE and the REE patterns,between the basalt and continental rift-associated tholeiite indicate the occurrence of Late Paleozoic rifting in the area.The basaltic magma,with a low degree of evolution,was originated from deep mantle,show-ing contamination by low crustal material.The rhyolite is thought to be formed from partial melting of the continental crust by higher thermal flow in a rift environment rather than from fractional crystallization of a basaltic magma.  相似文献   

8.
Archean metavolcanic rocks from three greenstone belts (Suomussalmi,Kuhmo and Tipasjärvi) of eastern Finland have been subjectto a detailed geochemical study which leads to a discussionof their petrogenesis and the problem of compositional heterogeneityin the Archean mantle. Lithostratigraphically, the greenstonebelts are roughly divided into a lower and an upper volcanicsequence. Rocks of komatiitic and tholeiitic compositions arerestricted to the lower sequence, while andesitic tuffs, dacite-rhyodacitelavas and minor basalts of alkaline affinity occur in the uppersequence. All rocks from the greenstone belts have been subjectto regional metamorphism of the upper greenschist facies tothe lower garnet amphibolite facies. Consequently, the geochemicaldistinction of original magma types and the discussion of petrogenesishave relied heavily on the abundances of less mobile elements,such as TiO2, rare earth elements (REE), and some transitionmetals (e.g. Ni and Cr). Using all the possible discriminants of major element compositions,we have concluded that two general magmatic series that existin the lower volcanic sequence might be distinguished by theparameter of TiO2 content: the komatiitic series is characterizedby having TiO2 1.0 per cent and the tholeiitic series by 1.0per cent. The general series do not imply that a cogenetic relationshiplinked only by fractional crystallization exists in each series. Several magmatic types could be distinguished by their characteristicREE distribution patterns. In general, the komatiitic rocksshow flat HREE (heavy REE) and flat or depleted LREE (lightREE) patterns; the tholeiitic rocks show fractionated patternswith some degree of LREE enrichment, whilst the acidic rocksdemonstrate highly fractionated patterns with significant HREEdepletion. Model calculations indicate that: (1) the komatiiticand the tholeiitic series have no clear genetic relationship;(2) some basaltic komatiites (MgO < 12 per cent) could havebeen derived by crystal fractionation from a melt of peridotitickomatiite composition (MgO 30 per cent), but others requirevarious degrees of partial melting from the same or differentsource regions to account for their trace element abundances;(3) both partial melting and fractional crystallization haveinterplayed for the production of various rocks within the tholeiiticseries; (4) three different types of source materials are proposedfor all magmas from the lower volcanic sequence. All three typeshave the same initial HREE (about 2x chondrites) but differentLREE (from very depleted to 2x, flat) abundances; (5) volcanicrocks of the upper volcanic sequence must have originated atgreat depths where garnet remains in the residue after partialmelting and melt segregation. The recognition of the strongly LREE-depleted mantle sources,deduced from the REE patterns of peridotitic komatiites fromFinland, Canada and Rhodesia, may suggest that this depletionis a worldwide phenomenon, and that the Archean upper mantleis as heterogeneous in composition as the modern upper mantle.The causal effect of the depletion might be related to the generationof some contemporaneous LREE-enriched tholeiitic rocks, or morelikely, to contemporaneous or previous continental crust formingevents.  相似文献   

9.
Major and trace element compositional data are reported for nine mafic and ultramafic rock samples from the Barberton greenstone belt. Rocks from this province are among the oldest fragments of the Earth's crust (3.5 b.y.). The data are consistent with an oceanic crust related origin for these rocks. The high abundances of Ni in these samples make their origin by fractional crystallization of a primitive magma unlikely but are consistent with their generation by partial melting of an upper mantle source. The basaltic samples from the Komati formation can be related by small degrees of partial melting of a primitive upper mantle source to the peridotitic komatiite which probably derived from much more extensive partial melting of a similar source. REE and especially Ni abundances limit the proportion of olivine that is permitted in the residue.  相似文献   

10.
The Kolar Schist Belt of the Dharwar Craton of South India isan Archean greenstone belt dominated by metavolcanic rocks.The mafic metavolcanic rocks occur as komatiitic and tholeiiticamphibolites. The komatiitic amphibolites occur along the marginsof the N–S trending, synformal belt. They are much lessabundant than the tholeiitic amphibolites and have 14 to 21–3wt. per cent MgO. The komatiitic amphibolites from the west/centralpart of the belt have two distinctive REE patterns: (1) thoseenriched in the middle to light REE but depleted in Ce relativeto Nd; and (2) those with patterns that are convex up, i.e.depleted in both light and heavy REE, although more depletedin the light REE. Associated tholeiites have light REE depletedto flat REE patterns. Komatiitic and tholeiitic amphibolitesfrom the eastern part of the belt have enriched light REE patterns. The tholeiitic amphibolites from the Kolar Schist Belt are similarto the TH I and TH II types of Archean tholeiites of Condie(1981). The komatiitic amphibolites are similar to komatiitesand komatiitic basalts of Barberton Mountainland, but have higherFeO and TiO2 abundances and lower Yb/Gd ratios. The petrogenetic interpretations for these rocks are based primarilyon a modification of the MgO-FeO diagram of Hanson & Langmuir(1978), and modelling of Zr, Ni and REE. All of the rocks haveundergone some fractionation. While the modelling does not giveaccurate temperatures, pressures, compositions and extents ofmelting of the mantle sources for the various amphibolites,it does present an approach which can be used for estimatingthese parameters. For example, the komatiitic amphibolites appearto be derived from melts generated by 10 to 25 per cent meltingof the mantle over a range of depths and temperatures greaterthan 80 km and 1575?C. The variation in the P-T conditions ofmagma generation is possibly due to adiabatic melting in mantlediapirs with a range of FeO/MgO ratios. If the tholeiitic amphibolitesare derived from similar mantle sources (it is not clear thatthey are), their parent melts may have been generated by similarextents of melting, but at depths of less than 80 km. The komatiiticamphibolites from the west central part of the belt were generatedfrom light REE depleted mantle, whereas those from the easternpart of the belt appear to have been generated from light REEenriched mantle. The sources for the komatiitic amphibolitesin both areas were significantly enriched in FeO relative topyrolite. Thus, a light REE depleted and a light REE enrichedsource appear to have provided mafic volcanics with similarmajor element chemistry to this belt during its evolution.  相似文献   

11.
The Bulawayan Group in the Midlands greenstone belt can be divided into three formations. The Mafic Formation is composed principally of pillowed, low-K tholeiites and minor bedded chert. The Maliyami Formation and conformably overlying Felsic Formation are composed of calc-alkaline tholeiites, andesites, and dacites with andesites dominating in the Felsic Formation. Minor rhyolite quartz porphyries and ultramafic bodies also occur in the section. The Bulawayan Group near Que Que is perhaps the least altered and metamorphosed Archean greenstone succession known. The absence of andesite and related rocks, the association of bedded chert, and the consistently low K2O, Rb, and Sr contents of Mafic Formation tholeiites suggest that they represent Archean oceanic rise tholeiites. The compositions of tholeiites and andesites of the Maliyami Formation, however, suggest that they represent an emerging arc system. The Felsic Formation is interpreted as a more advanced stage in the evolution of this arc system.Trace-element model calculations favor an origin for Mafic Formation tholeiites involving about 30% partial melting of a lherzolite source. Similar calculations are consistent with an origin for Maliyami Formation tholeiites, Maliyami and Felsic Formation andesites, and Midlands rhyolites involving, respectively, 50, 20–30, and 10% equilibrium melting of eclogite or garnet amphibolite (of Mafic Formation tholeiite composition). The low K2O, Rb, and Sr contents of Mafic Formation tholeiites suggest that they were derived from an upper mantle source as depleted in these elements as the oceanic upper mantle is today.A plate tectonic model is proposed for the Bulawayan Group in which the Mafic Formation is derived from a depleted lherzolite source beneath a spreading center in a marginalsea basin and the Maliyami and Felsic Formations and associated rhyolites are produced by partial melting of eclogite in a descending slab located west of the basin.  相似文献   

12.
Yanhong He  Guochun Zhao  Min Sun  Yigui Han 《Lithos》2010,114(1-2):186-199
As part of the Xiong'er volcanic belt along the southern margin of the North China Craton, volcanic rocks in the Xiaoshan and Waifangshan areas have a compositional range from the basaltic andesite, andesite, dacite to rhyolite, which display consistent variation trends in terms of their major and trace elements and Sr–Nd isotopic compositions. The variable Yb contents with nearly constant La/Yb and Tb/Yb ratios of volcanic rocks in two areas suggest that the fractional crystallization may have played an important role in the differentiation from the basaltic andesite, through andesite and dacite, to rhyolite. The volcanic rocks in these two areas are characterized by the LILE and LREE enrichments and negative HFSE anomalies, implying hydrous melting of a mantle wedge in a subduction zone. Variable Sr/Nd ratios of the basaltic andesite and andesite are interpreted as a result of the fluid addition from a subducting slab. Non-radiogenic Nd isotopic compositions as well as high Zr/Y and Nb/Y ratios suggest that the volcanic rocks in these areas were derived from an enriched mantle source. On the other hand, the volcanic rocks of the basaltic andesite and andesite possess markedly higher Fe–Ti and HFSE concentrations than those of typical intra-oceanic arcs, implying that the mantle source from which the volcanic rocks were derived was metasomatised by siliceous melts during the Archean to Paleoproterozoic subduction/collision in the Trans-North China Orogen. These data suggest that in the Paleo-Mesoproterozoic, the southern margin of the North China Craton was most likely an Andean-type continental arc in which slab dehydration not only induced the melting of a pre-existing metasomatised mantle source, but also released LILE-enriched fluids into the mantle source, masking the inherent HFSE-enriched characteristics of the volcanic rocks along the southern margin of the craton. The results of this study indicate that the North China Craton, like many other continental components (e.g. North America, Greenland, Baltica, Amazonia, Australia, etc.) of the supercontinent Columbia (Nuna), also underwent a subduction-related outgrowth along its southern margin during the Paleo-Mesoproterozoic time.  相似文献   

13.
Most large Archean greenstone belts ( 2.7 Ga), comprise thick (12–15 km) mafic to felsic metavolcanics sequences which exhibit consistent but discontinuous geochemical patterns resulting from mantle-crust processes. In a typical Archean metavolcanic sequence, thick (5–8 km) uniform tholeiitic basalt is followed by geochemically evolved rock units (4–7 km thick) containing intermediate and felsic calc-alkaline rocks. This major geochemical discontinuity is marked by a change from LIL-element depleted basalts which show unfractionated REE abundance patterns, to overlying andesites with higher LIL-element contents, fractionated REE patterns and relatively depleted HREE. A less well marked discontinuity separates andesitic rocks from still later more felsic dacite-rhyolite extrusive assemblages and their intrusive equivalents, and is identified by a further increase in LIL element content and REE fractionation. The major geochemical discontinuity apparently separates rocks derived by partial melting of mantle (either directly or through shallow fractionation processes) from those which originated either by partial melting of mantle material modified by crustal interactions or by partial melting of crustal material.We suggest that accumulation of a great thickness of mantle derived volcanic rocks can lead to sagging and interaction of the lower parts of the volcanic piles with upper mantle material. The resulting modified mantle acts as a source for some of the geochemically evolved rocks observed in volcanic successions. Subsequent direct melting of the volcanic pile produces the felsic magmas observed in the upper parts of Archean volcanic successions. This process, termed sag-subduction, is the inferred tectonic process operating in the comparatively thin, hot Archean crustal regime. By this process, large masses of ultimately mantle-derived material were added to the crust.  相似文献   

14.
15.
一、引言清原地区太古代花岗岩是该区花岗—绿岩带的主要组成部分,它与绿岩一起形成稳定的太古代克拉通。国外对太古代花岗岩的研究已较深入。近年来,还提出了稀土元素(REE)和大半径不相容元素(LIL)的数学计算模式。一些研究表明微量元素模式可以很有效地确定花  相似文献   

16.
Major and trace element data on the Archean metavolcanic rocks of the Prince Albert Group (PAG), Northwest Territories. Canada, are reported. The following major groups were found, based on combined field and geochemical evidence: ultramafic flows; basaltic rocks, predominantly tholeiites; andesites; heavy REE depleted dacites; and rhyolites.The ultramafic and basaltic rocks are relatively normal Archean volcanics except for the downward bowed REE patterns of the tholeiitic basalts. The andesites, dacites and rhyolites, however, are not typical of Archean terrains. Comparisons between the andesites of the PAG and other Archean and more recent ones show that those of the PAG are most similar chemically to modern high-K andesites. REE patterns in these rocks suggest that partial melting of assemblages with significant garnet are an unlikely source but it is not possible to ascribe their origin to any simple process. Partial melting of a garnet-poor mafic granulite is an acceptable source for the heavy REE depleted dacites. The geochemical characteristics of the rhyolites cannot be explained by partial melting of a mafic source or by fractional crystallization from the daeites. It is suggested that these rocks originated by partial melting of pre-existing sialic crust.  相似文献   

17.
Seventeen rocks from the Lewisian Gneiss of the Inner Hebrides of Scotland, which represent three distinct lithological types at granulite to greenschist facies of metamorphism show rare-earth element patterns which seem not to have been disturbed by their complex metamorphic history. Some indication of their origin can be obtained by simple geochemical models.Three tonalitic pyroxene gneisses are characterized by: (1) light REE enrichment and heavy REE depletion; (2) low total REE contents; (3) moderate Eu enrichment. Their REE chemistry can be approximated by a model involving 10% partial melting of various garnet-bearing basaltic source materials. Alternatively, they may be some form of crystal cumulate, preserving their original anhydrous mineralogy, representing 30% crystallization of a parent tonalitic magma.Three tonalitic to granodioritic hornblende-biotite gneisses are characterized by: (1) light REE enrichment and heavy REE depletion; (2) significantly higher total REE contents than the pyroxene gneisses; (3) moderate Eu depletion. Their REE patterns can be approximated by a residual silicic melt in a model involving 30% fractional crystallization of solids with the modal mineralogy of the pyroxene gneisses or 40% removal of pure anorthosite from a parent dacitic magma.Two strongly metasomatised diopside-actinolite gneisses and one highly sheared epidote-chlorite gneiss have REE patterns which are not significantly different from the hornblende-biotite gneisses which were their precursors before metasomatism and late greenschist-facies shearing. This suggests that strong alteration has not enciphered the REE systematics of the gneisses.Basic gneisses of quartz tholeiite composition occurring as early dykes, which shared the same metamorphic history as the tonalitic to granodioritic gneisses, are characterised by: (1) slight enrichment in light REE relative to heavy REE; (2) variable total REE contents; (3) little difference between granulite and amphibolite facies types. Their REE patterns can be matched by models involving 5–15% partial melting of ultrabasic mantle with 3 times chondritic REE abundances, leaving a residue of olivine and orthopyroxene.  相似文献   

18.
The Dubois greenstone succession, an Early Proterozoic supracrustal succession in west-central Colorado, is composed of fine-grained felsic volcaniclastic sediments, ash-flow tuffs, and tholeiitic flows, sills and dikes. The volcanic rocks comprise a bimodal suite of tholeiite and rhyolite. The tholeiites are divided into two groups: Group I exhibiting nearly flat REE patterns (20–30 × chondrites) and Group II with light REE-enriched patterns (40–70 × chondrites). These groups can be produced by two-stage melting of an undepleted or enriched garnet lherzolite source in which garnet remains in the residue of only the first melting stage which produces Group II magmas. The felsic magmas can be produced by partial melting of a high-grade gneiss in the lower crust in which zircon is entrained in the magma.The Dubois greenstone succession appears to have formed by felsic and mafic subaqueous eruptions in which some ash-flows, upon entering water, underwent phreatomagmatic explosions giving rise to detritus which formed the volcaniclastic sediments. Although tectonic setting cannot be assigned to the succession with a high degree of confidence, an immature back-arc basin developed on sialic crust in consistent with most data.  相似文献   

19.
The Archean Yellowknife Supergroup (Slave Structural Province. Canada) is composed of a thick sequence of supracrustal rocks, which differs from most Archean greenstone belts in that it contains a large proportion ( ~ 80%) of sedimentary rocks. Felsic volcanics of the Banting Formation are characterized by HREE depletion without Eu-anomalies, indicating an origin by small degrees of partial melting of a mafic source, with minor garnet in the residua. Granitic rocks include synkinematic granites [HREE-depleted; low (87Sr86Sr)I], post-kinematic granites [negative Eu-anomalies, high (87Sr86Sr)I] and granitic gneisses with REE patterns similar to the post-kinematic granites. Sedimentary rocks (turbidites) of the Burwash and Walsh Formations have similar chemical compositions and were derived from 20% mafic-intermediate volcanics, 55% felsic volcanics and 25% granitic rocks. Jackson Lake Formation lithic wackes can be divided into two groups with Group A derived from 50% mafic-intermediate volcanics and 50% felsic volcanics and Group B, characterized by HREE depletion, derived almost exclusively from felsic volcanics.REE patterns of Yellowknife sedimentary rocks are similar to other Archean sedimentary REE patterns, although they have higher LaNYbN. These patterns differ significantly from typical post-Archean sedimentary REE patterns, supporting the idea that Archean exposed crust had a different composition than the present day exposed crust.  相似文献   

20.
Major, rare earth and transition elements, have been determinedon a selection of volcanic rocks from greenstone belts in Rhodesia(2.6 by) and South Africa (3.4 by). In Rhodesia two distinctseries can be recognized: a komatite-tholeiite series whichoccurs early in the greenstone belt evolution and apparentlygrades into a second, calc-alkaline, series at higher structurallevels. Peridotitic komatites reflect higher degrees of partialmelting than any Phanerozoic rocks so far observed and are thereforeused to place limits on the composition of their source. Atlower MgO contents they merge into low K tholeites which havesignificantly higher CeN/YbN and Rb/Sr ratios (at any MgO content)than those observed in modern ocean floor and island are environments.The calc-alkaline series is characterized by andesites whichexhibit a marked heavy REE depletion, but similar light REEand transition metal contents to the more evolved tholeiticrock types. The continuum of compositions from komatiites totholeiites and calc-alkaline andesites suggests that the bulkof greenstone belt volcanics could have been derived by differentialpartial melting, and polybaric fractionation of an essentiallyhomogeneous peridotite source. Late stage dacitic lavas andintrusions probably reflect melting of a more eclogitic sourceregion. The distinctive trace element geochemistry of Archaeanvolcanics, particularly the high Ni and low Yb values of thecalc-alkaline rocks precludes direct comparison with modernisland are associations. Rather the large decrease in liquidustemperatures (500 °C) with increasing structural heightwithin greenstone belts, coupled with the fact that most ofthe volcanics could have been derived from an essentially homogeneoussource, may suggest that greenstone belts developed in a riftingenvironment. It appears unlikely that the tholeiite/calc-alkalineassociation observed in the Archaean may be taken as an indicationof subduction at that time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号