首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The Upper Cretaceous succession of the Leonese Area (NW Spain) comprises mixed clastic and carbonate sediments. This succession is divided into two lithostratigraphic units, the Voznuevo Member and the Boñar Formation, which represent fluvial, shoreface, intertidal, subtidal and open‐shelf sedimentary environments. Regional seismic interpretation and sequence stratigraphic analysis have allowed the study of lateral and vertical changes in the sedimentary record and the definition of third‐order levels of stratigraphic cyclicity. On the basis of these data, the succession can be divided into two second‐order depositional sequences (DS‐1 and DS‐2), incorporating three system tracts in a lowstand to transgressive to highstand system tract succession (LST–TST–HST). These sequences are composed of fluvial systems at the base with palaeocurrents that flowed westward and south‐westward. The upper part of DS‐1 (Late Albian–Middle Turonian) shows evidence of intertidal to subtidal and offshore deposits. DS‐2 (Late Turonian–Campanian) comprises intertidal to subtidal, tidal flat, shallow marine and lacustrine deposits and interbedded fluvial deposits. Two regressive–transgressive cycles occurred in the area related to eustatic controls. The evolution of the basin can be explained by base‐level changes and associated shifts in depositional trends of successive retrogradational episodes. By using isobath and isopach maps, the main palaeogeographic features of DS‐1 and DS‐2 were constrained, namely coastline positions, the existence and orientation of corridors through which fluvial networks were channelled and the location of the main depocentres of the basin. Sedimentation on the Upper Cretaceous marine platform was mainly controlled by (i) oscillations of sea level and (ii) the orientation of Mesozoic faults, which induced sedimentation along depocentres. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The Lower Jurassic Mashabba Formation crops out in the core of the doubly plunging Al-Maghara anticline, North Sinai, Egypt. It represents a marine to terrestrial succession deposited within a rift basin associated with the opening of the Neotethys. Despite being one of the best and the only exposed Lower Jurassic strata in Egypt, its sedimentological and sequence stratigraphic framework has not been addressed yet. The formation is subdivided informally into a lower and upper member with different depositional settings and sequence stratigraphic framework. The sedimentary facies of the lower member include shallow-marine, fluvial, tidal flat and incised valley fill deposits. In contrast, the upper member consists of strata with limited lateral extension including fossiliferous lagoonal limestones alternating with burrowed deltaic sandstones. The lower member contains three incomplete sequences (SQ1-SQ3). The depositional framework shows transgressive middle shoreface to offshore transition deposits sharply overlain by forced regressive upper shoreface sandstones (SQ1), lowstand fluvial to transgressive tidal flat and shallow subtidal sandy limestones (SQ2), and lowstand to transgressive incised valley fills and shallow subtidal sandy limestones (SQ3). In contrast, the upper member consists of eight coarsening-up depositional cycles bounded by marine flooding surfaces. The cycles are classified as carbonate-dominated, siliciclastic-dominated, and mixed siliciclastic-carbonate. The strata record rapid changes in accommodation space. The unpredictable facies stacking pattern, the remarkable rapid facies changes, and chaotic stratigraphic architecture suggest an interplay between allogenic and autogenic processes. Particularly syndepositional tectonic pulses and occasional eustatic sea-level changes controlled the rate and trends of accommodation space, the shoreline morphology, the amount and direction of siliciclastic sediment input and rapid switching and abandonment of delta systems.  相似文献   

3.
Marginal marine deposits of the John Henry Member, Upper Cretaceous Straight Cliffs Formation, were deposited within a moderately high accommodation and high sediment supply setting that facilitated preservation of both transgressive and regressive marginal marine deposits. Complete transgressive–regressive cycles, comprising barrier island lagoonal transgressive deposits interfingered with regressive shoreface facies, are distinguished based on their internal facies architecture and bounding surfaces. Two main types of boundaries occur between the transgressive and regressive portions of each cycle: (i) surfaces that record the maximum regression and onset of transgression (bounding surface A); and (ii) surfaces that place deeper facies on top of shallower facies (bounding surface B). The base of a transgressive facies (bounding surface A) is defined by a process change from wave‐dominated to tide‐dominated facies, or a coaly/shelly interval indicating a shift from a regressive to a transgressive regime. The surface recording such a process change can be erosional or non‐erosive and conformable. A shift to deeper facies occurs at the base of regressive shoreface deposits along both flooding surfaces and wave ravinement surfaces (bounding surface B). These two main bounding surfaces and their subtypes generate three distinct transgressive – regressive cycle architectures: (i) tabular, shoaling‐upward marine parasequences that are bounded by flooding surfaces; (ii) transgressive and regressive unit wedges that thin basinward and landward, respectively; and (iii) tabular, transgressive lagoonal shales with intervening regressive coaly intervals. The preservation of transgressive facies under moderately high accommodation and sediment supply conditions greatly affects stratigraphic architecture of transgressive–regressive cycles. Acknowledging variation in transgressive–regressive cycles, and recognizing transgressive successions that correlate to flooding surfaces basinward, are both critical to achieving an accurate sequence stratigraphic interpretation of high‐frequency cycles.  相似文献   

4.
A siliciclastic-dominated succession (~11 m thick) underlying Harrat Rahat, belonging to the Miocene–Pliocene Bathan Formation is recently exposed at Al-Rehaili area, North Jeddah, Saudi Arabia. It covers a wide spectrum of grain sizes varying from clay-rich mudstones to cobble grade conglomerate and consists of a variety of facies vary from fluvial to marginal and open lacustrine deposited in a half-graben basin formed along the eastern margin of the extensional Red Sea Basin. Field-based sedimentologic investigation enables to identify ten facies grouped into three facies associations (A–C). The depositional history is subdivided into two stages. The first stage represents deposition in gravel to sand-dominated fluvial system sourced from a southern source and grade northward into lacustrine delta and open lacustrine setting. The second stage on the other hand includes deposition of fluvial channels running in E–W direction with attached bank sand bar. Sequence stratigraphic interpretations of the lacustrine deposits enable to identify three unconformity-bounded sequences (SQ1–3). The basal sequence is incomplete, consisting of three aggradationally to progradationally stacked delta plain and delta front parasequences. The second sequence is sharply and erosively overlying a red paleosol bed that defines the upper boundary of the first sequence. It includes two system tracts; upward-fining and deepening lacustrine offshore mudstones of the transgressive system tracts unconformably overlain by red paleosol of the regressive systems tracts. The top of this sequence is delineated at the sharp transgressive surface of erosion at the base of delta mouth bar deposits of sequence 3. Changes in the accommodation and sedimentation rates by basin subsidence under the influence of tectonics and sediment compaction and loading as well as climatic oscillation between semi-arid to arid conditions were the major controls on the fluvio-lacustrine sedimentation and their facies distribution. Tectonic reorganization of the drainage system resulted in the formation of E–W flowing fluvial streams in the second stage.  相似文献   

5.
ANNA BREDA  NEREO PRETO 《Sedimentology》2011,58(6):1613-1647
The Travenanzes Formation is a terrestrial to shallow‐marine, siliciclastic–carbonate succession (200 m thick) that was deposited in the eastern Southern Alps during the Late Triassic. Sedimentary environments and depositional architecture have been reconstructed in the Dolomites, along a 60 km south–north transect. Facies alternations in the field suggest interfingering between alluvial‐plain, flood‐basin and shallow‐lagoon deposits, with a transition from terrestrial to marine facies belts from south to north. The terrestrial portion of the Travenanzes Formation consists of a dryland river system, characterized by multicoloured floodplain mudstones with scattered conglomeratic fluvial channels, merging downslope into small ephemeral streams and sheet‐flood sandstones, and losing their entire discharge subaerially before the shoreline. Calcic and vertic palaeosols indicate an arid/semi‐arid climate with strong seasonality and intermittent discharge. The terrestrial/marine transition shows a coastal mudflat, the flood basin, which is usually exposed, but at times is inundated by both major river floods and sea‐water storm surges. Locally coastal sabkha deposits occur. The marine portion of the Travenanzes Formation comprises carbonate tidal‐flat and shallow‐lagoon deposits, characterized by metre‐scale shallowing‐upward peritidal cycles and subordinate intercalations of dark clays from the continent. The depositional architecture of the Travenanzes Formation suggests an overall transgressive pattern organized in three carbonate–siliciclastic cycles, corresponding to transgressive–regressive sequences with internal higher‐frequency sedimentary cycles. The metre‐scale sedimentary cyclicity of the Travenanzes Formation continues without a break in sedimentation into the overlying Dolomia Principale. The onset of the Dolomia Principale epicontinental platform is marked by the exhaustion of continental sediment supply.  相似文献   

6.
The Quilalar Formation and correlative Mary Kathleen Group in the Mount Isa Inlier, Australia, conformably overlie rift-related volcanics and sediments and non-conformably overlie basement rocks. They represent a thermal-relaxation phase of sedimentation between 1780 and 1740 Ma. Facies analysis of the lower siliciclastic member of the Quilalar Formation and the coeval Ballara Quartzite permits discrimination of depositional systems that were restricted areally to either N-S-trending marginal platform or central trough palaeogeographic settings. Four depositional systems, each consisting of several facies, are represented in the lower Quilalar Formation-Ballara Quartzite; these are categorized broadly as storm-dominated shelf (SDS), continental (C), tide-dominated shelf (TDS) and wave-dominated shoreline (WDS). SDS facies consist either of black pyritic mudstone intervals up to 10 m thick, or mudstone and sandstone associated in 6–12-m-thick, coarsening-upward parasequences. Black mudstones are interpreted as condensed sections that developed as a result of slow sedimentation in an outer-shelf setting starved of siliciclastic influx. Vertical transition of facies in parasequences reflects flooding followed by shoaling of different shelf subenvironments; the shoreface contains evidence of subaerial exposure. Continental facies consist of fining-upward parasequences of fluvial origin and tabular, 0·4–4-m-thick, aeolian parasequences. TDS facies are represented by stacked, tabular parasequences between 0·5 and 5 m thick. Vertical arrangement of facies in parasequences reflects flooding and establishment of a tidal shelf followed by shoaling to intertidal conditions. WDS facies are preserved in 0·5–3-m-thick, stacked, tabular parasequences. Vertical transition of facies reflects initial flooding with wave reworking of underlying arenites along a ravinement surface, followed by shoaling from lower shoreface to foreshore conditions. Parasequences are stacked in retrogradational and progradational parasequence sets. Retrogradational sets consist of thin SDS parasequences in the trough, and C, TDS and probably WDS parasequences on the platforms. Thick SDS parasequences in the trough, and TDS, subordinate C and probably WDS parasequences on the platforms make up progradational parasequence sets. Depositional systems are associated in systems tracts that make up 40–140-m-thick sequences bounded by type-2 sequence boundaries that are disconformities. Transgressive systems tracts consist of C, TDS and probably WDS depositional systems on the platforms and the SDS depositional system and suspension mudstone deposits in the trough. The transgressive systems tract is characterized by retrogradational parasequence sets and developed in response to accelerating rates of sea-level rise following lowstand. Condensed-section deposits in the trough, and the thickest TDS parasequences on the platforms reflect maximum rates of sea-level rise and define maximum flooding surfaces. Highstand systems tract deposits are progradational. Early highstand systems tracts are represented by TDS and probably WDS depositional systems on the platforms and suspension mudstone deposits in the trough and reflect decreasing rates of sea-level rise. Later highstand systems tracts consist of the progradational SDS depositional system in the trough and, possibly, thin continental facies on the platforms. This stage of sequence development is related to slow rates of sea-level rise, stillstand and slow rates of fall. Lowstand deposits of shelf-margin systems tracts are not recognized but may be represented by shoreface deposits at the top of progradational SDS parasequence sets.  相似文献   

7.
The study area is located in the east Tabas Block in Central Iran. Facies analysis of the Qal’eh Dokhtar Formation (middle Callovian to late Oxfordian) was carried out on two stratigraphic sections and applied to depositional environment and sequence stratigraphy interpretation. This formation conformably overlies and underlies the marly-silty Baghamshah and the calcareous Esfandiar formations, respectively. Lateral and vertical facies changes documents low- to high energy environments, including tidal-flat, beach to intertidal, lagoon, barrier, and open-marine. According to these facies associations and absence of resedimentation deposits a depositional model of a mixed carbonate–siliciclastic ramp was proposed for the Qal’eh Dokhtar Formation. Seven third-order depositional sequences were identified in each two measured stratigraphic sections. Transgressive systems tracts (TSTs) show deepening upward trends, i.e. shallow water beach to intertidal and lagoonal facies, while highstand systems tracts (HST) show shallowing upward trends in which deep water facies are overlain by shallow water facies. All sequence boundaries (except at the base of the stratigraphic column) are of the no erosional (SB2) types. We conclude eustatic rather than tectonic factors played a dominant role in controlling carbonate depositional environments in the study area.  相似文献   

8.
This work presents the first detailed facies analysis of the upper Nyalau Formation exposed around Bintulu, Sarawak, Malaysia. The Lower Miocene Nyalau Formation exposures in NW Sarawak represent one of the closest sedimentological outcrop analogues to the age equivalent, hydrocarbon-bearing, offshore deposits of the Balingian Province. Nine types of facies associations are recognised in the Nyalau Formation, which form elements of larger-scale facies successions. Wave-dominated shoreface facies successions display coarsening upward trends from Offshore, into Lower Shoreface and Upper Shoreface Facies Associations. Fluvio-tidal channel facies successions consist of multi-storey stacks of Fluvial-Dominated, Tide-Influenced and Tide-Dominated Channel Facies Associations interbedded with minor Bay and Mangrove Facies Associations. Estuarine bay facies successions are composed of Tidal Bar and Bay Facies Associations with minor Mangrove Facies Associations. Tide-dominated delta facies successions coarsen upward from an Offshore into the Tidal Bar Facies Association. The Nyalau Formation is interpreted as a mixed wave- and tide-influenced coastal depositional system, with an offshore wave-dominated barrier shoreface being incised by laterally migrating tidal channels and offshore migrating tidal bars. Stratigraphic successions in the Nyalau Formation form repetitive high frequency, regressive–transgressive cycles bounded by flooding surfaces, consisting of a basal coarsening upward, wave-dominated shoreface facies succession (representing a prograding barrier shoreface and/or beach-strandplain) which is sharply overlain by fluvio-tidal channel, estuarine bay or tide-dominated delta facies successions (representing more inshore, tide-influenced coastal depositional environments). An erosion surface separates the underlying wave-dominated facies succession from overlying tidal facies successions in each regressive–transgressive cycle. These erosion surfaces are interpreted as unconformities formed when base level fall resulted in deep incision of barrier shorefaces. Inshore, fluvio-tidal successions above the unconformity display upward increase in marine influence and are interpreted as transgressive incised valley fills.  相似文献   

9.
The Campanian Cliff House Formation represents a series of individually progradational shoreface tongues preserved in an overall landward-stepping system. In the Mancos Canyon area, the formation consists of four, 50- to 55-m-thick and 10- to 20-km-wide sandstone tongues, which pinch out landwards into lower coastal plain and lagoonal deposits of the Upper Menefee Formation and seawards into offshore shales of the Lewis Shale Formation. Photogrammetric mapping of lithofacies along the steep and well-exposed canyon walls was combined with sedimentary facies analysis and mapping of the detailed facies architecture. Two major facies associations have been identified, one comprising the mostly muddy and organic-rich facies of lagoonal and lower coastal plain origin and one comprising the sandstone-dominated facies of shoreface origin. Key stratigraphic surfaces were identified by combining the mapped geometry of the lithofacies units with the interpretation of depositional processes. The stratigraphic surfaces (master ravinement surface, shoreface/coastal plain contact, transgressive surface, maximum flooding surface and the sequence boundary) allow each major sandstone tongue to be divided into a simple sequence, consisting of a basal transgressive system tract (TST) overlain by a highstand system tract (HST). Within each sandstone tongue, a higher frequency cyclicity is evident. The high-frequency cycles show a complex stacking pattern development and are commonly truncated in the downdip direction by surfaces of regressive marine erosion. The complexities of the Cliff House sandstone tongues are believed to reflect changes in the rate of sea-level rise combined with the responses of the depositional system to these changes. Synsedimentary compaction, causing a thickness increase in the sandstone tongues above intervals of previously uncompacted lagoonal/coastal plain sediments, also played a role. This study of the facies architecture, geometry and sequence stratigraphy of the Cliff House Formation highlights the fact that there may be some problems in applying conventional sequence stratigraphical methods to landward-stepping systems in general. These difficulties stem from the fact that no single stratigraphic surface can easily be identified and followed from the non-marine to the fully marine realm (i.e. from the landward to the basinward pinch-out of the sandstone tongues). In addition, the effects of synsedimentary compaction and changes in the shoreface dynamics are not easily recognized in limited data sets such as from the subsurface.  相似文献   

10.
Integrated sedimentologic, macrofossil, trace fossil, and palynofacies data from Paleocene-Middle Eocene outcrops document a comprehensive sequence stratigraphy in the Anambra Basin/Afikpo Syncline complex of southeastern Nigeria. Four lithofacies associations occur: (1) lithofacies association I is characterized by fluvial channel and/or tidally influenced fluvial channel sediments; (2) lithofacies association II (Glossifungites and Skolithos ichnofacies) is estuarine and/or proximal lagoonal in origin; (3) lithofacies association III (Skolithos and Cruziana ichnofacies) is from the distal lagoon to shallow shelf; and (4) shoreface and foreshore sediments (Skolithos ichnofacies) comprise lithofacies association IV. Five depositional sequences, one in the Upper Nsukka Formation (Paleocene), two in the Imo Formation (Paleocene), and one each in the Ameki Group and Ogwashi-Asaba Formation (Eocene), are identified. Each sequence is bounded by a type-1 sequence boundary, and contains a basal fluvio-marine portion representing the transgressive systems tract, which is succeeded by shoreface and foreshore deposits of the highstand systems tract. In the study area, the outcropping Ogwashi-Asaba Formation is composed of non-marine/coastal aggradational deposits representing the early transgressive systems tract. The occurrence of the estuarine cycles in the Palaeogene succession is interpreted as evidence of significant relative sea level fluctuations, and the presence of type-1 sequence boundaries may well be the stratigraphic signature of major drops in relative sea level during the Paleocene and Eocene. Sequence architecture appears to have been tectono-eustatically controlled.  相似文献   

11.
The Erlian Basin is one of the non-marine Cretaceous basins of north-east China that developed during the late Mesozoic continental extension in eastern Asia. This basin experienced two major tectonic events: (i) a syn-rift stage that was dominated by a fluvial–lacustrine depositional environment and (ii) a post-rift stage that was dominated by a fluvial environment. A new sedimentological study performed on Erlian Formation drill cores has led to the determination of an architectural model and to the subsequent characterisation of the stratigraphic evolution of this sedimentary unit during the late Cretaceous. The palynological occurrences that were identified in samples provided a possible stratigraphical age for the Erlian Formation.Sediments of the Erlian Formation occur at the top of the Cretaceous stratigraphic column of the Erlian Basin and were deposited during the post-rift stage. Facies architecture and the ideal succession of facies that were identified for this formation exhibit two different members, both dominated by a fluvial depositional environment: (i) the lower member, which is dominated by channels of a braided river system and (ii) the upper member, which is dominated by overbank deposits. The lower member expresses a tectonically induced uplift as indicated by channels clustering under negative accommodation, whereas a period of stratigraphic base-level rise that is associated with an increase of accommodation is identified in the upper member. Therefore the Erlian Formation highlights an alternation of short uplifts that were dominated by braided fluvial channel deposits with periods of stratigraphic base-level rise that were dominated by overbank deposits. This sedimentological architecture has significant metallogenic implications for the origin of confined permeable sandstone layers, which represent adequate host-rocks for roll front-type uranium deposits.The palynological assemblage Exesipollenites, Ulmipollenites/Ulmoideipites, Buttinia and Momipites that were recognised in two samples of the Erlian Formation has revealed a post-late Campanian age therefore more likely indicating a late Cretaceous age of deposition for the sediments of the Erlian Formation.  相似文献   

12.
The Lower Cenomanian Bahariya Formation corresponds to a second-order depositional sequence that formed within a continental shelf setting under relatively low-rate conditions of positive accommodation (< 200 m during 3–6 My). This overall trend of base-level rise was interrupted by three episodes of base-level fall that resulted in the formation of third-order sequence boundaries. These boundaries are represented by subaerial unconformities (replaced or not by younger transgressive wave ravinement surfaces), and subdivide the Bahariya Formation into four third-order depositional sequences.

The construction of the sequence stratigraphic framework of the Bahariya Formation is based on the lateral and vertical changes between shelf, subtidal, coastal and fluvial facies, as well as on the nature of contacts that separate them. The internal (third-order) sequence boundaries are associated with incised valleys, which explain (1) significant lateral changes in the thickness of incised valley fill deposits, (2) the absence of third-order highstand and even transgressive systems tracts in particular areas, and (3) the abrupt facies shifts that may occur laterally over relatively short distances. Within each sequence, the concepts of lowstand, transgressive and highstand systems tracts are used to explain the observed lateral and vertical facies variability.

This case study demonstrates the usefulness of sequence stratigraphic analysis in understanding the architecture and stacking patterns of the preserved rock record, and helps to identify 13 stages in the history of base-level changes that marked the evolution of the Bahariya Oasis region during the Early Cenomanian.  相似文献   


13.
The Middle Triassic–Lower Cretaceous (pre-Late Albian) succession of Arif El-Naga anticline comprises various distinctive facies and environments that are connected with eustatic relative sea-level changes, local/regional tectonism, variable sediment influx and base-level changes. It displays six unconformity-bounded depositional sequences. The Triassic deposits are divided into a lower clastic facies (early Middle Triassic sequence) and an upper carbonate unit (late Middle- and latest Middle/early Late Triassic sequences). The early Middle Triassic sequence consists of sandstone with shale/mudstone interbeds that formed under variable regimes, ranging from braided fluvial, lower shoreface to beach foreshore. The marine part of this sequence marks retrogradational and progradational parasequences of transgressive- and highstand systems tract deposits respectively. Deposition has taken place under warm semi-arid climate and a steady supply of clastics. The late Middle- and latest Middle/early Late Triassic sequences are carbonate facies developed on an extensive shallow marine shelf under dry-warm climate. The late Middle Triassic sequence includes retrogradational shallow subtidal oyster rudstone and progradational lower intertidal lime-mudstone parasequences that define the transgressive- and highstand systems tracts respectively. It terminates with upper intertidal oncolitic packstone with bored upper surface. The next latest Middle/early Late Triassic sequence is marked by lime-mudstone, packstone/grainstone and algal stromatolitic bindstone with minor shale/mudstone. These lower intertidal/shallow subtidal deposits of a transgressive-systems tract are followed upward by progradational highstand lower intertidal lime-mudstone deposits. The overlying Jurassic deposits encompass two different sequences. The Lower Jurassic sequence is made up of intercalating lower intertidal lime-mudstone and wave-dominated beach foreshore sandstone which formed during a short period of rising sea-level with a relative increase in clastic supply. The Middle-Upper Jurassic sequence is represented by cycles of cross-bedded sandstone topped with thin mudstone that accumulated by northerly flowing braided-streams accompanying regional uplift of the Arabo–Nubian shield. It is succeeded by another regressive fluvial sequence of Early Cretaceous age due to a major eustatic sea-level fall. The Lower Cretaceous sequence is dominated by sandy braided-river deposits with minor overbank fines and basal debris flow conglomerate.  相似文献   

14.
The 600 m thick prograding sedimentary succession of Wagad ranging in age from Callovian to Early Kimmeridgian has been divided into three formations namely, Washtawa, Kanthkot and Gamdau. Present study is confined to younger part of the Washtawa Formation and early part of the Kanthkot Formation exposed around Kanthkot, Washtawa, Chitrod and Rapar. The depositional architecture and sedimentation processes of these deposits have been studied applying sequence stratigraphic context. Facies studies have led to identification of five upward stacking facies associations (A, B, C, D, and E) which reflect that deposition was controlled by one single transgressive — regressive cycle. The transgressive deposit is characterized by fining and thinning upward succession of facies consisting of two facies associations: (1) Association A: medium — to coarse-grained calcareous sandstone — mudrocks alternations (2) Association B: fine-grained calcareous sandstone — mudrocks alternations. The top of this association marks maximum flooding surface as identified by bioturbational fabrics and abundance of deep marine fauna (ammonites). Association A is interpreted as high energy transgressive deposit deposited during relative sea level rise. Whereas, facies association B indicates its deposition in low energy marine environment deposited during stand-still period with low supply of sediments. Regressive sedimentary package has been divided into three facies associations consisting of: (1) Association C: gypsiferous mudstone-siltstone/fine sandstone (2) Association D: laminated, medium-grained sandstone — siltstone (3) Association E: well laminated (coarse and fine mode) sandstone interbedded with coarse grained sandstone with trough cross stratification. Regressive succession of facies association C, D and E is interpreted as wave dominated shoreface, foreshore to backshore and dune environment respectively. Sequence stratigraphic concepts have been applied to subdivide these deposits into two genetic sequences: (i) the lower carbonate dominated (25 m) transgressive deposits (TST) include facies association A and B and the upper thick (75m) regressive deposits (HST) include facies association C, D and E. The two sequences are separated by maximum flooding surface (MFS) identified by sudden shift in facies association from B to C. The transgressive facies association A and B represent the sediments deposited during the syn-rift climax followed by regressive sediments comprising association C, D and E deposited during late syn-rift stage.  相似文献   

15.
Many modern deltas show complex morphologies and architectures related to the interplay of river, wave and tidal currents. However, methods for extracting the signature of the individual processes from the stratigraphic architecture are poorly developed. Through an analysis of facies, palaeocurrents and stratigraphic stacking patterns in the Jurassic Lajas Formation, this paper: (i) separates the signals of wave, tide and river currents; (ii) illustrates the result of strong tidal reworking in the distal reaches of deltaic systems; and (iii) discusses the implications of this reworking for the evolution of mixed‐energy systems and their reservoir heterogeneities. The Lajas Formation, a sand‐rich, shallow‐marine, mixed‐energy deltaic system in the Neuquén Basin of Argentina, previously defined as a tide‐dominated system, presents an exceptional example of process variability at different scales. Tidal signals are predominantly located in the delta front, the subaqueous platform and the distributary channel deposits. Tidal currents vigorously reworked the delta front during transgressions, producing intensely cross‐stratified, sheet‐like, sandstone units. In the subaqueous platform, described for the first time in an ancient outcrop example, the tidal reworking was confined within subtidal channels. The intensive tidal reworking in the distal reaches of the regressive delta front could not have been predicted from knowledge of the coeval proximal reaches of the regressive delta front. The wave signals occur mainly in the shelf or shoreface deposits. The fluvial signals increase in abundance proximally but are always mixed with the other processes. The Lajas system is an unusual clean‐water (i.e. very little mud is present in the system), sand‐rich deltaic system, very different from the majority of mud‐rich, modern tide‐influenced examples. The sand‐rich character is a combination of source proximity, syndepositional tectonic activity and strong tidal‐current reworking, which produced amalgamated sandstone bodies in the delta‐front area, and a final stratigraphic record very different from the simple coarsening‐upward trends of river‐dominated and wave‐dominated delta fronts.  相似文献   

16.
The Bridport Sand Formation is an intensely bioturbated sandstone that represents part of a mixed siliciclastic‐carbonate shallow‐marine depositional system. At outcrop and in subsurface cores, conventional facies analysis was combined with ichnofabric analysis to identify facies successions bounded by a hierarchy of key stratigraphic surfaces. The geometry of these surfaces and the lateral relationships between the facies successions that they bound have been constrained locally using 3D seismic data. Facies analysis suggests that the Bridport Sand Formation represents progradation of a low‐energy, siliciclastic shoreface dominated by storm‐event beds reworked by bioturbation. The shoreface sandstones form the upper part of a thick (up to 200 m), steep (2–3°), mud‐dominated slope that extends into the underlying Down Cliff Clay. Clinoform surfaces representing the shoreface‐slope system are grouped into progradational sets. Each set contains clinoform surfaces arranged in a downstepping, offlapping manner that indicates forced‐regressive progradation, which was punctuated by flooding surfaces that are expressed in core and well‐log data. In proximal locations, progradational shoreface sandstones (corresponding to a clinoform set) are truncated by conglomerate lags containing clasts of bored, reworked shoreface sandstones, which are interpreted as marking sequence boundaries. In medial locations, progradational clinoform sets are overlain across an erosion surface by thin (<5 m) bioclastic limestones that record siliciclastic‐sediment starvation during transgression. Near the basin margins, these limestones are locally thick (>10 m) and overlie conglomerate lags at sequence boundaries. Sequence boundaries are thus interpreted as being amalgamated with overlying transgressive surfaces, to form composite erosion surfaces. In distal locations, oolitic ironstones that formed under conditions of extended physical reworking overlie composite sequence boundaries and transgressive surfaces. Over most of the Wessex Basin, clinoform sets (corresponding to high‐frequency sequences) are laterally offset, thus defining a low‐frequency sequence architecture characterized by high net siliciclastic sediment input and low net accommodation. Aggradational stacking of high‐frequency sequences occurs in fault‐bounded depocentres which had higher rates of localized tectonic subsidence.  相似文献   

17.
二连盆地吉尔嘎朗图凹陷是一个陆相断陷聚煤盆地,下白垩统赛汉塔拉组是其主要含煤地层,作者利用岩心、钻孔资料对其岩相类型、沉积相、层序地层及聚煤作用特征进行研究。(1)赛汉塔拉组主要由砂砾岩、砂岩、粉砂岩、泥岩、碳质泥岩及厚层褐煤组成,发育扇三角洲平原相、扇三角洲前缘相、辫状河三角洲平原相、辫状河三角洲前缘相、滨浅湖相,分别属于扇三角洲沉积体系、辫状河三角洲沉积体系和湖泊沉积体系。(2)识别出2种层序界面:不整合面和下切谷冲刷面,将赛汉塔拉组划分为2个三级层序。从层序Ⅰ到层序Ⅱ,煤层厚度逐渐增大,聚煤作用逐渐增强。(3)在滨浅湖环境下厚煤层主要形成于湖侵体系域早期,在扇/辫状河三角洲环境下厚煤层主要形成于湖侵体系域晚期,煤层厚度在凹陷中部最大,向西北和东南方向均变小。聚煤作用明显受基底沉降作用影响,可容空间增加速率与泥炭堆积速率相平衡,从而形成了区内巨厚煤层。  相似文献   

18.
据新的地层划分方案及大量钻井、露头和岩心资料,详细研究了鄂尔多斯盆地华池地区延安组延9油层组(Y9)沉积体系特征及演化,认为延9油层组主要为河流沉积,是延10油层组的继承与发展,发育有辫状河、辫状型曲流河和网状河3种类型的河流。Y39油层是辫状河发育的油层,Y29油层在继承Y39油层河流的基础上发育辫状型曲流河,Y19油层则是在前两期逐渐填平补齐之后,在准平原条件下发育的网状河沉积。华池地区延9油层组发育辫状河-辫状型曲流河和网状河两种河流沉积模式。  相似文献   

19.
为揭示准噶尔盆地东缘中侏罗统头屯河组(J2t)层序地层特征及其沉积充填规律,结合露头、岩心及测井资料并运用高分辨率层序地层理论,对研究区头屯河组层序地层进行划分对比,对其沉积相展布特征和沉积环境演化规律进行研究。结果表明:头屯河组可划分出个1个Ⅲ级旋回、3个Ⅳ级旋回及9个Ⅴ级旋回,沉积物岩性以砂砾岩和泥岩为主,沉积环境主要为辫状河、辫状河三角洲和滨浅湖,发育向上"变深"对称型和非对称型的两种结构类型。头屯河组沉积时期湖泊较浅,沉积基底平缓,湖泊边缘坡度小,在头屯河组下段(J2t1)时期到头屯河组上段(J2t2)段时期经历了湖侵演变过程。结合研究区的层序地层和沉积相展布特征,认为研究区中侏罗统头屯河组具有辫状河、辫状河三角洲及湖泊3种沉积环境相结合的沉积演化模式。  相似文献   

20.
通过岩心观察和单井相分析,结合沉积背景资料,认为留西地区古近系沙河街组沙三上亚段发育辫状河三角洲相和湖泊相,以辫状河三角洲前缘亚相和滨浅湖亚相为主,主要发育辫状分流河道、越岸沉积、水下分流河道、河口坝、席状砂等微相。根据层序地层学基本原理,结合前人研究成果,认为本区沙三上亚段为一完整的三级层序,可划分为低位、湖侵和高位3个体系域,分别对应于沙三上亚段沉积时期的早期、中期和晚期,绘制了每个沉积阶段的沉积相图,在此基础上研究了沉积体系的平面展布特征。沙三上亚段沉积时期形成的北高南低的构造背景与辫状河三角洲近东西向展布的砂体形态相互配置,加之良好的油源供给,为后期成藏创造了条件。沙三上亚段沉积早期发育的辫状河三角洲前缘水下分流河道与河口坝砂体是主要的储集体,与沉积中期发育的烃源岩形成了十分有利的生储盖组合,具有优越的隐蔽油藏发育条件。总结了该区隐蔽油藏成藏的4种模式,确定留西地区中南部沙三上亚段沉积早期发育的辫状河三角洲前缘砂体是下一步隐蔽油藏勘探的有利目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号