首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
相山铀矿田铀多金属成矿时代与成矿热历史   总被引:1,自引:1,他引:0  
林锦荣  胡志华  王勇剑  张松  陶意 《岩石学报》2019,35(9):2801-2816
相山铀矿田的铀多金属矿化主要可划分为碱性铀矿化、酸性铀矿化、铅锌银铜矿化和金矿化四种类型。通过沥青铀矿和矿化岩石U-Pb等时线、黄铁矿Rb-Sr等时线、绢云母~(40)Ar-~(39)Ar同位素年龄测定,结合铀多金属成矿特征研究,厘定了相山铀矿田铀多金属成矿时代,确定铀多金属矿化的成矿时序为:碱性铀矿化、铅锌银铜矿化、金矿化、酸性铀矿化。锆石裂变径迹研究表明,相山矿田铀多金属矿化样品的锆石裂变径迹峰值年龄与U-Pb、Rb-Sr和~(40)Ar-~(39)Ar同位素年龄一致性良好,裂变径迹年龄(峰值年龄)可以限定热液铀多金属成矿热事件时代。碱性铀成矿热事件的锆石裂变径迹峰值年龄为119. 8~125. 6Ma;金成矿热事件和铅锌银铜多金属成矿热事件的锆石裂变径迹峰值年龄为106. 1~113. 8Ma;酸性铀成矿热事件的锆石裂变径迹峰值年龄为86. 7~100. 0Ma;新发现一期锆石裂变径迹峰值年龄为66. 4~78. 6Ma的热事件,该期热事件可能为相山矿田最晚一期酸性铀成矿热事件。相山矿田66. 4~78. 6Ma的铀成矿热事件,与华南花岗岩型热液铀矿床的区域成矿热事件时代耦合,该发现对华南火山岩型铀矿成矿时代的重新认识,对火山岩型、花岗岩型铀矿床成矿统一性认识具有重要意义。  相似文献   

2.
白杨河矿床是我国类型独特的一个特大型铍、铀多金属矿床,铍矿物主要确定为羟硅铍石,铀矿物主要发现沥青铀矿和次生的硅钙铀矿以及少量的铌铀矿,伴生矿物主要是萤石。为恢复铀和铍的成矿过程,划分成矿阶段,本次工作通过系统采集钻孔中的萤石样品,进行了Sm-Nd同位素测年研究,获得了三组等时线年龄,分别为291±16Ma、265±33Ma和207±37Ma,代表了成矿前、成矿期和成矿后萤石的形成;采集中心工地、新西工地和九号工地平巷内的沥青铀矿样品,进行了UPb同位素测年研究,获得了~(206)Pb/~(238)U表观年龄237.8±3.3Ma、224±3.1Ma、197.8±2.8Ma、97.8±1.4Ma和30.0±0.4Ma,利用U-Pb表观年龄将铀矿化划分为四个阶段:中三叠世、晚三叠-早侏罗世、晚白垩世和古近纪中期。因此,白杨河矿床具有铍早铀晚的成矿特点,铀成矿经历了四个阶段。  相似文献   

3.
Multi‐method thermochronology along the Vakhsh‐Surkhob fault zone reveals the thermotectonic history of the South Tian Shan–Pamirs boundary. Apatite U/Pb analyses yield a consistent age of 251 ± 2 Ma, corresponding to cooling below ~550–350°C, related to the final closure of the Palaeo‐Asian Ocean and contemporaneous magmatism in the South Tian Shan. Zircon (U–Th–Sm)/He ages constrain cooling below ~180°C to the end of the Triassic (~200 Ma), likely related either to deformation induced by the Qiangtang collision or to the closure of the Rushan Ocean. Apatite fission track thermochronology reveals two low‐temperature (<120°C) thermal events at ~25 Ma and ~10 Ma, which may be correlated with tectonic activity at the distant southern Eurasian margin. The late Miocene cooling is confirmed by apatite (U–Th–Sm)/He data and marks the onset of mountain building within the South Tian Shan that is ongoing today.  相似文献   

4.
海德乌拉铀矿床位于东昆仑造山带东段,是西北地区最近发现的与火山岩有关的独立铀矿床,对其研究有助于揭示青藏高原热液铀成矿机制. 利用扫描电镜、电子探针和激光原位分析等对海德乌拉铀矿床沥青铀矿开展了化学成分分析和同位素定年等工作. 结果显示海德乌拉铀矿床沥青铀矿具有较高的Ca和REE含量,较低的LREE/HREE比值. 沥青铀矿电子探针U?Th?Pb化学年龄为226~350 Ma,峰值为289 Ma;U?Pb同位素年龄为234.6±1.2 Ma(MSWD=0.99,n=17). 两组年龄的差异可能与海德乌拉铀矿床沥青铀矿中存在普通铅而导致电子探针U?Th?Pb化学定年失准有关. 研究认为海德乌拉铀矿床沥青铀矿形成于岩浆期后富Ca的中温热液,矿床的形成可能与古特提斯构造域布青山-阿尼玛卿洋北向俯冲-碰撞后的伸展环境有关.   相似文献   

5.
苗儿山矿田为中南地区五大铀矿田之一,其内分布有我国最大规模碳硅泥岩型的铲子坪铀矿床及诸多花岗岩型铀矿床,沙子江矿床为矿田内重要的花岗岩型铀矿床之一。沥青铀矿是理想的铀矿床直接定年样品,同时,也是U-Pb同位素研究的理想矿物。本次研究以沥青铀矿为对象进行U-Pb同位素分析,获得了沙子江矿床早、晚两期铀成矿作用的年代分别为104.4Ma和53.0±6.4Ma,结合铲子坪矿床主成矿期年代74.1±9.9Ma,它们可能分别代表了苗儿山矿田3期主要铀成矿作用的时代。沙子江矿床等时线拟合所得高的初始Pb值反映了该期成矿作用之前存在铀的预富集作用。3期成矿作用与华南地区基性脉岩年代数据统计反映的岩石圈伸展期次相对应,暗示了铀成矿受控于华南岩石圈伸展这一大的动力学环境。  相似文献   

6.
华南是我国重要的花岗岩型铀成矿区,印支期-燕山期花岗岩是最主要的产铀花岗岩。广西北部形成于新元古代的摩天岭岩体是我国目前已知的最古老的产铀花岗岩体之一。前人对华南印支-燕山期花岗岩的铀成矿作用研究较深入,但对以摩天岭岩体为代表的新元古代古老花岗岩的铀成矿作用研究程度较低。本文以摩天岭花岗岩体为对象,进行了岩石学、地球化学、年代学及其铀矿成矿特征和规律的深入研究,取得以下认识:1)摩天岭岩体规模巨大,相带分布明显,内部相带和过渡相带发育,岩性主要为黑云母花岗岩、二云母花岗岩和含电气石二云母花岗岩,花岗岩体具有富硅富碱、铝过饱和、钾大于钠的特点,属S型花岗岩; 2)摩天岭岩体形成于850~760Ma之间的新元古代; 3)摩天岭岩体铀成矿潜力巨大,铀矿化以铀-绿泥石型和铀-硅化带型为主,铀-绿泥石型的代表矿床——达亮矿床形成于360~401Ma,是加里东期区域变质及构造活动共同作用的结果;铀-硅化带型铀矿的代表——新村铀矿形成于47Ma,是喜马拉雅期伸展构造作用下构造-热液活动共同作用的结果; 4)摩天岭岩体中铀矿床的铀源来自于元古界四堡群、丹州群和摩天岭岩体本身;成矿流体主要来源于大气降水,同时有深部流体的参与;热源主要与加里东期区域变质作用和喜马拉雅期伸展背景下的构造作用关系密切; 5)摩天岭岩体铀成矿经过了新元古代铀预富集、加里东晚期到海西早期的区域变质-构造热液成矿作用、喜马拉雅期的构造热液成矿作用等几个阶段,形成了类型丰富、规模较大的铀矿床,铀找矿潜力巨大。  相似文献   

7.
Independent geochronological and thermal modelling approaches are applied to a biostratigraphically exceptionally well‐controlled borehole, Alcsútdoboz‐3 (Ad‐3), in order to constrain the age of Cenozoic geodynamic events in the western Pannonian Basin and to test the efficacy of the methods for dating volcanic rocks. Apatite fission track and zircon U–Pb data show two volcanic phases of Middle Eocene (43.4–39.0 Ma) and Early Oligocene (32.72 ± 0.15 Ma) age respectively. Apatite (U–Th)/He ages (23.8–14.8 Ma) and independent thermal and subsidence history models reveal a brief period of heating to 55–70 °C at ~17 Ma caused by an increased heat‐flow related to crustal thinning and mantle upwelling. Our results demonstrate that, contrary to common perception, the apatite (U–Th)/He method is likely to record ‘apparent’ or ‘mixed’ ages resulting from subsequent thermal events rather than ‘cooling’ or ‘eruption’ ages directly related to distinct geological events. It follows that a direct conversion of ‘apparent’ or ‘mixed’ (U‐Th)/He ages into cooling, exhumation or erosion rates is incorrect.  相似文献   

8.
Cambrian siliciclastic sequences along the Dead Sea Transform (DST) margin in southern Israel and southern Jordan host both detrital fluorapatite [D‐apatite] and U‐rich authigenic carbonate‐fluorapatite (francolite) [A‐apatite]. D‐apatite and underlying Neoproterozoic basement apatite yield fission‐track (FT) data reflecting Palaeozoic–Mesozoic sedimentary cycles and epeirogenic events, and dispersed (U–Th–Sm)/He (AHe) ages. A‐apatite, which may partially or completely replace D‐apatite, yields an early Miocene FT age suggesting formation by fracturing, hydrothermal fluid ascent and intra‐strata recrystallisation, linked to early DST motion. The DST, separating the African and Arabian plates, records ~105 km of sinistral strike‐slip displacement, but became more transtensional post‐5 Ma. Helium diffusion measurements on A‐apatite are consistent with thermally activated volume diffusion, indicating Tc ~52 to 56 ± 10°C (cooling rate 10°C/Ma). A‐apatite AHe data record Pliocene cooling (~35 to 40°C) during the transtensional phase of movement. This suggests that timing of important milestones in DST motion can be discerned using A‐apatite low‐temperature thermochronology data alone.  相似文献   

9.
Zinc mineralization in Devonian carbonates of the Lennard Shelf, northern Canning Basin is similar in many respects to that of the Mississippi Valley‐type including estimated minimum temperatures of sulphide precipitation between 70 and 110°C. Apparent apatite fission track ages for Precambrian granitic basement and for detrital apatites in Devonian carbonates in and near Pb‐Zn mineralization generally range between 260 and 340 Ma, with Precambrian samples tending to have slightly older apatite fission track ages than the Devonian carbonates. These apparent ages are younger than the stratigraphic age of the material analysed, indicating that appreciable annealing of fission tracks in apatite has occurred in post‐Devonian times. Mean horizontal confined track lengths are 12–13 μm for most samples and preclude attaching any ‘event’ significance to the fission track ages. Studies of well sequences (Grevillea 1 and Kennedia 1) indicate a period of rapid uplift in the area during the Late Triassic/Early Jurassic. Assuming a constant geothermal gradient of 30°C/km, approximately 1.5 km of uplift and erosion is estimated. Immediate thermal effects related to Miocene lamproite intrusion into Precambrian basement appear to be restricted to within 200 m of the contact zone.

For outcropping Devonian carbonates, a thermal history is proposed involving burial in the Late Palaeozoic/Early Mesozoic, followed by uplift and cooling from peak temperatures around 70–80°C in mid‐Mesozoic times. With reference to this period of burial, Pb‐Zn occurrences represent thermal anomalies when reported fluid inclusion homogenization temperatures are compared with the estimated peak temperatures. However the possibility of a phase of higher temperatures during the Late Devonian/ Early Carboniferous is suggested by the apatite fission track results, in which case sulphide mineralization may reflect ambient regional temperatures if it formed at that time. The absence of enhanced annealing effects in detrital apatites proximal to Pb‐Zn deposits suggests that either sulphide mineralization preceded or accompanied peak regional temperatures suspected during the Late Devonian/Early Carboniferous, or that the mineralizing episodes were of too short a duration to significantly anneal fission tracks in apatite.  相似文献   

10.
Highly elevated and well-preserved peneplains are characteristic geomorphic features of the Tibetan plateau in the northern Lhasa Terrane, north–northwest of Nam Co. The peneplains were carved in granitoids and in their metasedimentary host formations. We use multi-method geochronology (zircon U–Pb and [U–Th]/He dating and apatite fission track and [U–Th]/He dating) to constrain the post-emplacement thermal history of the granitoids and the timing and rate of final exhumation of the peneplain areas. LA-ICP-MS U–Pb geochronology of zircons yields two narrow age groups for the intrusions at around 118 Ma and 85 Ma, and a third group records Paleocene volcanic activity (63–58 Ma) in the Nam Co area. The low-temperature thermochronometers indicate common age groups for the entire Nam Co area: zircon (U–Th)/He ages cluster around 75 Ma, apatite fission track ages around 60 Ma and apatite (U–Th)/He ages around 50 Ma. Modelling of the thermochronological data indicates that exhumation of the basement blocks took place in latest Cretaceous to earliest Paleogene time. By Middle Eocene time the relief was already flat, documented by a thin alluvial sediment sequence covering a part of the planated area. The present-day horst and graben structure of the peneplains is a Late Cenozoic feature triggered by E–W extension of the Tibetan Plateau. The new thermochronological data precisely bracket the age of the planation to Early Eocene, i.e. between ca. 55 and 45 Ma. The erosional base level can be deduced from the presence of Early Cretaceous zircon grains in Eocene strata of Bengal Basin. The sediment generated during exhumation of the Nam Co area was transported by an Early Cenozoic river system into the ocean, suggesting that planation occurred at low elevation.  相似文献   

11.
The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts due to its scale, high grade and abundant associated ores. Because of the insufficient reliable dating of intrusive rocks, the relationship between mineralization and the magmatic activities is still unknown. In order to study this key scientific issue and the ore-forming processes of the Zoige uranium ore field, the LA-ICP-MS zircon U-Pb dating of magmatic rocks was obtained:64.08±0.59 Ma for the granite-prophyry and ~200 Ma for the dolerite. U-Pb dating results of uraninite from the Zoige uranium ore field are mainly concentrated on ~90 Ma and ~60 Ma. According to LA-ICP-MS U-Pb zircon dating, the ages for the dolerite, porphyry granite and granodiorite are 200 Ma, 64.08 Ma approximately and 226.5-200.88 Ma, respectively. This indicates that the mineralization has close relationship with activities of the intermediate-acidic magma. The ages of the granite porphyry are consistent with those uraninite U-Pb dating results achieved by previous studies, which reflects the magmatic and ore-forming event during the later Yanshanian. Based on the data from previous researches, the ore bodies in the Zoige uranium ore field can be divided into two categories:the single uranium type and the uranium with polymetal mineralization type. The former formed at late Cretaceous(about 90 Ma), while the latter, closely related to the granite porphyry, formed at early Paleogene(about 60 Ma). And apart from ore forming elemental uranium, the latter is often associated with polymetallic elements, such as molybdenum, nickel, zinc, etc.  相似文献   

12.
The fluorite of Santa Catarina that occurs in veins cutting Precambrian granitic rocks of coastal Brazil has been difficult to date by Rb/Sr, K/Ar and Sm/Nd methods. New fission track dating of apatite in granites next to the veins yields ages of 144–76 Ma, which are related to the opening of the South Atlantic Ocean. Four groups of fission track ages were identified: the ca 145 Ma group is a hydrothermal event that preceded fluorite mineralization; the second group of ages, 131–107 Ma, records the first hydrothermal mineralizing event; the third group, 98–93 Ma, represents the second hydrothermal mineralizing event; and the fourth group, 89–76 Ma, dates the last hydrothermal mineralizing event. As shown by previous studies, the temperatures of these events varied from 170° to 70°C, but the last hydrothermal event occurred during a gradual cooling. The smaller lengths of the confined fission tracks from the fourth event support this interpretation. These results are based on sixteen carefully selected samples from four veins ranging from 1 to 4 m in thickness. The ages of these samples were established using the standard methods of fission track dating. Our study clearly demonstrates the value of apatite fission track dating for deposits whose mineralization occurred over a long time span at a wide range of temperatures.  相似文献   

13.
Based on the study of local volumes of minerals, including their microsampling and subsequent analysis of Pb/Pb and U/Pb isotope ratios with the classic methods of isotopic dilution and thermoionization mass spectrometry (TIMS), U-Pb and Pb-Pb isotopic datings of minerals were carried out in uranium ores from deposits in the Akitkan and Nechera-Nichatka ore districts (North Baikal region). Reliable evidence in favor of the Middle Devonian (384 ± 8 Ma) remobilization of Paleoproterozoic primary uranium concentrations and the redeposition of uranium as pitchblende 2 has been obtained for the first time for ores of the Akitkan district. The Paleoproterozoic (1832 ± 13 Ma) age of uraninite mineralization and the timing of the latest (377 ± 5 Ma) transformation of uranium ores at the Chepok deposit (Nechera-Nichatka district) are substantiated.  相似文献   

14.
The Yangyang iron-oxide–apatite deposit in South Korea has undergone multiple episodes of igneous activity, deformation, hydrothermal alteration, and iron-oxide–apatite (IOA) mineralization. The iron orebodies occur as concordant- to discordant-layered lenticular or massive magnetite and/or magnetite–pyrite ores. The iron mineralization occurs along a N–S-trending shear zone within the Yangyang syenite, which experienced both early ductile and later brittle deformations. Alteration was caused mainly by the injection of hydrothermal fluid through the shear zone, leading to Fe–P mineralization. We recognize multiple stages of alteration in the Yangyang deposit, based on a paragenesis that is defined by distinct mineral assemblages including Na–Ca–K alteration phases (e.g., albite, diopside, actinolite, and biotite) and accessory minerals containing high field strength elements (e.g., apatite, sphene, allanite, and monazite). The alteration around the magnetite ore body shows an evolutionary trend from Ca (–Na) alteration, through K to phyllic alterations. The Fe–P mineralization is associated with the Ca–K and K alteration products. The iron orebodies are hosted by deformed and altered syenite, which intruded the Paleoproterozoic gneiss complexes at 233 ± 1 Ma (SHRIMP U–Pb zircon age) in a post-collisional tectonic setting. LA-ICP-MS U–Pb dating of REE-rich sphene and apatite from the iron ores and alteration products yields Fe mineralization ages of 216 ± 3 Ma (sphene) and 212 ± 13 Ma (apatite). This is the first time, which IOA-type mineralization in the Korean Peninsula was dated as Triassic age related to post-collisional magmatism within the Gyeonggi Massif, South Korea. The U–Pb system was subsequently reset (208 ± 3 Ma–sphene and 151 ± 13 Ma–apatite) by Jurassic and Cretaceous magmatism. This unique geological evolution was responsible for Mesozoic metal enrichment and remobilization into suitable structural traps in the Yangyang district.  相似文献   

15.
Using low‐temperature thermochronology on apatite and zircon crystals, we show that the western Reguibat Shield, located in the northern part of the West African Craton, experienced significant cooling and heating events between Jurassic and present times. The obtained apatite fission track ages range between 49 and 102 Ma with mean track lengths varying between 11.6 and 13.3 μm and Dpar values between 1.69 and 3.08 μm. Zircon fission track analysis yielded two ages of 159 and 118 Ma. Apatite (U–Th)/He uncorrected single‐grain ages range between 76 and 95 Ma. Thermal inverse modelling indicates that the Reguibat Shield was exhumed during the Early Cretaceous, Late Cretaceous, Palaeocene–Eocene and Quaternary. These exhumation events were coeval with regional tectonic and geodynamic events, and were probably driven by a combined effect of plate tectonics and mantle dynamics.  相似文献   

16.
Anorthositic series apatites of the Duluth Complex, Minnesota, USA, have high spontaneous fission‐track densities of up to ~107 cm–2 and a homogeneous age of ~900 Ma, allowing high‐precision fission‐track dating based on LA–ICP–MS U analysis. Absolute fission‐track dating, track‐length measurement and chemical composition analysis were performed to evaluate a cooling history, which is essential for age reference materials. Preliminary inverse modelling for a sample with a shortened track‐length distribution yielded a monotonic cooling history from ~100°C at 925 Ma. The apatites incur an over‐etching problem when employing the commonly used etching protocol involving 5.5 M HNO3.  相似文献   

17.
花岗岩型铀矿床是我国重要的工业铀矿床类型,广泛分布于南岭地区。粤北长江铀矿田位于南岭中段诸广山岩体中南部,是我国典型的花岗岩型铀矿田。由于铀矿物在化学组成和成因上的固有属性,前人通过传统的铀矿物U-Pb同位素定年获得的成矿年龄(157~52Ma)变化范围较大且分散,难以有效约束精确的铀成矿时代。本文在精细矿物学研究的基础上,对长江铀矿田棉花坑、书楼坵和长排三个铀矿床的沥青铀矿开展了LA-ICP-MS原位微区U-Pb同位素定年研究。结果表明,棉花坑矿床成矿年龄为60. 8±0. 6Ma和66. 8±1. 6Ma,书楼坵矿床成矿年龄为71. 4±1. 3Ma和74. 4±1. 7Ma,长排矿床成矿年龄为62. 4±2. 5Ma和70. 2±0. 5Ma,总体分为~75Ma、~70Ma和~60Ma三期成矿年龄,代表了华南花岗岩型铀矿的晚期铀矿化。长江铀矿田成矿时代与诸广地区北东向断裂带、断陷盆地的强烈拉张时期(80~60Ma)同步,指示区内铀矿化与南岭地区晚白垩世-古近纪地壳拉张作用有关,区内铀成矿的幔源矿化剂CO_2来自区域性北东向断裂带的拉张作用。综合前人资料,认为诸广地区的铀成矿具同时性和多期性特征,成矿峰期为~140Ma、~125Ma、~105Ma、~90Ma和80~60Ma,成矿统一受制于华南岩石圈伸展的动力学背景,诸广山-南雄盆山体系白垩-古近纪的构造演化可能是促使区域铀矿化形成的主要因素。  相似文献   

18.
The Tiegelongnan is the first discovered porphyry–epithermal Cu (Au) deposit of the Duolong ore district in Tibet, China. In order to constrain the thermal history of this economically valuable deposit and the rocks that host it, eight samples were collected to perform a low‐temperature thermochronology analysis including apatite fission track, apatite, and zircon (U‐Th)/He. Apatite fission track ages of all samples are between 34 ± 3 and 67 ± 5 Ma. Mean apatite (U‐Th)/He ages show wide distribution, ranging from 29.3 ± 2.5 to 56.4 ± 9.1 Ma. Mean zircon (U‐Th)/He ages range from 79.5 ± 12.0 to 97.9 ± 4.4 Ma. The exhumation rate of the Tiegelongnan deposit was 0.086 km m.y.?1 between 98 and 47 Ma and decreased to 0.039 km m.y.?1 since 47 Ma. The mineralized intrusion was emplaced at a depth of about 1400 m in the Tiegelongnan deposit. Six cooling stages were determined through HeFTy software according to low‐temperature thermochronology and geochronology data: (i) fast cooling stage between 120 and 117 Ma, (ii) fast cooling stage between 117 and 100 Ma, (iii) slow cooling stage between100 and 80 Ma, (iv) fast cooling stage between 80 and 45 Ma, (v) slow cooling stage between 45 and 30 Ma, and (vi) slow cooling stage (<30 Ma). Cooling stages between 120 and 100 Ma are mainly caused by magmatic–hydrothermal evolution, whereas cooling stages after 100 Ma are mainly caused by low‐temperature thermal–tectonic evolution. The Bangong–Nujiang Ocean subduction led to the formation of the Tiegelongnan ore deposit, which was buried by the Meiriqiecuo Formation andesite lava and thrust nappe structure; then, the Tiegelongnan deposit experienced uplift and exhumation caused by the India–Asia collision.  相似文献   

19.
张雄  赵晓燕  杨竹森 《地球科学》2019,44(6):2039-2051
念扎金矿床是近年来最新发现的位于雅鲁藏布江缝合带南侧仁布构造混杂岩带与蚀变闪长岩接触带的大型造山型金矿床.为约束念扎矿床的冷却及剥露历史,利用锆石的U-Pb、(U-Th)/He及磷灰石裂变径迹定年对新鲜及矿化闪长岩年龄进行测定.结果表明,新鲜闪长岩锆石U-Pb年龄为(46.32±0.53)Ma,(U-Th)/He年龄介于(7.14±0.24)Ma到(9.80±0.27)Ma,矿化闪长岩锆石(U-Th)/He年龄介于(8.38±0.24)Ma到(11.19±0.31)Ma之间,两件矿化闪长岩磷灰石裂变径迹年龄分别为(5.9±0.5)Ma和(5.3±1.0)Ma.念扎金矿床自闪长岩固结以来经历了两次快速冷却过程:第一次是从46.3 Ma开始持续到43.6 Ma,温度从750℃降至350℃,冷却速率高达约148℃/Ma;第二次为8.5~2.0 Ma,温度从约200℃降至30℃,冷却速率为26℃/Ma.念扎矿床成矿深度为9.7 km;在8.5 Ma时,矿床被抬升至4.6 km处;从8.5~5.6 Ma,矿床抬升至2.8 km;从5.6~2.0 Ma,念扎矿床被剥露至地表.  相似文献   

20.
The Fujiawu porphyry Cu–Mo deposit is one of several porphyry Cu–Mo deposits in the Dexing district, Jiangxi Province, Southeast China. New zircon SHRIMP U–Pb data yield a weighted mean 206Pb/238U age of 172.0 ± 2.1 and 168.5 ± 1.4 Ma from weakly altered granodiorite porphyry and quartz diorite porphyry, respectively. Two hydrothermal biotites from granodiorite porphyry give an Ar–Ar step-heating plateau age of 169.9 ± 1.8 and 168.7 ± 1.8 Ma. Hydrothermal apatite exsolved from altered biotite yields an isotope dilution thermal ionization mass spectrometry isochron age of 164.4 ± 0.9 Ma. The apatite age is similar to the ages obtained from hydrothermal rutile (165.0 ± 1.1 and 164.8 ± 1.6 Ma) and indicates that the magmatism and hydrothermal activity in the Fujiawu deposit occurred in the Middle Jurassic. Hydrothermal fluid circulation related to multiple stages of magma emplacement resulted in Cu–Mo mineralization in the Fujiawu porphyry deposit. The zircon SHRIMP U–Pb ages and the published molybdenite Re–Os age (170.9 ± 1.5 Ma) represent the timing of magma crystallization and Mo mineralization, whereas the rutile and apatite U–Pb ages reflect the timing of Cu mineralization following quartz diorite emplacement. The data suggest slow cooling after emplacement of the quartz diorite porphyry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号