首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
亚洲中部干旱区的大尺度遥感积雪信息研究,可在跨界河流水资源分配利用方面提供数据支持,对国家重大战略的生态安全保障有重要作用。采用数据融合方法,将MOD10A2和MYD10A2数据进行融合去云处理,结合气象站点积雪数据评估去云后的积雪识别精度;提取积雪覆盖率(SCP)与积雪日数(SCD)信息,分析SCP与SCD年际、年内变化差异;结合数字高程模型,分析不同高程带下SCP的时空变化规律。结果表明:(1)MOD10A2与MYD10A2融合去云处理,可有效去除云的干扰,准确提取亚洲中部干旱区积雪变化信息。(2)年内SCP最大值范围为55.7%~77.4%,最小值范围为1.6%~2.9%,融雪期SCP下降速率具有明显地域差异,总体SCP呈缓慢增加趋势。(3)总体SCD呈略微下降趋势,32.2%的区域呈下降趋势,30.9%的区域呈增加趋势,36.9%的区域保持稳定不变。(4)海拔1 000 m以下,SCP年内随季节变化呈U型,年际变化显著;1 000~4 000 m区域,SCP年内均随季节的变化呈现出V型,年际变化呈现出稳定性波动;6 000 m以上为永久性积雪,季节、时空变化差异性均不明显。  相似文献   

2.
基于2002-2011年的MODIS积雪产品数据, 对新疆积雪的年际变化特征、年内变化特征及空间分布特征进行了分析.结果表明: 年内积雪从10月中旬开始建立, 于1月面积达到最大, 7月面积达到最小.其中, 冬季积雪面积所占比例最大, 夏季最小. 2002-2011年新疆积雪面积总体上呈减少趋势. 其中, 春季和冬季为减少趋势;夏季的积雪由于其基本上都是高海拔的永久性积雪, 故比较稳定, 变化趋势不明显;秋季为上升趋势.新疆积雪空间分布极不均匀, 北疆积雪分布明显多于南疆.山区为积雪覆盖频次的高值区, 盆地为积雪覆盖频次的低值区.永久性积雪在阿尔泰山脉分布较少, 主要分布在天山山脉和昆仑山脉.就永久性积雪面积而言, 分布在海拔5 000~6 000 m的面积最大, 其次是海拔4 000~5 000 m, 再次是海拔6 000~7 000 m.  相似文献   

3.
2001-2015年天山山区积雪时空变化及其与温度和降水的关系   总被引:12,自引:9,他引:3  
采用2001-2015年MODIS积雪和陆表温度数据、中国高时空分辨率降水数据,基于趋势分析和相关分析方法,分析了天山山区积雪时空变化及其与温度和降水的关系。结果表明:(1)年内积雪面积变化受海拔影响,海拔≤4 000 m,呈单峰型分布,积雪面积冬季大,夏季小;海拔介于4 000~≤5 000 m,积雪面积分别在春季和秋季出现两次峰值;海拔>5 000 m,积雪面积变化与低海拔相反,在夏季达到最大,冬季最小。就年际变化而言,全区积雪面积呈略微减少趋势,其中秋季略微增加,春季变化不大,冬季和夏季明显减少。(2)积雪覆盖频率受水汽来向和地形影响,呈西高东低、北高南低分布格局,与海拔呈正相关。山区大部分区域积雪覆盖频率呈减少趋势,其中海拔介于3 600~≤4 600 m的积雪覆盖频率减少最为显著。(3)在春、夏季,温度是决定积雪面积变化的主要因素,与积雪面积呈负相关;在秋、冬季,降水对积雪面积变化的贡献大于温度,与积雪面积呈正相关。(4)积雪覆盖频率整体上与年均温度呈负相关,与降水呈低度正相关,相关程度及显著性水平在空间分布上存在差异,温度对积雪覆盖频率变化的贡献大于降水。  相似文献   

4.
科学监测新疆叶尔羌河流域山区积雪面积及其变化特征对该区域的气候研究、雪水资源开发利用、环境灾害预报和生态环境保护等方面有重要意义. 利用2000-2012年近13 a的MOD10A2积雪产品提取研究区域内积雪,结合DEM数据分析研究区内积雪面积的动态变化特征. 结果显示:新疆叶尔羌河流域山区的积雪面积的年际变化幅度较大,其中,2005年和2009年积雪面积较大,2007年则为典型少雪年;年内变化差异显著,总体上呈现“M”型的特点,12月和3月处于高位,2月和8月处于低谷. 叶尔羌河流域山区积雪覆盖率随着海拔的上升逐渐增大,稳定积雪主要分布在海拔5 000 m以上的地区;不同坡向的积雪覆盖率差异比较明显,西北坡、东坡、东北坡的积雪覆盖率比北坡、东南坡、西坡、南坡的积雪覆盖率高,西北坡高达52.8%,南坡仅为20%. 叶尔羌河流域山区的积雪面积与气温呈负相关,与降水量呈正相关,积雪面积变化对气温因素更为敏感.  相似文献   

5.
地形对天山积雪冻融变化的影响分析   总被引:1,自引:0,他引:1  
胡伟杰  刘海隆  王辉  赵文宇 《冰川冻土》2016,38(5):1227-1232
天山积雪是新疆水资源的重要来源,地形对积雪的空间分布和消融有重要影响,分析地形对天山积雪冻融过程的影响具有重要的理论意义.基于2005-2014年的MODIS/Terra积雪8 d合成数据(MOD10A2)与数字高程模型(DEM)数据,分析了天山积雪覆盖随高程、坡度和坡向的季节变化规律.分析结果表明:(1)在不同季节里,不同高程中的融雪和积雪过程同步发生,其中在春季和冬季,雪盖变化较大的区域主要分布在低海拔和高海拔地区;而在夏、秋两季,雪盖变化较大的区域主要分布在中海拔地区.(2)在不同季节,不同坡度的积雪冻融过程也同步进行,但春季和冬季积雪呈线性变化,在缓坡和陡坡地区变化明显;夏季和秋季积雪变化缓慢,在中坡变化显著.(3)天山积雪变化随坡向具有对称性和周期性.积雪变化呈现北坡大、南坡小,春、冬季大,夏、秋季小的特点.在波动周期内,夏秋季积雪变化波动较大,变化趋势与春、冬季相反.研究结果可为融雪型洪水预报提供科学依据.  相似文献   

6.
1961—2017年基于地面观测的新疆积雪时空变化研究   总被引:4,自引:4,他引:0  
选取新疆89个气象站1961—2017年逐日积雪深度观测资料, 分析近60 a新疆冬季最大积雪深度及积雪日数的时空变化特征。结果表明: 新疆冬季最大积雪深度以天山为界, 天山以北多于南部, 北疆北部和伊犁河谷最大达60 ~ 100 cm, 天山山区及天山北坡30 ~ 60 cm, 南疆大部地区不足20 cm; 新疆北部最大雪深多出现在1996年以后, 也是新疆气候由暖干转为暖湿的阶段。近60 a新疆区域尤其是北疆、 天山山区冬季最大积雪深度呈显著增加趋势, 南疆略有增加; 89个气象站中87.6%呈增加趋势, 20个显著增加, 主要分布在天山以北地区。分析不同积雪深度出现的日数, 新疆区域、 北疆地区、 天山山区≤10 cm积雪约占积雪总日数的48% ~ 58%, 10 ~ 20 cm积雪占24% ~ 32%, 20 ~ 30 cm积雪占12% ~ 15%, >30 cm积雪约占5%左右; 南疆地区以≤5 cm积雪为主。新疆区域、 北疆地区以及天山山区积雪日数总体呈减少趋势, 其中≤10 cm积雪日数减少, 尤其北疆显著减少, >20 cm积雪日数显著增加, 南疆变化不明显; 空间变化趋势分布基本与区域变化一致。  相似文献   

7.
2000—2006年中国天山山区积雪时空分布特征研究   总被引:9,自引:2,他引:7  
以中国境内天山山区为研究区,基于2000—2006年的遥感积雪产品积雪分布时间序列趋势和空间分布特征,对积雪分布的年际变化趋势、积雪分布随海拔的变化趋势、积雪频率以及积雪雪线高度的年变化进行了分析.结果表明:1)积雪经历从秋季开始累积到春季开始消融的过程,1—2月积雪面积达到最大,7—8月面积最小.冬季积雪所占比例最大,超过50%;2)2000—2006年积雪面积年际变化略呈上升趋势,冬季上升趋势较明显,春、秋和夏季变化趋势不明显.冬季积雪面积在海拔4000m呈上升趋势,≥4000m呈下降趋势.在海拔2000m积雪的上升趋势达到最高点;3)从积雪频率来看,存在5个高值区,覆盖频率高达70%左右.从空间分布来看,天山中段积雪最多,东段次之,西段最少.在海拔3000m以下积雪次数较少,海拔3000m以上积雪次数显著增加.月积雪次数随海拔的变化表现为:海拔4000m以上各月的积雪次数都很多,12月至翌年2月在各高程带的积雪次数都较大;10—11月和3—4月积雪以海拔2500m为界,之下次数较少,以上次数增加显著;5—9月的积雪次数在海拔3000m以下非常少,在海拔3000m以上次数逐渐增加;4)以覆盖率≥40%相对应的海拔作为各个月份的雪线高度,天山山区平均雪线海拔在2875m.夏季雪线海拔在4000m以上;冬季雪线海拔在1500m.  相似文献   

8.
胡列群  李帅  梁凤超 《冰川冻土》2013,35(4):793-800
利用新疆91个气象台站1960-2011年的观测资料, 对南北疆及天山山区冬春年(10月-翌年5月)的积雪日数、最大积雪深度、积雪初始、终止日期等因子进行了统计分析, 并通过Kringing插值计算了新疆区域平均最大积雪深度的空间分布.结果表明: 新疆冬春季积雪主要分布在天山以北, 厚度可达30 cm以上, 天山以南积雪比较浅薄, 大部分在10 cm以下;50 a来, 南北疆及天山山区的积雪深度均呈小幅增长(天山山区增幅最大), 积雪日数呈略微降低趋势, 积雪初始、终止日期无明显变化. 天山山区的积雪变化与北疆有较高的相关性, 它们积雪深度和积雪日数的相关系数分别达0.708和0.614, 南疆积雪变化与它们几乎没有相关性;积雪深度与冬春年降水量的变化均有很好的一致性, 尤其在北疆,二者相关系数高达0.702, 但与平均温度呈低的负相关;积雪日数与冬春年降水量变化没有明显相关关系, 但均与气温呈较好的负相关, 在北疆二者的相关系数达-0.742.  相似文献   

9.
基于2001—2015年MOD10A1/MYD10A1、MOD13Q1以及相关气象数据,采用积雪持续时间比率法,监测了天山山区的季节雪线高程,分析了其变化特征及影响因子。结果表明:①近15年天山山区雪线整体呈显著上升趋势,平均高程3 680 m左右,其中,北坡、伊犁河谷、南坡季节雪线的稳定性依次减弱,平均高程分别为3 620 m、3 390 m及3 820 m;空间上雪线高程呈现南高北低、东高西低的纬度地带性分布特点。②年际尺度上,气温是影响天山山区雪线高程的主控因素,呈显著正相关,南北坡与之相同,但伊犁河谷则降水是影响其变化的主控因素,呈显著负相关;季节尺度上,夏季气温、冬季降水是影响雪线高程的主控因素,降水与其呈负相关,但气温较高的地区,夏秋季降水会促进积雪融化,使雪线高程上升;月尺度上,7月气温、1月降水对其影响最明显,且存在一定的滞后反应。③天山山区雪线高程比零度层低800 m左右,两者呈较好正相关;雪线高程与NDVI(Normalized Difference Vegetation Index)呈负相关,植被覆盖较好区域,同年NDVI与雪线高程相关性较好,植被覆盖较差区域,前一年NDVI与其相关性较好。  相似文献   

10.
基于MODIS的祁连山区积雪时空变化特征   总被引:1,自引:0,他引:1  
蔡迪花  郭铌  王兴  张小文 《冰川冻土》2009,31(6):1028-1036
利用2000-2003年日资料经8 d合成的500 m分辨率MODIS卫星反演积雪资料和数字高程模型, 借助于GIS空间分析技术, 以积雪频率和积雪盖度为监测指标, 研究分析了祁连山区整体的积雪空间分布状况及其年内变化特征, 地形对积雪的分布和季节变化的影响. 结果表明: 祁连山区的积雪分布极不均匀, 积雪主要沿山系走向成条带状分布, 呈现西段多, 东段次之, 中部和南部少, 山脊多, 山谷少的特征, 且海拔越高、 山势越陡、阴坡积雪的范围越大、持续时间越久. 累积降雪时间, 就全区而言为9月至翌年5月, 但不同高度、坡度和坡向带有所差别. 海拔4 000 m以上区域存在春、秋季两个时段的积雪补给, 而海拔4 000 m以下仅有中秋至中冬一个时段的积雪补给;坡度较平缓的区域冬季和春季为主要积雪补给期, 而坡度较陡的区域则为秋季和春季;平地和南坡积雪补给主要发生在冬季和春季, 而其它坡向为春季和秋季.  相似文献   

11.
新疆北部地区季节性积雪密度变化特征分析   总被引:4,自引:1,他引:3  
选取新疆北部地区季节性积雪期的定点站和典型区域,应用北疆20个气象站点观测资料和使用便携式测雪仪(Snow Fork),在不同地域、不同雪层和不同时间进行观测与测量,并且在积雪稳定期中的一次降雪过程对新雪密度变化过程中影响它的诸多因子进行观测,对新疆北部地区冬季季节性积雪密度变化特征进行的观测和分析.结果表明:雪面辐射热量和雪层内温度梯度对积雪密度起主要作用,变化主要是通过雪层内深霜和粗粒雪层的温度减小而实现的;在隆冬期全层积雪密度最大的为深霜层,入春2月下旬回暖期以后,由于雪层含水率的增加,季节性积雪密度最大层则为粒雪层.  相似文献   

12.
利用1978-2005年逐日中国积雪深度数据集,分析了我国积雪空间分布特征和季节时空分布特征,并运用趋势线分析方法和均方根差模拟了积雪深度和积雪日数的变化趋势及异常空间变化特征.结果表明:青藏高原东南、青藏高原西部和南部、新疆北部和东北山区为我国积雪空间分布四大高值区.近28 a来,积雪深度和积雪日数呈增加趋势,20世纪80年代青藏高原明显增加和明显减少趋势并存,90年代整体明显增加,2000-2005年整体基本不变.青藏高原中东部、新疆北部以及东北山区为积雪深度异常变化敏感区,而青藏高原西部则为积雪日数异常变化敏感区.  相似文献   

13.
青藏高原冬春积雪和季节冻土年际变化差异的成因分析   总被引:22,自引:13,他引:9  
高荣  韦志刚  董文杰 《冰川冻土》2004,26(2):153-159
利用青藏高原上72个常规气象观测站的逐日积雪厚度、冻结深度、气温、降水和地表温度资料,分析了高原积雪和季节冻土年际变化差异的原因.结果表明:气温和地表温度对高原积雪和季节冻土都有重要的影响,而降水对积雪的影响很重要,但是对季节冻土的影响则比较小.高原积雪对季节冻土有较大的影响,在积雪达到一定厚度以后,积雪的保温作用会影响冻结深度的变化,积雪越厚,保温作用越强;积雪越浅,保温作用越弱,当积雪小于某一厚度时其主要起降温作用.积雪的保温作用可能是积雪与季节冻土年际变化差异的原因之一.  相似文献   

14.
窦燕  陈曦 《地球科学进展》2011,26(4):441-448
选取196l-2006年天山山区海拔高于1000 m的17个气象站的月积雪日数、月最大积雪深度资料,分析天山山区季节性积雪年际变化趋势,探讨17个站点在最大雪深出现月份和海拔之间的相关性以及积雪日数和月最大雪深变化趋势的类型,以及积雪变化的气候归因.结果表明:①按最大雪深出现的月份,天山山区积雪类型可分成4种,分别是1...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号