首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of the simplicity and the speed of execution, methods used in static stability analyses have yet remained relevant. The key‐block method, which is the most famous of them, is used for the stability analysis of fractured rock masses. The KBM method is just based on finding key blocks, and if no such blocks are found to be unstable, it is concluded that the whole of the rock mass is stable. Literally, though groups of ‘stable’ blocks are taken together into account, in some cases, it may prove to be unstable. An iterative and progressive stability analysis of the discontinuous rock slopes can be performed using the key‐group method, in which groups of collapsible blocks are combined. This method is literally a two‐dimensional (2D) limit equilibrium approach. Because of the normally conservational results of 2D analysis, a three‐dimensional (3D) analysis seems to be necessary. In this paper, the 2D key‐group method is developed into three dimensions so that a more literal analysis of a fractured rock mass can be performed. Using Mathematica software, a computer program was prepared to implement the proposed methodology on a real case. Then, in order to assess the proposed 3D procedure, its implementation results are compared with the outcomes of the 2D key‐group method. Finally, tectonic block No.2 of Choghart open pit mine was investigated as a case study using the proposed 3D methodology. Results of the comparison revealed that the outcomes of the 3D analysis of this block conform to the reality and the results of 2D analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The methods used in conducting static stability analyses have remained pertinent to this day for reasons of both simplicity and speed of execution. The most well‐known of these methods for purposes of stability analysis of fractured rock masses is the key‐block method (KBM). This paper proposes an extension to the KBM, called the ‘key‐group method’ (KGM), which combines not only individual key‐blocks but also groups of collapsable blocks into an iterative and progressive analysis of the stability of discontinuous rock slopes. To take intra‐group forces into account, the Sarma method has been implemented within the KGM in order to generate a Sarma‐based KGM, abbreviated ‘SKGM’. We will discuss herein the hypothesis behind this new method, details regarding its implementation, and validation through comparison with results obtained from the distinct element method. Furthermore, as an alternative to deterministic methods, reliability analyses or probabilistic analyses have been proposed to take account of the uncertainty in analytical parameters and models. The FOSM and ASM probabilistic methods could be implemented within the KGM and SKGM framework in order to take account of the uncertainty due to physical and mechanical data (density, cohesion and angle of friction). We will then show how such reliability analyses can be introduced into SKGM to give rise to the probabilistic SKGM (PSKGM) and how it can be used for rock slope reliability analyses. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
大型地下洞室群关键块体地震响应分析   总被引:1,自引:1,他引:0  
朱泽奇  盛谦  冷先伦  朱付广 《岩土力学》2010,31(Z2):254-259
基于块体理论,针对地下厂房围岩中的关键块体,采用Newmark法进行了地震响应特征和稳定性评价方法的研究,研究表明,三向地震荷载组合作用下,在块体上引起的数值较大、作用时间很短的惯性力是关键块体产生永久位移的根本原因。块体在不同烈度地震荷载作用下其响应特征不只发生量的变化,还有运动规律、模式方面的变化。研究还发现,关键块体地震响应特征与其几何特征存在一定的相关性,并由此建立了大型地下洞室群围岩地震稳定分析的多因素、多指标评判方法。最后考虑结构面的退化效应,研究了块体地震响应特征关于结构面强度参数的敏感性,获得了一些有益的结论。  相似文献   

4.
The Jiweishan landslide illustrates the failure pattern of an apparent dip slide of an oblique thick-bedded rockslide. Centrifugal modeling was performed using a model slope consisting of four sets of joints to investigate the landslide initiation mechanism. Crack strain gauges pasted between the slide blocks and the base failed in sequence from the rear to the front as the centrifugal acceleration increased. When the acceleration reached 16.3g, the instantaneous failure of the key block in the front triggered the apparent dip slide of all blocks. The physical modeling results and previous studies suggest that the strength reduction in the weak layer and the failure of the key block are the main reasons for the Jiweishan landslide. The centrifuge experiment validated the previously proposed driving-blocks–key-block model of apparent dip slide in oblique with inclined bedding rock slopes. In addition, the results from limit equilibrium method and centrifuge test suggest that even though the failure of the key block in the front is instantaneous, a progressive stable–unstable transition exists.  相似文献   

5.
重庆武隆鸡尾山滑坡视向滑动机制分析   总被引:8,自引:0,他引:8  
冯振  殷跃平  李滨  张明 《岩土力学》2012,33(9):2704-2713
重庆武隆鸡尾山山体为典型的斜倾厚层灰岩山体,其破坏模式不同于常见侧向崩塌-堆积层滑坡,属于真倾向滑移变形转为视向整体滑动的特殊失稳模式。在现场地质调查的基础上,从地层岩性、岩体结构、岩溶及地下水作用、软弱夹层等影响因素分析重庆武隆鸡尾山滑坡形成原因;根据滑坡破坏机制,基于关键块体控制理论,对鸡尾山滑坡进行三维稳定性极限平衡分析;利用三维离散元软件模拟鸡尾山滑坡的初始变形破坏过程,分析了鸡尾山滑坡不同影响因素条件下的视向滑动形成机制和变形破坏特征,并探讨了节理化和溶蚀岩体的参数取值。结果分析认为,在重力的长期作用下,鸡尾山山体初始沿真倾向方向滑移,沿岩溶发育的陡倾节理裂隙逐渐产生后缘及侧向裂缝,形成块状后部驱动块体,由于地下水等因素使软弱夹层软化,驱动块体下滑力增大,前缘阻滑关键块体内部应力积累,并最终沿强度较低的岩溶发育带发生剪切破坏,从而导致整体滑动;在进行滑坡稳定性极限平衡分析时,考虑实际的滑坡机制,将滑体分为驱动块体和关键块体分别进行力的解析,并以关键块体的安全系数代表滑坡的安全系数更加合理。数值模拟显示,软弱夹层强度降低、岩溶发育带剪切破坏后,滑体进入大变形阶段,表明关键块体控制和阻滑作用明显,软弱夹层强度降低是滑坡发生的关键因素。采矿形成的采空区对山体的影响主要是使上覆岩体压应力增大,但对滑体的变形无影响。  相似文献   

6.
Discontinuous deformation analysis (DDA), a discrete numerical analysis method, is used to simulate the behaviour of falling rock by applying a linear displacement function in the computations. However, when a block rotates, this linear function causes a change in block size called the free expansion phenomenon. In addition, this free expansion results in contact identification problems when the rotating blocks are close to each other. To solve this problem of misjudgment and to obtain a more precise simulation of the falling rock, a new method called Post‐Contact Adjustment Method has been developed and applied to the program. The basic procedure of this new method can be divided into three stages: using the linear displacement function to generate the global matrix, introducing the non‐linear displacement function to the contact identification, and applying it to update the co‐ordinates of block vertices. This new method can be easily applied to the original DDA program, demonstrating better contact identification and size conservation results for falling rock problems than the original program. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Soil–structure interaction problems are commonly encountered in geotechnical practice and remarkably characterized with significant material stiffness contrast. When solving the soil–structure interaction problems, the employed Krylov subspace iterative method may converge slowly or even fail, indicating that the adopted preconditioning method may not suit for such problems. The inexact block diagonal preconditioners proposed recently have been shown effective for the soil–structure interaction problems; however, they haven't been exploited to full capabilities. By using the same partition strategy according to the structure elements and soil elements, the partitioned block symmetric successive over‐relaxation preconditioners or partitioned block constraint preconditioners are proposed. Based on two pile‐group foundation problems and a tunnel problem, the proposed preconditioners are evaluated and compared with the available preconditioners for the consolidation analysis and the drained analysis, respectively. In spite of one additional solve associated with the structure block and multiplications with off‐diagonal blocks in the preconditioning step, numerical results reveal that the proposed preconditioners obviously possess better performance than the recently developed inexact block preconditioners. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
何云 《地质与勘探》2023,59(1):43-53
风化壳型矿床的资源储量,大多采用水平投影地质块段法进行估算,目前划分地质块段的原则与方法尚不统一。以云南省武定县梅子箐风化壳型钛铁砂矿V1号矿体由78个钻孔控制的南矿段为研究实例,对划分地质块段的主要参数——矿体铅直厚度(m)、钛铁矿含量(kg/m3)、金红石含量(kg/m3)进行数理统计与图解分析,提出划分地质块段的方法。具体方法是:(1)以勘查网中地理位置相邻的3个或4个探矿工程围成的区域,作为划分地质块段的基本区块;(2)对单工程、基本区块的主要参数进行统计与计算,对基本区块的主要参数、关键参数进行图解分析;(3)将地理位置相邻、关键参数类型相同的基本区块进行归并,得出合理的地质块段划分方案。该方法能够合理地控制地质块段数量,优化地质块段划分方案,科学合理、简单易行,可在风化壳型钛铁砂矿和其他风化壳型矿床中推广使用。  相似文献   

9.
石露  李小春  白冰 《岩土力学》2012,33(7):2196-2202
关键块体理论在评价工程裂隙岩体稳定性中得到了广泛应用。然而,一方面岩体中节理数量众多,关键块体的搜索将耗费较多机时;另一方面,极少数偶然出现的块体识别也会极大地增加计算量。因此,开发有针对性和灵活的关键块体搜索方法就非常重要。首先将研究区域分解成凸子区域,找出自由面上的闭合环路,然后利用环路的组成节理以及与其相交节理进行空间无限切割来识别该环路是否对应关键块体。该方法针对性强,能较好地适应人为规定的判别条件,如搜索楔形体以及后缘切割限定等,并能顺利实现凹面体的关键块体搜索,且编程实现简单。以某挂帮矿的顶柱为实例进行关键块体的搜索,验证了上述方法的可行性。  相似文献   

10.
块体是结构控制型岩体中常见的潜在危险源之一。利用极限平衡法及强度折减法两种方法计算了某在建特大型水电站地下厂房开挖揭露的部分块体的安全系数,并根据计算结果提出一种利用块体几何及力学参数判断其稳定性的简便图解方法,经现场监测数据验证计算结果可靠性可满足工程要求。研究表明,对同一块体而言,极限平衡法和强度折减法得到的安全系数以及对其稳定性的总体判别结果并不一致。强度折减法受软件算法及网格尺寸影响,结果偏于保守。简单块体的安全系数计算应以极限平衡法为主,而复杂形态块体的安全系数用强度折减法计算较为方便。利用垂向地应力、块体体积、最大角点深度及结构面等效强度等4个指标并结合块体稳定性判别分区图,可满足快速判断块体稳定性的需要。对于判别为不稳定的块体,应及时支护并考虑加强支护。研究成果可用于类似工程块体稳定性的快速分析。  相似文献   

11.
Block detection is one of the important steps in all discontinuous methods of analysis such as discontinuous deformation analysis and discrete element method. It is in fact a pre‐processing step for these methods. This paper describes a new approach to the problem of geometrically defining polyhedral rock blocks created by the intersection of planar discontinuities in a rock mass. An approach is developed based on the concept of using matrices with integer elements that mostly represent vertices, edges, or face numbers and their connections. Using square matrices with integer elements and performing edge/face regularization reduce the size of the matrices because of elimination of unnecessary faces, edges, and vertices; speed and accuracy of block tracing operation will be increased. This algorithm is able to trace and identify all kinds of blocks including convex and concave blocks formed by limited or unlimited fractures. The simplicity of the procedure makes it very attractive. The algorithm was programmed in C#.Net by over 8100 code lines; several examples are presented to show application of the algorithm in different situations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
张瑞新  李泽荃  赵红泽 《岩土力学》2014,35(5):1399-1405
基于地下岩体受节理面的控制,节理面的几何和力学参数随机分布,从而导致岩体系统具有高度不确定性,提出以关键块体理论为基础,考虑节理几何和力学参数随机性的岩体开挖可靠度分析方法,并给出了块体稳定的总失效概率评价模型。以澳大利亚阿德莱德地区一铜矿地质条件为例,以节理面倾角、倾向、摩擦系数和黏聚力为随机变量,通过Monte Carlo模拟和概率图方法,进行了岩体可靠度和失效概率的计算。最后,采用条件概率的分析方法,计算了单面滑动块体的总失效概率。计算结果表明,块体沿单面滑动并且出现的概率为11.0%,总的失效概率为3.85%,超过一般岩体工程可允许的风险水平,认为该方法可以作为评价块体可靠性的依据。  相似文献   

13.
In this study, the probabilistic key block analysis was applied to evaluate the stability of a mine ventilation shaft developed in a rock mass of granite. The key blocks were identified based on the block theory. The variations of discontinuity orientations were fitted with the Beta distribution and taken into consideration. The key block forming probabilities were analyzed. For simplification of calculations the first-order second-moment (FOSM) approximation was employed for probability estimation. With the considerations of the rock properties as random variables and applications of several statistical analysis tools, the key block failure probabilities, the probabilistic distribution of safety factors, and the probabilistic distribution of potential maximum key block volumes were analyzed. The analysis indicated that although the safety factor calculated based on the mean values of the variables was above 1.0 for the stability of the most critical key block, the block had a considerable probability of failure with a significant rock volume due to variations in discontinuity orientations and rock properties. Without promptly applying supports to the rock excavation, the shaft had a significant likelihood of failure.  相似文献   

14.
The paper provides a new stereo‐analytical method, which is a combination of the stereographic method and analytical methods, to separate finite removable blocks from the infinite and tapered blocks in discontinuous rock masses. The methodology has applicability to both convex and concave blocks. Application of the methodology is illustrated through examples. Addition of this method to the existing block theory procedures available in the literature improves the capability of block theory in solving practical problems in rock engineering. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
利用条件概率评价及系统工程理论,将关键块体作为块体系统一个重要组成部分,分析了关键块体可靠度指标评价办法,探讨了关键块体与次生关键块可靠度内在关系,由此类推,提出块体系统评价方法,推导出块体系统可靠度计算公式,实现对块体系统的失稳概率的评价计算。并选择一工程实例,对评价方法予以验证。结果表明:传统关键块体可靠度评价办法忽略块体间内在影响,结果偏向风险;而文中方法综合考虑块体之间影响,并建立了系统评价模型,对块体系统评价更接近实际情况,对块体系统理论的研究有一定借鉴意义。  相似文献   

16.
This paper presents a general method of key block analysis for cylindrical surfaces with numerous real or statistically produced joint traces. General tunnel curves, analytically represented, are unrolled to yield a ‘developed view’ on which the joint traces are continuous curves. Then, using extended block theory, the maximum key block regions are delimited from the curved polygons of the unrolled joint trace map. The methods discussed here apply to a cylindrical tunnel of any shape in section and in any orientation, including inclined tunnels and shafts. The trace maps for which the method applies can be generated statistically, as described herein, or surveyed from real traces on exposed tunnel walls. A brief introduction to the basic theory about tunnel key blocks is provided here so that this paper can be understood without reference to other papers on block theory.  相似文献   

17.
杨石扣  任旭华  张继勋 《岩土力学》2016,37(12):3576-3582
提出采用布尔运算进行三维复杂块体形态分析的一般方法,并采用C++语言编写了相应的程序。块体布尔运算是将参与运算的主块体和客块体进行交、并或差运算,得到形态更加复杂的块体。为描述块体内部非贯通结构面,在块体数据结构中引入退化有向壳,允许块体中混合维度模型的存在。将主块体各面分别与客块体各面进行面-面求交线运算,通过环路分析得到各块体分割后的面。根据具体采用的布尔运算方法,确定有效面和无效面,并将有效面进行搜索得到新的壳和块体。选取3个算例和1个典型工程实例来验证该方法的可行性和应用性。计算结果表明,该方法可以生成形态更加复杂的块体,可以很方便地处理块体中的结构面,具有普遍性和适应性,并具有广泛的实际应用价值。  相似文献   

18.
The rock mass structure determines the possible unstable blocks that can induce rock fall phenomena. The stability analyses must therefore be based on an accurate geo-structural survey. In this work, the stability conditions of several steep slopes along a motorway in the Far East have been evaluated through key block analysis based on traditional surveys and on laser scanner acquisitions. Discontinuity orientations and positions on the rock face are derived from the point cloud in order to perform the reconstruction of the rock mass and to identify blocks in the slope. Results obtained from both the traditional and the new method is in good agreement. Stability analyses have been performed for evaluating the kinematic feasibility of different failure mechanisms. The rock block shapes and volumes are computed by performing 2D and 3D analyses whereas the failure mechanisms are examined using the key block method. Parametrical analyses have been carried on to evaluate the influence of slope angle variation. DEM models have also been set up. The relative hazard is determined by statistically evaluating the kinematical feasibility of different failure mechanisms. Hazard mapping has been utilized to identify the best methodology for risk mitigation.  相似文献   

19.
After describing the kinematics of a generic rigid block subjected to large rotations and displacements, the Udwadia's General Principle of Mechanics is applied to the dynamics of a rigid block with frictional constraints to show that the reaction forces and moments are indeterminate. Thus, the paper presents an incremental‐iterative algorithm for analysing general failure modes of rock blocks subject to generic forces, including non‐conservative forces such as water forces. Consistent stiffness matrices have been developed that fully exploit the quadratic convergence of the adopted Newton–Raphson iterative scheme. The algorithm takes into account large block displacements and rotations, which together with non‐conservative forces make the stiffness matrix non‐symmetric. Also included in the algorithm are in situ stress and fracture dilatancy, which introduces non‐symmetric rank‐one modifications to the stiffness matrix. Progressive failure is captured by the algorithm, which has proven capable of detecting numerically challenging failure modes, such as rotations about only one point. Failure modes may originate from a limit point or from dynamic instability (divergence or flutter); equilibrium paths emanating from bifurcation points are followed by the algorithm. The algorithm identifies both static and dynamic failure modes. The calculation of the factor of safety comes with no overhead. Examples show the equilibrium path of a rock block that undergoes slumping failure must first pass through a bifurcation point, unless the block is laterally constrained. Rock blocks subjected to water forces (or other non‐conservative forces) may undergo flutter failure before reaching a limit point. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a comparative study of two methods, Sarma's method and the discontinuous deformation analysis (DDA), for rock slope stability analysis. The comparison concerns the stability analysis of two classic rock slopes. The study shows that the DDA, which accounts for the block kinematics, provides a very different factor of safety as compared with Sarma's method. More realistic reaction forces around each rock block can be obtained by the DDA, including the thrust forces between rock blocks and the forces between the base and the blocks. The DDA's result shows two possible directions for the relative movement between two contiguous blocks at the initiation of slope failure. It also indicates that the limit equilibrium condition may not occur along the interfaces of rock blocks at the initiation of slope failure. The determination of realistic interaction forces around each block will be very important in rock slope stability analysis if nonlinear failure criteria are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号