首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
青藏高原复杂地表能量通量研究   总被引:4,自引:0,他引:4  
“全球能量水循环之亚洲季风青藏高原试验研究”(GAME/Tibet)和“全球协调加强观测计划(CEOP)亚澳季风之青藏高原试验研究”(CAMP/Tibet)的加强期观测和长期观测已经进行了9年多,并且已取得了大量的珍贵资料。首先介绍了GAME/Tibet 和CAMP/Tibet 试验的情况,并利用观测资料给出了局地能量分布(日变化和月际变化)特征。复杂地表区域能量通量研究是青藏高原地气相互作用研究中的重中之重。卫星遥感的应用成为解决这一问题,即实现GAME/Tibet和CAMP/Tibet试验主要初衷的必不可少的手段。利用卫星遥感观测(Landsat 7 ETM)资料结合地面观测的方法,计算得到了相关地区非均匀地表区域上的地表温度、地表反射率、标准化差值植被指数(NDVI)、校准的调整土壤植被指数(MSAVI)、植被覆盖度和叶面指数(LAI)及能量平衡各分量(净辐射通量、土壤热通量、感热和潜热通量)的分布图像,所得结果基本可信。为了得到整个青藏高原复杂地表的热通量分布,中国科学院青藏高原研究所正在与其他研究单位一起建立青藏高原地表和大气过程监测系统(MORP)。最后介绍了该监测计划和已建立的3个综合观测研究站及如何利用建立的台站把站点观测的热通量推广到整个青藏高原的途径。  相似文献   

2.
REORGANIZATION OF THE ASIAN MONSOON SYSTEM AT ABOUT 2.6 Ma AGO AND ITS IMPLICATIONS FOR THE RISING OF THE TIBETAN PLATEAUheChineseResearchFoundation(KZ 951 A1 2 0 4 )  相似文献   

3.
青藏高原土壤水热过程模拟研究(Ⅰ):土壤湿度   总被引:6,自引:4,他引:2  
模拟青藏高原土壤水分和热量迁移过程的连续变化对于全球变化研究具有非常重要的意义,其准确模拟是提高陆面过程模拟精度的重要条件.利用大尺度水文模型中对冻土中水分和能量平衡过程的描述,对沱沱河站点超过一年时间的土壤湿度进行了步长为1h,总时间为399d的连续模拟.与Game Tibet项目中同一时刻的土壤湿度观测资料比较的结果表明,Fuchs方程对于描述冻土中的最大未冻水含量是有效的,利用能量平衡计算获得的土壤各层的湿度与观测值相比较,其连续变化基本合理.结果表明,用该模型对高原水热过程进行长期模拟是可行的.  相似文献   

4.
时域反射仪在监测青藏高原活动层水分变化过程中的应用   总被引:27,自引:13,他引:14  
时域反射仪(TDR)是一种利用电磁脉冲方法,根据电磁波在土层中的传播速度测试不同土层 的介电常数,接介电常数值可获不同土类在冻融状态下的未冻水含量和总体积含水量.TDR仪可在 野外环境下无破损地测得融土和冻土的液态水含量,尤其是能测出不同负温下冻土中未冻水的变 化.该仪器最适用于测量均质细颗粒土的体积含水量,经与烘干称重法对比,TDR仪应用在青藏高 原上不同融土类所测含水量值的误差范围:粉土和细砂为±2.5%,粘土和亚粘土为±3.0%,砂砾石 土和碎石土为±5%.经过反复的野外实践证明,用 TDR仪测上层含水量具有简便、快速及稳定等 优点,是值得推广的方法.根据青藏公路沿线8个场地埋置的TDR仪和地温仪所获的一个年周期的 水、热资料(1997.8~1998.7),分析了高原活动层在冻融过程中温度场和水分场的耦合所导致的水分迁移及水分场重分布的规律  相似文献   

5.
藏北高原D105点土壤冻融状况与温湿特征分析   总被引:6,自引:3,他引:3  
利用CAMP/Tibet在藏北高原D105点所观测的2002年1月1日-2005年12月31日土壤温度、含水量资料, 分析了该点的土壤温、湿度变化及其冻融特征. 结果表明: D105点40 cm深度以上土壤温度日变化明显, 随着深度增加, 土壤温度日变化相位明显滞后. 各层土壤温度月最高值出现在8-9月, 月最低值都出现在1-2月; 年际气候的差异至少可以反映到185 cm深处的土壤. 土壤冻结和消融都是由表层开始, 土壤随深度增加冻结快, 消融则慢. 冻结期间, 土壤温度分布上部低, 下部高; 消融期间, 则分布相反. 60 cm深度以上的土壤含水量在消融期有显著的波动, 表明60 cm深度以上的土壤与大气之间的水热交换比较频繁. 土壤温度的日变化和平均温度对土壤的冻融过程有较大的影响; 土壤含水量的多少会极大的影响土壤的冻融过程、土壤热量的分布状况以及地表能量的分配. 因此水(湿度)热(温度)相互耦合影响着土壤的冻融过程.  相似文献   

6.
青藏高原季节冻土区土壤冻融过程水热耦合特征   总被引:8,自引:5,他引:3  
青藏高原被誉为“中华水塔”, 其广泛分布的多年冻土和季节冻土在保证我国水资源安全上具有重要的地位。基于2015年7月 - 2016年6月青海海北站季节冻土的水热监测数据(土壤含水量为未冻水含量), 分析了冻结深度的季节变化和冻融过程水热运移特征。结果表明: 各土层土壤温度与土壤水分含量变化均表现为“U”型。土壤温度变化规律与日平均气温基本一致, 但滞后于日平均气温的变化, 滞后时间取决于土层深度。与多年冻土冻融规律不同, 海北站季节冻土表现为单向冻结、 双向融化特征, 冻融过程大致可划分为三个阶段: 冻结初期、 冻结稳定期和融化期。同时, 季节冻土消融速率大于冻结速率, 且融化过程中以浅层土壤融化为主。在冻结过程中, 土壤水分沿上、 下两个方向分别向冻结锋面迁移, 各土层土壤含水量迅速下降。而在融化过程中, 各土层土壤含水量逐渐增加, 且在浅层土壤形成一个土壤水分的高值区。土壤冻融过程中未冻水含量与各土层土壤温度具有较好的相关关系, 且浅层土壤拟合效果优于深层土壤。本研究对揭示高原关键水文过程以及寒区水热耦合模型构建具有重要意义。  相似文献   

7.
青藏高原土壤冻结始日和终日的年际变化   总被引:18,自引:9,他引:9  
利用青藏高原1981-1999年青海和西藏58个气象站观测的土壤冻结上、下限记录,分析了冻结始日、冻结终日的空间分布和年际变化特征.结果表明:最早、最晚和平均冻结始日的分布基本一致,都是由北向南逐渐推迟的;最早、最晚和平均冻结终日的空间分布也比较一致,呈现南北早、中部晚的特点.在20世纪80年代高原土壤冻结多偏早,解冻多偏晚,冻结日数偏多;而90年代正好相反,冻结多偏晚,解冻多偏早,冻结日数偏少;冻结始日有明显的3~4a周期变化,冻结终日有明显的准7a周期变化;1981年、1982年为冻结早、解冻晚年,1983年、1990年为冻结晚、解冻晚年,1993年、1999年为冻结晚、解冻早年.  相似文献   

8.
LATE CENOZOIC RAPID UPLIFT OF THE TIBETAN PLATEAU AND FORMATION OF ASIAN MONSOON SYSTEM:EVIDENCE FROM PALEOMAGNETISM AND PALEOBIOLOGY OF RED BED-BOULDER CONGLOMERATE SEQUENCES ALONG THE NORTHERN TIBET PLATEAU  相似文献   

9.
冻融期东北农田土壤温度和水分变化规律及影响因素分析   总被引:3,自引:3,他引:0  
为了更好地认识季节性冻融区冻融过程对农田土壤温度和水分的影响, 以吉林省长春市黑顶子河流域为研究对象, 监测了冻融期流域内玉米田和水稻田土壤温度和水分的变化过程。结果表明: 冻融期表层土壤温度主要受积雪厚度影响, 深层土壤温度主要受土壤初始含水率影响。冻结期, 冻结层含水率几乎都呈增加趋势, 其中浅层土壤增幅最大; 冻结速度慢、 初始含水量低、 相邻土层含水量高的土层冻结过程水分增加量更大, 反之则小。融化期, 各下垫面、 土层土壤含水率基本呈下降趋势, 且主要集中在表层0 ~ 30 cm, 水分损失以蒸发为主, 冻结层对土壤蒸发有抑制作用; 冻结层的融化是造成各下垫面不同土层土壤含水率差异, 以及各土层在不同融化阶段土壤含水率差异的主要原因。  相似文献   

10.
冻结层的存在使得寒区有着与非寒区差别明显的水文循环过程,土壤冻融规律、水热盐运移、融雪水入渗等已成为众多学者的研究对象. 寒区低温条件下冻融土壤持水性质与非冻融土壤不同,其包气带冻结层往往具有弱透水性、蓄水保墒和隔热减渗的作用,使得寒区春季冻结层土壤的墒情较高. 以冻融土壤和非冻融土壤墒情对比监测为基础,选取地表以下100 cm的土壤为研究对象,在黑龙江大学呼兰校区设置冻融和非冻融对比监测试验场,同时段、同频率、同埋深(间隔 20 cm土层)进行土壤结构、水热及环境参数监测. 通过对比分析了不同埋深不同冻融阶段的墒情参数,量化了低温冻融条件下土壤墒情较非冻融土壤的高出部分,最后对冻土保墒的机理进行探讨与分析. 结果表明:冻结条件下土壤水分重新分布,在土水势的作用下由非冻结区向冻结区迁移. 初冻期地表土壤墒情达到最大,冻结期土壤最大墒情值随冻结锋面迁移分别在20、40、60 cm处达到最大,稳定冻结期和融化初期在80 cm处达到最大;土壤最大墒情值一般在冻结锋面前沿的10~20 cm处,较好地保持了土壤水分. 无论是从空间(不同埋深)还是时间(不同冻融阶段)角度分析,冻融土壤含水率均大于非冻融土壤,二者含水率的差值随埋深和冻融阶段的推移而加大,在稳定冻结期80 cm处达到最大,差值量可达6.4%~7.8%.  相似文献   

11.
青藏高原积雪、冻土对中国夏季降水影响研究   总被引:10,自引:8,他引:2  
利用RegCM3模式,通过计算青藏高原不同积雪、冻土年的气候状况,分析了高原地区不同积雪状况下土壤冻结差异对中国夏季降水的影响及其机理.结果表明:RegCM3模式能够较好的模拟不同积雪状态下高原土壤冻结差异对中国夏季降水的影响.多雪年当高原土壤冻结较厚时,在长江流域和西北地区中部降水偏多,东北地区、华北地区、华南地区、...  相似文献   

12.
青藏高原能量与水循环国际合作研究的进展与展望   总被引:2,自引:0,他引:2  
青藏高原能量与水循环过程对我国、东亚乃至全球的天气和气候系统都有着非常重要的作用.1996年以来,在国家自然科学基金委员会、中国科学院、中国气象局等相关部门和日本政府的大力支持下,我们针对青藏高原能量和水循环过程的重要性,成功地开展了青藏高原尺度和藏北地区中尺度的"全球能量水循环之亚洲季风青藏高原试验研究"(GAME/Tibet)项目和"全球协调加强观测计划之亚澳季风青藏高原试验研究"(CAMP/Tibet)项目近10余年的连续观测,取得了以往高原试验从未有过的大量极其珍贵的综合观测资料.而且在利用试验资料分析、卫星遥感及数值模拟等手段研究青藏高原能量与水循环方面取得大量的阶段性成果.介绍了青藏高原能量与水循环的研究进展及国际合作在项目执行过程中所起到的作用,同时介绍国际合作在吸纳境外研究资源及培养青年科技人才中所起的作用.最后提出了国际合作中存在的问题,并给出了相关的建议.  相似文献   

13.
青藏高原号称"亚洲水塔",是典型的高寒山区,其广泛存在的积雪、多年和季节冻土,影响了整个区域的水循环过程;青藏高原具有土层较薄、下伏砂砾石层较厚的特点,形成了特殊的"积雪-土壤-砂砾石层"水热介质结构。为深入研究青藏高原的水循环机理,本文选取尼洋河流域作为典型区,基于野外冻土水热耦合试验,结合青藏高原地质及气候特点,构建了包含12层"积雪-土壤-砂砾石层"连续体的青藏高原水热耦合模型,描述了完整的水热耦合模拟方程和参数计算方法。采用2016-2017年冻结融化期0~160 cm深度内的土壤和砂砾石层的温度、液态含水率和冻结深度的实测结果对模型进行了验证,各层温度模拟R2均值为0.91,冻结融化期内液态含水率模拟R2均值为0.52,土壤冻结深度模拟R2值为0.76。结果表明该模型在青藏高原地区有较好的适用性,可反映该地区冻结融化过程中土壤和砂砾石层水分与温度的特殊变化规律。  相似文献   

14.
青藏高原陆表特征与中国夏季降水的关系研究   总被引:6,自引:5,他引:1  
高荣  韦志刚  钟海玲 《冰川冻土》2017,39(4):741-747
利用青藏高原72个站逐日积雪、冻土观测资料,AVHRR归一化植被指数(NDVI)和全国550个站逐日降水资料,分析了青藏高原陆表特征与中国夏季降水的关系。结果表明,我国夏季降水在华北和东北南部,长江中下游和华南地区降水空间一致性较好,相邻站点间降水变化趋势近似。华南、长江中下游和淮河降水呈增加趋势,其中长江中下游每10年增加37 mm,但华北降水呈减少趋势。华南、长江中下游和华北对高原积雪、冻土和植被的变化均较为敏感,而淮河仅对高原植被变化较为敏感。利用高原积雪、冻土和植被建立了代表高原地表特征的变化序列,其对长江中下游、淮河、华北夏季降水均有较好指示意义,与夏季降水的相关系数由南到北表现为"负-正-负"的分布特征。最后,提出一种高原陆表状况影响中国夏季降水的概念模型:高原冬春积雪偏多(少)、冬季冻土偏厚(薄)、春季植被偏多(少)会使得夏季高原地区土壤湿度偏大(小),高原地表感热偏弱(强),从而使得南亚高压和西太副高偏弱(强),南海季风偏弱(强),长江流域降水偏多(少),华南和华北地区降水偏少(多)。  相似文献   

15.
土壤热导率的研究现状及其进展   总被引:5,自引:4,他引:1  
土壤热导率是重要的土壤热参数之一, 在下垫面土壤热量的传输中起到重要作用; 同时也是区域气候模式、 陆面过程模式中重要的输入参数, 在预估未来气候变化等方面也具有重要作用. 根据国内外的研究现状, 评述了土壤热导率的影响因素和模拟方案. 其中, 土壤质地、 温度、 含水(冰)量和孔隙度等是影响土壤热导率的主要因素, 特别在研究冻土时需重点分析含冰量的变化. 结合影响因素, 比较分析了典型的国内外计算土壤热导率的模型, 得出这些模型多适用于模拟常温下的热导率, 低温条件如青藏高原冻土区模拟结果并不理想. 因此, 多年冻土区土壤热导率的研究多基于观测资料计算或使用陆面模式中的参数化方案估算, 但因多年冻土内部水热传输过程的复杂性, 青藏高原多年冻土区热导率的模型模拟仍需进一步研究.  相似文献   

16.
藏北高原土壤湿度时空变化分析   总被引:5,自引:0,他引:5       下载免费PDF全文
使用2009年DOY (Day of Year) 145~288时段与2001~2010年夏季(DOY 161~240时段)的Terra/MODIS 16 d合成的植被指数产品数据MOD13 A2和8 d合成的地表温度(Land Surface Temperature,TLS)产品数据MOD11 A2,构建TLS~IEV(Enhanced Vegetation Index,IEV)特征空间,从而得到了条件温度植被干旱指数(Temperature Vegetation Drought Index,ITVD)反映的藏北土壤湿度空间分布。对藏北高原2009年植被生长季内土壤湿度的季节性变化及2001~2010年夏季土壤湿度的年际变化特征进行分析,研究结论表明:随着植被盖度的增大,干、湿边斜率逐渐变小,植被对环境温度的变化具有缓冲效应;藏北高原土壤湿度的季节性变化明显,主要受温度、降水、植被覆盖和冻土过程等季节性变化的影响;近10年研究区内土壤湿度有轻微的旱化趋势,但不同气候区内的年际变化表现不一致;气温表现不同程度的显著升温趋势,部分站点的降水有不显著减少趋势,其它站点降水表现为年际波动,而区域统计的ITVD值年际波动与站点气温的变化大体一致。  相似文献   

17.
藏北高原土壤温湿变化特征分析   总被引:12,自引:2,他引:10  
利用"全球协调加强观测计划(CEOP)亚澳季风之青藏高原试验"(CAMP/Tibet,2001—2010)的观测资料,从不同的时间尺度分析了藏北高原不同地点不同深度的土壤温度和土壤湿度变化特征.结果表明:10 cm以上日平均土壤温度呈正弦变化,而10 cm以下土壤温度变化不大;各层土壤温度最高都出现在7~8月;年际气候的差异至少可以反映到40 cm土壤;各层土壤湿度无明显日变化,存在明显月变化,夏季降水量的多少对各层土壤湿度都有明显的影响.  相似文献   

18.
青藏高原典型下垫面的土壤温湿特征   总被引:16,自引:4,他引:12  
杨健  马耀明 《冰川冻土》2012,34(4):813-820
利用中国科学院纳木错站、 珠峰站和藏东南站2007年土壤温湿度的观测资料, 分别分析了这3个不同下垫面下观测站的土壤温湿度分布的时空特征.结果显示:3个站土壤温度的年变化和年平均的日变化趋势基本相同, 与太阳辐射变化特征一致; 它们在冻结深度和冻结时间上差别较大; 下垫面特征、 土壤的冻结消融及其物理性质的差异使3个站表现出了不同的土壤湿度变化特征; 3个站均表现为在某一深度有一个高含水层, 土壤消融(冻结)使土壤湿度迅速增大(减小).  相似文献   

19.
陕北黄土区切沟密集,地形支离破碎,地形与植被共同作用下土壤水分状况较为复杂。通过长期定位观测深剖面土壤含水量,分析了流域分水线深层土壤水分时空动态及干层分布特征。研究结果表明:生长季0~3 m土层土壤水分亏缺,生长季后1.2 m以上土层亏缺水分得到补充,但该深度以下土壤水分含量未得到恢复,其中2.6~6.4 m深度范围缺水严重,流域分水线土壤水分含量出现明显的垂直分层现象;各观测点土壤含水量随深度的分布曲线、极值出现深度和干层深度范围不同,剖面干层随各分水线走向表现出不连续分布的特点;分水线干层平均起始深度为2.03 m,厚度为0.4~8 m,干层土壤含水量均值为9.03%,干层厚度与起始深度和干层土壤含水量均呈负相关关系。比较而言,陕北黄土高原干层发育严重程度较突出。相关研究结果可为流域土壤水资源分布及土壤水库功能评价提供理论依据。  相似文献   

20.
Hydrothermal processes and the regimes of frozen soil formed in alpine regions with glaciers and lake area are complex and important for ecological environment but have not been studied in Tibet. Based on soil temperature and moisture data from October 2005 to September 2006 collected in the Nam Co lake basin, Tibetan Plateau (TP), those questions were discussed. The mean annual air temperature was −3.4°C with 8 months below 0°C. Air and soil temperature varied between −25.3~13.1°C and −10.3~8.8°C, respectively. Soil moisture variations in the active layer were small with the minimum value of 1.4%, but were influenced greatly by snowmelt, rainfall and evaporation, varying up to 53.8%. The active layer froze later, thawed earlier and was thinner, however, the lower altitude limit of permafrost is higher than that in most areas of TP. The effects of soil moisture (unfrozen water content) on soil temperature, which were estimated through proposed models, were more significant near ground surface than the other layers. The surface soil temperature decreased with snowcover, the effect of cold snow meltwater infiltration on soil thermal conditions was negligible, however, the effect of rainfall infiltration was evident causing thermal disruptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号