首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Petrology of Santorini Volcano, Cyclades, Greece   总被引:1,自引:1,他引:1  
The Pliocene to Recent lavas, dyke rocks, and cognate xenolithsof Santorini island group belong to four distinct series, eachof high-alumina basalt-andesite-dacite type. The oldest seriesincludes hornblende dacites and minor basaltic andesites. Theformer contain hornblende-rich cognate xenoliths of basalticcomposition, which consist essentially of crystals ‘floating’in residual acid liquid (glass). The chemical variation of theseries, like that of lavas of volcanic centres north-west ofSantorini, is of ‘calc-alkali’ type. The second and third series consist of a range of lavas frombasalt to rhyodacite. No hydrous mineral occurs as a stablephase. Augite is the phenocrystal pyroxene of basalts; augiteand hypersthene of andesites and dacites. The groundmass pyroxenesof basalts and most andesites are augite and pigeonite, whiledistinctive hornblende xenocryst-bearing andesites of the secondseries, and acid lavas of both second and third, carry augiteand hypersthene in the groundmass. Interstitial glass increasesin proportion from basalts to andesites, and forms a major componentof acid lavas. The second series, like the oldest, lacks absoluteiron enrichment. The third, however, shows weak iron enrichmentof andesitic relative to basaltic compositions. Of the youngest (historic) series, only the acid members (hyalodacites)have been extruded as lavas. The more basic members are representedby non-cumulate xenoliths of basaltic to andesitic compositionwhich, like those of the oldest series, consist of a mesh ofcrystals set in abundant glass. This modern series also displaysfeeble absolute iron enrichment. The compositional range of minerals other than plagioclase isvery limited in the two xenolithic series, but much greaterin the two lava series. Glass compositions are virtually constantwithin individual series. Estimates of temperatures and oxygenfugacities of Fe-Ti oxide mineral equilibration, and deductionsfrom liquid compositional trends indicate that the oldest serieswas characterized by higher fO2, and fH2O, and lower temperaturesthan the three younger, ‘dry’ series. Its silicaenrichment trend appears to have been controlled chiefly byfractionation of silica-poor hornblende, rather than magnetiteas in the younger series. The presence, in all series, of xenolithsof gabbroic cumulates, and the constancy of glass compositionssuggests that each series was generated by the tapping of adifferentiating highalumina basalt magma in a high level magmachamber.  相似文献   

2.
The lavas of Nisyros were erupted between about 0?2 m.y B.P.and 1422 A.D., and range in composition from basaltic andesiteto rhyodacite. Most were erupted prior to caldera collapse (exactdate unknown), and the post-caldera lavas are petrographically(presence of strongly resorbed phenocrysts) and chemically (lowerTiO2 K2O, P2O5, and LIL elements) distinct from the pre-calderalavas. The pre-caldera lavas do not form a continuous seriessince lavas with SiO2 contents between 60 and 66 wt.% are absent.Nevertheless, major element variations demonstrate that fractionalcrystalliz ation (involving removal of olivine, dinopyroxene,plagioclase, and Fe-Ti oxide from the basaltic andesites andandesites and plagioclase, clinopyroxene, hypersthene, Ti-magnetite,ilmenite, apatite, and zircon from the dacites and rhyodacites)played a major role in the evolution of the pre-caldera lavas.Several lines of evidence indicate that other processes werealso important in magma evolution: (1) Quantitative modelingof major element data shows that phenocryst phases of unlikelycomposi tion or unrealistic assemblages of phenocryst phasesare required to relate the dacites and rhyodacites to the basalticandesites and andesites; (2) The proportions of olivine andclinopyroxene required in quantitative models for the initialstages of evolution differ from those observed petrographicallyand this is not likely to reflect either differential ratesof crystal settling or the curvature of cotectics along whichliquids of basaltic andesite to andesite composition lie; (3)The concentrations of Rb, Cs, Ba, La, Sm, Eu, and Th in therhyod.acites are too high for these lavas to be related to thedacites by fractional crystallization alone; and (4) 87Sr/86Srratios for the andesites and rhyodacites are higher than thosefor the basaltic andesites and dacites, respectively. It isshown that fractional crystallization was accompanied by assimilation,and that magma mixing played a minor role (if any) in the evolutionof the pre-caldera lavas. Trace element and isotopic data indicatethat the andesites evolved from the basaltic andesites by AFCinvolving average crust or upper crust, whereas the rhyodacitesevolved from the dacites by AFC involving lower crust. Additionalevidence for polybaric evolution is provided by the occurrenceof distinct Ab-rich cores of plagioclase phenocrysts in thedacites and rhyodacites, which record a period of high pressurecrystallization, and by the occurrence of both normal and reverse-zonedphenocrysts in the basaltic andesites and andesites. Furthermore,calculated pressures of crystallization are {small tilde}8 kbfor the dacites and rhyodacites and 3?5–4 kb for the basalticandesites and andesites. It is concluded that the dacites andrhyodacites evolved via AFC from basaltic andesites and andesiteslargely in chambers sited near the base of the crust whereasthe basaltic andesites and andesites mostly evolved in chamberssited at mid-crustal levels. Eruption from different chambersexplains the compositional gap in the chemistry of the pre-calderalavas since eruptive products represent a more or less randomsampling of residual liquids which separate (via filter pressing)from bodies of crystallizing magma at various depths. Magmamixing was important in the evolution of the post-caldera lavas,but geochemical data require that these magmas evolved fromparental magmas which were derived from a more refractory sourcethan the parental magmas to the pre-caldera lavas. *Present address: Netherlands Energy Research Foundation (ECN), P.O. Box 1, 1755 ZG Petten, The Netherlands  相似文献   

3.
Approximately 150 km west of Mexico City in the central part of the Mexican Volcanic Belt (MVB) near Zitácuaro, Mexico, young volcanism has produced shield volcanoes, large volume silicic deposits, and fault-related basalt and andesite lava flows and cinder cones. This paper concerns a small cluster of Pleistocene andesite cones and flows which can be separated into two distinct groups: high-magnesium andesites (>6% MgO, 57–59% SiO2), conveniently called basaltic andesites, with phenocrysts of orthopyroxene and augite, or augite and olivine; and andesites (60–62% SiO2, <4.6% MgO), which have phenocrysts of orthopyroxene and augite, and ghosts of relict hornblende. Remarkably, plagioclase phenocrysts are absent, and evenly distributed but sparse (0.5–3.5%) quartz xenocrysts are present in all the lavas. In order to establish the conditions under which early crystallizing plagioclase is suppressed in these lavas, water saturated experiments up to 3 kbars were performed on one of the basaltic andesites. The conditions required to reproduce the phenocryst assemblages (either olivine + augite or opx + augite) are temperatures in excess of 1000 °C, with water saturated liquids (>3 wt%) at pressures of about 1 kbar. Compared to basaltic andesites of western Mexico, the Zitácuaro basaltic andesites have ∼2 wt% lower Al2O3 concentrations, which causes plagioclase to precipitate at significantly lower temperatures, and it therefore follows the crystallization sequence: olivine, augite, and orthopyroxene. Based on ubiquitous quartz xenocrysts, with glassy rhyolitic inclusions, a reasonable conclusion is that substantial mixing of a quartz-bearing rhyolitic magma with a parental basaltic andesite has occurred at low pressure (shallow depth), and this would account for the low Al2O3 concentrations in the Zitácuaro basaltic andesites. Whatever the mechanism of incorporation, the quartz xenocrysts are evidence of contamination of basaltic magma with more siliceous material, thus making it difficult to use these magmas as indicators of mantle melting processes. Received: 29 July 1997 / Accepted: 29 January 1998  相似文献   

4.
Trace element systematics throughout the cal-calkaline high alumina basalt — basaltic andesite — andesite — dacite — rhyodacite lavas and dyke rocks of the Main Volcanic Series of Santorini volcano, Greece are consistent with the crystal fractionation of observed phenocryst phases from a parental basaltic magma as the dominant mechanism involved in generating the range of magmatic compositions. Marked inflection points in several variation trends correspond to changes in phenocryst mineralogy and divide the Main Series into two distinct crystallisation intervals — an early basalt to andesite stage characterised by calcic plagioclase+augite+olivine separation and a later andesite to rhyodacite stage generated by plagioclase augite+hypersthene+magnetite+apatite crystallisation. Percent solidification values derived from ratios of highly incompatible trace elements agree with previous values derived from major element data using addition-subtraction diagrams and indicate that basaltic andesites represent 47–69%; andesites 70–76%; dacites ca. 80% and rhyodacite ca. 84% crystallisation of the initial basalt magma. Least squares major element mixing calculations also confirm that crystal fractionation of the least fractionated basalts could generate derivative Main Series lavas, though the details of the least squares solutions differ significantly from those derived from highly incompatible element and addition-subtraction techniques. Main Series basalts may result from partial melting of the mantle asthenosphere wedge followed by limited olivine+pyroxene+Cr-spinel crystallisation on ascent through the sub-Aegean mantle and may fractionate to more evolved compositions at pressures close to the base of the Aegean crust. Residual andesitic to rhyodacite magmas may stagnate within the upper regions of the sialic Aegean crust and form relatively high level magma chambers beneath the southern volcanic centres of Santorini. The eruption of large volumes of basic lavas and silicic pyroclastics from Santorini may have a volcanological rather than petrological explanation.  相似文献   

5.
Within the Zitácuaro–Valle de Bravo (ZVB) regionof the central Mexican Volcanic Belt (MVB), three lava serieshave erupted during the Quaternary: (1) high-K2O basaltic andesitesand andesites; (2) medium-K2O basaltic andesites, andesitesand dacites; (3) high-TiO2 basalts and basaltic andesites. Thedominant feature of the first two groups is the lack of plagioclaseaccompanying the various ferromagnesian phenocrysts (olivine,orthopyroxene, augite, and hornblende) in all but the dacites.This absence of plagioclase in the phenocryst assemblages ofthe high-K2O and medium-K2O intermediate lavas is significantbecause it indicates high water contents during the stage ofphenocryst equilibration. In contrast, the high-TiO2 group ischaracterized by phenocrysts of plagioclase and olivine. Thespatial distribution of these three lava series is systematic.The southern section of the ZVB transect, 280–330 km fromthe Middle America Trench (MAT), is characterized by high-K2Omelts that are relatively enriched in fluid-mobile elementsand have the highest 87Sr/86Sr ratios. Medium-K2O basaltic andesiteand andesite lavas are present throughout the transect, butthose closest to the MAT are MgO-rich (3·5–9·4wt %) and have phenocryst assemblages indicative of high magmaticwater contents (3·5–6·5 wt % water) andrelatively low temperatures (950–1000°C). In markedcontrast, the northern section of the ZVB transect (380–480km from the MAT) has high-TiO2, high field strength element(HFSE)-enriched magmas that have comparatively dry (< 1·5wt % magmatic water) and hot (1100–1200°C) phenocrystequilibration conditions. The central section of the ZVB transect(330–380 km from the MAT) is a transition zone and producesmoderately light rare earth element (LREE) and large ion lithophileelement (LILE)-enriched, medium-K2O lavas with phenocryst assemblagesindicative of intermediate (1·5–3·5 wt %)water contents and temperatures. The high-K2O series compositionsare the most enriched in LILE and LREE, with a narrow rangeof radiogenic 87Sr/86Sr from 0·704245 to 0·704507,143Nd/144Nd values ranging from 0·512857 to 0·512927(Nd = 4·27–5·63), and 208Pb/204Pb valuesfrom 38·248 to 38·442, 207Pb/204Pb values from15·563 to 15·585, and 206Pb/204Pb values from18·598 to 18·688. The medium-K2O series compositionsare only moderately enriched in the LILE and LREE, with a broaderrange of 87Sr/86Sr, but similar 143Nd/144Nd and 208Pb/204Pbvalues to those of the high-K2O series. In contrast, the high-TiO2series compositions have little enrichment in LILE or LREE andinstead are enriched in the HFSE and heavy rare earth elements(HREE). The high-TiO2 lavas are isotopically distinct in theirlower and narrower range of 143Nd/144Nd. The isotopic variationsare believed to reflect the upper mantle magma source regionsas the low content of phenocrysts in most lavas precludes significantupper crustal assimilation or magma mixing, other than thatrepresented by the presence of quartz xenocrysts (< 2 vol.%) with rhyolitic glass inclusions, which are found in manyof these lavas. The systematic spatial variation in compositionof the three lava series is a reflection of the underlying subduction-modifiedmantle and its evolution. KEY WORDS: central Mexico; geochemistry; isotopes; Quaternary volcanism; hydrous lavas  相似文献   

6.
Puyehue Volcano (40?5?S) in the southern volcanic zone (33?–46?)of the Andes is a largely basaltic stratovolcano constructedon a highly eroded, dominantly andesitic volcanic center. Duringgrowth of Puyehue Volcano there was a trend from basaltic tomore siliceous lavas, and the most recent eruptions (1921–22,1960) are Cordon Caulle rhyodacites and rhyolites erupted fromfissures northwest of the volcano. These basaltic through rhyoliticlavas define a medium-K2O suite of tholeiitic affinity withtrace element and Pb-isotopic signatures typical of volcanicrocks associated with subduction zones. Most of the evolved lavas, ranging from andesite to rhyolite,formed by low to moderate pressure ( 5 kb) fractional crystallizationof a plagioclase-dominated anhydrous assemblage. Magma mixingproduced aphyric basaltic andesites with anomalously high incompatibleelement contents and latestage andesites with disequilibriumphenocryst assemblages. The age progression from abundant basaltto younger, less voluminous, more silicic lavas reflects increasinglygreater degrees of fractional crystallization which caused theapparent compositional gap between mixing end members to widen. There is no evidence in the silicic lavas for assimilation ofgeochemically distinctive continental crust. Puyehue basaltsare surprisingly more heterogeneous in 87Sr/86Sr (0?70378–0?70416)and incompatible element abundance ratios (e.g., La/Sm, Ba/Nb)than the more evolved lavas. This geochemical variability mayreflect subcrustal source heterogeneities or contamination bylower crust. The older basaltic andesites and andesites underlyingthe Puyehue edifice have Sr and Nd isotopic ratios and incompatibleelement abundance ratios within the range of Puyehue basalts.Apparently, similar sources and processes were involved in theirgenesis.  相似文献   

7.
Volcán San Pedro in the Andean Southern Volcanic Zone(SVZ) Chile, comprises Holocene basaltic to dacitic lavas withtrace element and strontium isotope ratios more variable thanthose of most Pleistocene lavas of the underlying Tatara–SanPedro complex. Older Holocene activity built a composite coneof basaltic andesitic and silicic andesitic lavas with traceelement ratios distinct from those of younger lavas. Collapseof the ancestral volcano triggered the Younger Holocene eruptivephase including a sequence of lava flows zoned from high-K calc-alkalinehornblende–biotite dacite to two-pyroxene andesite. Notably,hornblende–phlogopite gabbroic xenoliths in the daciticlava have relatively low 87Sr/86Sr ratios identical to theirhost, whereas abundant quenched basaltic inclusions are moreradiogenic than any silicic lava. The latest volcanism rebuiltthe modern 3621 m high summit cone from basaltic andesite thatis also more radiogenic than the dacitic lavas. We propose thefollowing model for the zoned magma: (1) generation of hornblende–biotitedacite by dehydration partial melting of phlogopite-bearingrock similar to the gabbroic xenoliths; (2) forceful intrusionof basaltic magma into the dacite, producing quenched basalticinclusions and dispersion of olivine and plagioclase xenocryststhroughout the dacite; (3) cooling and crystallization–differentiationof the basalt to basaltic andesite; (4) mixing of the basalticandesite with dacite to form a small volume of two-pyroxenehybrid andesite. The modern volcano comprises basaltic andesitethat developed independently from the zoned magma reservoir.Evolution of dacitic and andesitic magma during the Holoceneand over the past 350 kyr reflects the intrusion of multiplemafic magmas that on occasion partially melted or assimilatedhydrous gabbro within the shallow crust. The chemical and isotopiczoning of Holocene magma at Volcán San Pedro is paralleledby that of historically erupted magma at neighboring VolcánQuizapu. Consequently, the role of young, unradiogenic hydrousgabbro in generating dacite and contaminating basalt may beunderappreciated in the SVZ. KEY WORDS: Andes; dacite; gabbro; Holocene; strontium isotopes  相似文献   

8.
Camiguin is a small volcanic island located 12 km north of Mindanao Island in southern Philippines. The island consists of four volcanic centers which have erupted basaltic to rhyolitic calcalkaline lavas during the last ∼400 ka. Major element, trace element and Sr, Nd and Pb isotopic data indicate that the volcanic centers have produced a single lava series from a common mantle source. Modeling results indicate that Camiguin lavas were produced by periodic injection of a parental magma into shallow magma chambers allowing assimilation and fractional crystallization (AFC) processes to take place. The chemical and isotopic composition of Camiguin lavas bears strong resemblance to the majority of lavas from the central Mindanao volcanic field confirming that Camiguin is an extension of the tectonically complex Central Mindanao Arc (CMA). The most likely source of Camiguin and most CMA magmas is the mantle wedge metasomatized by fluids dehydrated from a subducted slab. Some Camiguin high-silica lavas are similar to high-silica lavas from Mindanao, which have been identified as “adakites” derived from direct melting of a subducted basaltic crust. More detailed comparison of Camiguin and Mindanao adakites with silicic slab-derived melts and magnesian andesites from the western Aleutians, southernmost Chile and Batan Island in northern Philippines indicates that the Mindanao adakites are not pure slab melts. Rather, the CMA adakites are similar to Camiguin high-silica lavas which are products of an AFC process and have negligible connection to melting of subducted basaltic crust. Received: 27 February 1998 / Accepted: 27 August 1998  相似文献   

9.
The Younger Andesites and Dacites of Iztacc?huatl volcano, Mexico,constitute a medium-K calcalkaline rock suite (58–66 wt.per cent SiO2) characterized by high Mg-numbers (100Mg/(Mg+0?85Fe2+=55–66) and relatively high abundances of MgO (2?5–6?6wt. per cent), Ni(17–158 p.p.m.), and Cr (42–224p.p.m.). Chemical stratigraphy plots of eruptive sequences indicatethe existence of a plexus of long-lived dacite magma chambersperiodically replenished by influxes of basaltic magma ascendingfrom depth. Short-term geochemical evolution after batch influxwas dictated by magma mixing and eventual dilution of the basalticcomponent by ‘quasi-steady state’ hornblende dacitemagma. The chemical data support textural and mineralogicalevidence for rapid homogenization of originally diverse magmasby convective blending of residual liquids accompanied by dynamicfractional crystallization (Nixon, 1988). Internally-consistent mixing calculations used to derive thecomposition of basaltic magma influx incorporate analyticaluncertainties and the observed range of salic end-member compositions.Mafic end-members are basalts to basaltic andesites (52–54wt. per cent SiO2) with Mg-numbers (73–76), MgO (9–11wt. per cent), Ni (250 p.p.m.), and Cr (340–510 p.p.m.)concentrations, and liquidus olivine compositions (Fo90–88),appropriate for unfractionated partial melts of mantle peridotite.The majority of model compositions are Ol-Hy-normative, similarto those of primitive basaltic lavas on the flanks of Iztacc?huatland in the Valley of Mexico. However, calculated magma batchesrange from weakly Qz-normative to strongly Ne-normative. Bothcalculated and analyzed basaltic compositions are distinguishedby highly variable abundances of alkalies and incompatible traceelements, notably Rb, Ba, Sr, P, Zr, and Y. Initial 87Sr/86Sr ratios for Iztacc?huatl lavas (0?7040–0?7046;n=24) are comparable to those for primitive basaltic rocks (0?7037–0?7045;?=4) and indicate that (1) mantle source regions are isotopicallyheterogeneous; and (2) contamination of iztacc?huatl magma chambersby radiogenic crustal rocks was not a significant factor inthe evolution of calc-alkaline andesites and dacites. The replenishment of Iztacc?huatl dacite reservoirs by Ne-normativemagmas late in the history of cone growth precludes exhaustionof mantle source regions by progressive partial melting. Thewaning stages of volcanic activity at Iztacc?huatl appear toreflect the inability of dense basaltic influxes to successfullypenetrate a large high-level chamber of low density hornblendedacite magma.  相似文献   

10.
Major, trace element, and Sr isotopic data are reported forvolcanic rocks from the island of Alicudi, Aeolian Arc, SouthernTyrrhenian Sea. The island is constructed of basalt, basalticandesite to high-K andesite lavas, and pyroclastites, whichshow a continuum in the variation of many major and trace elements.Total iron, MgO, CaO, Ni, Co, Sc, and Cr decrease with increasingsilica, whereas incompatible elements Rb, Ba, Th, and LREE displaythe opposite tendency. Very significant positive correlationsare defined by incompatible elements on interelemental variationdiagrams. Sr isotopic ratios vary from 0–70352 to 0–70410.Overall, basalts (0–70352–O-70410) and basalticandesltes (0–70356–0–70409) are enriched in87Sr compared with high-K andesites (O–70352–O–70367),which display the lowest Sr isotopic ratios within the entireAeolian archipelago. Overall negative relationships exist between87Sr/86Sr and several incompatible trace element abundancesand ratios, such as Th, U, LREE, Zr, La/Yb, and Th/Hf. Otherelemental ratios such as La/Rb, Ba/Rb, and Sr/Rb show more complexbehaviour, even though negative correlations with Sr isotopicratios are observed in the basalts. The observed compositional variations are best explained interms of a model in which primitive calc-alkaline magmas evolvedby crystal-liquid fractionation to give a series of variouslydifferentiated liquids, which underwent different degrees ofinteraction with crustal material. The more mafic and hotterbasaltic liquids appear to have assimilated higher amounts ofmetamorphic wall rocks than did the cooler late erupted andesiticmagmas. This process produced significant variations of Sr isotopicratios, Rb, Cs, Rb/Sr ratios, and LILE/Rb ratios in mafic magmas,but had only minor effects on the abundances and ratios of otherincompatible elements such as Th, LREE, La/Yb, and Th/Hf. When compared with mafic rocks from other Aeolian islands, theAlicudi basalts are more primitive geochemically and isotopically.Going eastward, there is a decrease in Ni and Cr abundances,mg-number and Nd isotopic ratios which parallels an increaseof Sr isotopic ratios in basaltic rocks along the arc. Thesecompositional variations are typical of volcanic series whichhave undergone interaction with upper-crustal material, andsuggest that this process may have contributed significantlyto the regional geochemical and isotopic trends observed inthe Aeolian arc.  相似文献   

11.
Augustine Volcano, a Quaternary volcanic centre of the easternAleutian Arc, produces predominantly andesites and dacites oflow- to medium-K calc-alkaline composition. Mineralogical andmajor element characteristics of representative lavas suggestthat magmatic evolution has been influenced by both crystalfractionation and magma-mixing processes. However, incompatibletrace element variations (e.g. K/Rb) indicate that these evolvedlavas have been contaminated by the mafic arc crust of the underlyingTalkeetna accreted terrane. The limited range of isotope compositionsalso supports the assimilation of non-radiogenic mafic crust(e.g. 87Sr/86Sr = 0.7032–0.7034; 143Nd/144 Nd = 0.51301–0.5130).In addition, Pb-isotope compositions parallel the North Pacificmean oceanic trend (206Pb/204 Pb = 18.3–18.8; 207Pb/204Pb= 15.5–15.6; 208Pb/204Pb = 38.2–38.3) and do notrequire a subducted sediment component in the source. Relativelyhigh (Ba/La) N (0.79–18.10) and B/Be (14.5) ratios do,however, suggest a metasomatic fluid component derived fromthe dehydration of the subducting plate. The thickened continental crust (35 km) of the eastern AleutianArc prevents the ascent of basaltic melts, which fractionateand assimilate at various depths to produce andesitic magmas.These andesites evolve towards more silicic compositions byfractional crystallization. The absence of evidence for a largehigh-level crustal magma chamber implies that the magmatic systembeneath the volcano is young and at an immature stage of evolution. KEY WORDS: Augustine Volcano; Aleutians; assimilation; melasomatism; geochemistry *Corresponding author. Present address: Department of Geology and Geophysics, University of New Orleans, New Orleans, LA 70148, USA  相似文献   

12.
Most Ruapehu lavas and those of related vents (Taupo VolcanicZone, New Zealand) are calc-alkaline, medium-K basic and acidandesites, though minor volumes of basalt and dacite occur.Nearly all are porphyritic with phenocrysts of plagioclase,augite, olivine (mainly in basalts and basic andesites), orthopyroxene(mainly in acid andesites and dacites), and titanomagnetite(chrome spinel in basic lavas). The lavas have been subdividedinto six groups, each petrographically, geochemically and isotopicallydistinct: Type 1 plagioclase-pyroxene phyric lavas dominate,and range from basalt to dacite. Least squares mass balancecalculations indicate that these lavas were probably generatedfrom low-alumina basalt by combined crystal fractionation (15–55per cent) and crustal assimilation (1–30 per cent). Xenolithstudies indicate that the assimilant is most likely to be apartial melt of gneiss, originally Torlesse terrane greywacke.Crystal accumulation occurs to a minor extent in Type 1 lavasand becomes important in Type 2 (plagioclase-phyric) and Type3 (pyroxene-phyric) lavas. Type 4 lavas are rare and of unknownorigin, though they may be similar to rare hornblende-bearingandesites from nearby Maungakatote volcano. Type 5 lavas areclinopyroxene-olivine-phyric andesites which were probably generatedfrom a primitive basalt by crystal fractionation without crustalassimilation. Type 6 lavas show strong evidence of disequilibriumand were probably generated by mixing Type 5 basalt with Type1 dacite in proportions of between 60:40 and 50:50. The assertion that the assimilant involved in contaminationof most Ruapehu andesites is a partial melt of basement greywackeis a significant departure from previously published theoriesand has important implications for trace element and isotopicmodelling.  相似文献   

13.
Along strike of the Quaternary magmatic arc in the SouthernVolcanic Zone of the Andes, there is a south to north increasein crustal thickness, and the lavas define systematic geochemicaltrends which have been attributed to variations in the proportionsand compositions of mantle-and crustal-derived components. Realisticinterpretations of these regional geochemical trends requiresan understanding of the sources and processes that control lavacompositions at individual volcanoes. Because it is in an importantgeophysical and geochemical transition zone, we studied theAzufre—Planchon—Peteroa volcanic complex, a nestedgroup of three volcanoes <055 m.y. in age located at 3515'Sin the Southern Volcanic Zone of the Andes. North of this complexat 33–35S the continental crust is thick, basalts areabsent, and there is abundant evidence for crustal componentsin the evolved lavas, but south of 37S, where the crust isrelatively thin, basaltic lavas are abundant and the contributionof continental crust to the lavas is less obvious. In additionto its location, this volcanic complex is important becausethere is a diversity of lava compositions, and it is the northernmostexposure of recent basaltic volcanism on the volcanic front.Therefore, the lavas of this complex can be used to identifythe relative roles of mantle, lower-crustal and upper-crustalsources and processes at a single location. Volcan Azufre is the oldest and largest volcano of the complex;it is a multi-cycle, bimodal, basaltic andesite–dacitestratovolcano. Volcan Planchon is the northernmost basalt-bearingvolcano along the volcanic front of the Southern Andes, andVolcan Peteroa, the youngest volcano of the complex, has eruptedmixed magmas of andesitic and dacitic composition. Most basalticandesite lavas at Azufre and Planchon are related by a plagioclase-poor,anhydrous mineral fractionating assemblage. High-alumina basaltis produced from a tholeiitic parent by an 4–8 kbar fractionatingassemblage. During this moderatepressure crystallization, themagmas also incorporated a crustal component with high La/Yband high abundances of Rb, Cs and Th. Based on the chemicalcharacteristics of the added component and the inferred depthof crystallization, the crustal source may have been garnetgranulite derived from solidified arc magmas in the lower tomiddle continental crust. At Planchon, the role of crustal assimilationhas increased with decreasing eruption age probably becausecrustal temperatures have increased during continued volcanism.Azufre dacite lavas formed at low pressures by fractionationof a plagioclase-rich assemblage. These dacite lavas containan upper-crustal component, probably derived in part from limestone,with high values of 87Sr/86Sr and 18O/16O. Thus two depths (upperand lower crust) of crystallization and associated crustal assimilationare evident in Planchon–Azufre lavas. Peteroa, the focusof recent volcanism, consists of calc-alkaline andesite anddacite eruptive products whose textures and compositions indicatean important role for magma mixing. Therefore, the volcanismevolved from a tholeiitic system of basalt and subordinate dacite(Planchon–Azufre) to a calc-alkaline system with abundantmixed lavas of intermediate composition (Peteroa). In additionto crustal thickness, two important parameters which controlledthe diversity of lava composition in this complex are magmasupply rate from the mantle and crustal temperature. Both parametersvaried with time, and they must be considered in broader interpretationsof along-strike geochemical trends. KEY WORDS: arc magmas; Andes; Peteroa; Planchan; geochemistry *Corresponding author. Present address: ENTRIX, Inc., 4II North Central Avenue, Glendale, CA 91203, USA  相似文献   

14.
Detailed geological and petrological-geochemical study of rocks of the lava complex of Young Shiveluch volcano made it possible to evaluate the lava volumes, the relative sequence in which the volcanic edifice was formed, and the minimum age of the onset of eruptive activity. The lavas of Young Shiveluch are predominantly magnesian andesites and basaltic andesites of a mildly potassic calc-alkaline series (SiO2 = 55.0–63.5 wt %, Mg# = 55.5–68.9). Geologic relations and data on the mineralogy and geochemistry of rocks composing the lava complex led us to conclude that the magnesian andesites of Young Shiveluch volcano are of hybrid genesis and are a mixture of silicic derivatives and a highly magnesian magma that was periodically replenished in the shallow-depth magmatic chamber. The fractional crystallization of plagioclase and hornblende at the incomplete segregation of plagioclase crystals from the fractionating magmas resulted in adakitic geochemical parameters (Sr/Y = 50–71, Y < 18 ppm) of the most evolved rock varieties. Our results explain the genesis of the rock series of Young Shiveluch volcano without invoking a model of the melting of the subducting Pacific slab at its edge.  相似文献   

15.
The extrusive rocks of Hekla are predominantly flows of basaltic andesite and andesite (icelandite) but each eruptive cycle is initiated by production of tephra of andesitic, dacitic, and even rhyolitic composition. The evolution of basaltic andesites to dacites and rhyolites can be explained by crystallization and (presumably gravitative) separation of olivine, titaniferous magnetite, plagioclase, and probably augite. No contamination by sialic crustal material is required.Although basalts are never erupted from Hekla the origin of the basaltic andesites is probably best explained by separation of magnesian olivine, augite, and calcic plagioclase from an olivine tholeiite parent, producing an initial differentiation trend toward a high Fe/Mg ratio. The increase in Fe/Mg ratio is limited by the appearance of magnetite as a liquidus phase.From the Fe/Mg ratios of the lavas and from compositions of the plagioclase phenocrysts the water pressure of the basaltic andesites is estimated to have been between 0.6 and 2.4 kb. Total pressure may have been significantly higher. A best estimate for the water content is approximately 2 1/2 to 6 weight percent. This high water content accounts for the explosive initiation of each eruptive cycle and is consistent with fractional crystallization in a shallow magma chamber.Division of Geological and Planetary Sciences, California Institute of Technology, Contribution No. 2355.  相似文献   

16.
The Saurashtra region in the northwestern Deccan continental flood basalt province (India) is notable for compositionally diverse volcano-plutonic complexes and abundant rhyolites and granophyres. A lava flow sequence of rhyolite-pitchstone-basaltic andesite is exposed in Osham Hill in western Saurashtra. The Osham silicic lavas are Ba-poor and with intermediate Zr contents compared to other Deccan rhyolites. The Osham silicic lavas are enriched in the light rare earth elements, and have εNd (t = 65 Ma) values between −3.1 and −6.5 and initial 87Sr/86Sr ratios of 0.70709-0.70927. The Osham basaltic andesites have initial εNd values between +2.2 and −1.3, and initial 87Sr/86Sr ratios of 0.70729-0.70887. Large-ion-lithophile element concentrations and Sr isotopic ratios may have been affected somewhat by weathering; notably, the Sr isotopic ratios of the silicic and mafic rocks overlap. However, the Nd isotopic data indicate that the silicic lavas are significantly more contaminated by continental lithosphere than the mafic lavas. We suggest that the Osham basaltic andesites were derived by olivine gabbro fractionation from low-Ti picritic rocks of the type found throughout Saurashtra. The isotopic compositions, and the similar Al2O3 contents of the Osham silicic and mafic lavas, rule out an origin of the silicic lavas by fractional crystallization of mafic liquids, with or without crustal assimilation. As previously proposed for some Icelandic rhyolites, and supported here by MELTS modelling, the Osham silicic lavas may have been derived by partial melting of hot mafic intrusions emplaced at various crustal depths, due to heating by repetitively injected basalts. The absence of mixing or mingling between the rhyolitic and basaltic andesite lavas of Osham Hill suggests that they reached the surface via separate pathways.  相似文献   

17.
Lavas from Medicine Lake volcano, Northern California have been examined for evidence of magma mixing. Mixing of magmas has produced basaltic andesite, andesite, dacite and rhyolite lavas at the volcano. We are able to identify the compositional characteristics of the components that were mixed and to estimate the time lag between the mixing event and eruption of the mixed magma. Compositional data from pairs of phenocrysts identify a high alumina basalt (HAB) and a silicic rhyolite as endmembers of mixing. Mg-rich olivine or augite and Ca-rich plagioclase are associated with the HAB component, and Fe-rich orthopyroxene and Na-rich plagioclase are associated with the rhyolitic component. Some lavas contain multiple phenocryst assemblages suggesting the incorporation of several magmas intermediate between the HAB and silicic components. Glass inclusions trapped in Mg-rich olivine and Na-rich plagioclase are similar in composition to the proposed HAB and rhyolite end members and provide supportive evidence for mixing. Textural criteria are also consistent with magma mixing. Thermal curvature of the liquidus surfaces in the basalt-andesite-rhyolite system allows magmas produced by mixing to be either supercooled or superheated. Intergranular textures of basaltic andesites and andesites result from cooling initiated below the liquidus. The trachytic textures of silicic andesites form from cooling initiated above the liquidus. Reversed compositional zoning profiles in olivine crystals were produced by the mixing event, and the homogenization of the compositional zoning has been used to estimate the time interval between magma mixing and eruption. Time estimates are on the order of 80 to 90 h, suggesting that the mixing event triggered eruption.  相似文献   

18.
The convergent margin of western Mexico is uniquely characterizedby a volcanic front of lamprophyric and related lavas located{small tilde}70 km closer to the Middle America trench thanthe main axis of andesitic volcanism. This front, defined bysmall volcanic centers ranging in age from {small tilde}1 kato 3 Ma, contains several lava types: minette, absarokite, leucitite,spessartite, and kersantite, all without feldspar phenocrysts.Many of the lavas contain hydrous phenocrysts; they are enrichedin potassium and other incompatible elements, and they are moreoxidized relative to the andesitic suite of the main axis. Intimatelyassociated are flows of basaltic andesite of comparable volume.They range in composition from 53 to 58 wt.%SiO2, have 5–9wt.%MgO and contain phenocrysts of olivine, sparse augite, andvarying amounts of plagioclase. Their alkali contents are typicalof calc-alkaline varieties, with average Na2O and K2O concentrationsof 4?2 and 1?1 wt.% respectively. The basaltic andesites oftencontain olivine of unusually high forsterite content, reflectingcrystallization under oxidizing conditions, and they have oxygenfugacities up to 3?3 log units above the Ni-NiO buffer. Manifestationsof high water contents are (1) the ubiquitous occurrence ofgroundmass olivine rather than orthopyroxene, and (2) the suppressionof plagioclase as an early crystallizing phase. Both featuresreflect the role of water in reducing the activity of silicain the melt. The progressive influence of water during crystallizationis also seen in the continuum between the two intermediate lavatypes, basaltic andesite and kersantite, as plagioclase is suppressedand hornblende is stabilized in the phenocryst assemblage. Thus,despite the absence of hydrous minerals in the basaltic andesites,their phenocryst assemblages reveal the influence of substantialamounts of water, and thereby show a genetic link to the variouslamprophyric lavas.  相似文献   

19.
Three genetically unrelated magma suites are found in the extrusivesequences of the Troodos ophiolite, Cyprus. A stratigraphicallylower pillow lava suite contains andesite and dacite glassesand shows the crystallization order plagioclase; augite, orthopyroxene;titanomagnetite (with the pyroxenes appearing almost simultaneously).These lavas can in part be correlated chemically and mineralogicallywith the sheeted dikes and the upper part of the gabbro complexof the ophiolite. The second magma suite is represented in astratigraphically upper extrusive suite and contains basalticandesite and andesite glasses with the crystallizaton orderchromite; olivine; Ca-rich pyroxene; plagioclase. This magmasuite can be correlated chemically and mineralogically withparts of the ophiolitic ultramafic and mafic cumulate sequence,which has the crystallization order olivine; Ca-rich pyroxene;orthopyroxene; plagioclase. The third magma suite is representedby basaltic andesite lavas along the Arakapas fault zone andshows a boninitic crystallization order olivine; orthopyroxene;Ca-rich pyroxene; plagioclase. One-atmosphere, anhydrous phaseequilibria experiments on a lava from the second suite indicateplagioclase crystallization from 1225?C, pigeonite from 1200?C,and augite from 1165?C. These experimental data contrast withthe crystallization order suggested by the lavas and the associatedcumulates. The observed crystallization orders and the presenceof magmatic water in the fresh glasses of all suites are consistentwith evolution under relatively high partial water pressures.In particular, high PH2O (1–3 kb) can explain the lateappearances of plagioclase and Ca-poor pyroxene in the majorityof the basaltic andesite lavas as the effects of suppressedcrystallization temperatures and shifting of cotectic relations.The detailed crystallization orders are probably controlledby relatively minor differences in the normative compositionsof the parental magmas. The basaltic andesite lavas are likelyto reach augite saturation before Ca-poor pyroxene saturation,whereas the Arakapas fault zone lavas, which have relativelyless normative diopside and more quartz, reached the Ca-poorpyroxene-olivine reaction surface and crystallized Ca-poor pyroxeneafter olivine.  相似文献   

20.
EWART  A. 《Journal of Petrology》1982,23(3):344-382
The magmas of the Tertiary volcanic province of S. Queenslandare chemically bimodal, and occur in numerous volcanic centres,at least three representing original shield volcanoes. The maficlavas are dominantly hawaiites and tholeiitic andesites, whereasthe silicic magmas comprise mainly trachytes, rhyolites, andcomendites. The silicic rocks exhibit variable trace element abundance patterns.There is a progressive depletion of Sr, Ba, V, Mg, Ni, Cr, Mn,and P, through the trachytes to the rhyolites and comenditeswhile the behaviour of Zr, Nb, LREE, Y and Zn is very variable.Rb, Th, and to a lesser extent Pb exhibit a more regular behaviour,becoming most generally concentrated in the comendites and rhyolites.These trace element patterns are modelled by application ofthe Rayleigh distillation model, using partition coefficientsbased on analysed phenocrysts from the S. Queensland siliciclavas. Trace mineral phases, namely zircon, chevkinite, andallanite, are shown to be important in the probable controlof LREE, Zr, and Th abundances, while Nb and Zn are probablycontrolled during fractionation by magnetite. Trace elementdata for the hawaiites and tholeiitic andesites also indicateextensive although variable levels of fractional crystallizationof these magmas. The Sr and O isotopic compositions of the mafic lavas, trachytes,comendites and rhyolites are as follows: initial 87Sr/86Sr ratios;0.70357–0.70456, 0.70432–0.70589, 0.70495–0.70917,and 0.70708–0.70863 respectively. 18O range between 5.6–7.0(mafic lavas), 4.9–8.7 (trachytes), 5.0–7.6 (comendites)and 8.1–10.4 per mil (rhyolites). Pb isotopic compositionsare variable, showing a variation of 6.7 per cent for 206Pb/204Pbratios through the range of volcanic compositions. The rhyolitesexhibit a much greater divergence in their O, Sr, and Pb isotopiccompositions compared with those of associated mafic lavas,than is found in the trachytes and comendites. Within the silicicvolcanics, positive correlations exist between 18O and initialSr ratios, and between Pb isotopic compositions and initialSr ratios (with one group of trachytes providing a noteworthyexception). These correlations are not so clearly defined forthe mafic lavas, although these do exhibit positive correlationsbetween differentiation index, 18O, and initial Sr isotope ratios. The development of the silicic magmas, excepting two groups,is interpreted in terms of a model in which assimilation andfractional crystallization occur concurrently, involving a basaltor hawaiite magma component and a crustal component (modelledon the analysed Carboniferous basement greywackes outeroppingin the region); the data indicate, however, that differentiationcontinued in isotopically closed systems (i. e. isolated fromthe wallrocks). The highly depleted Sr and Ba abundances ofthe rhyolites and comendites suggest that contamination didnot occur after differentiation had ceased. The rhyolites havethe highest isotopic input of the crustal components and areinterpreted as crustal anatectic melts, produced locally withinthe crust in response to basalt/hawaiite magma intrusion, whereasmost of the trachytes and comendites are interpreted as primarilythe differentiated products from original mafic parental magmas,with variable assimilation of crustal wallrock components. Theisotopic data suggest that only the Minerva Hills trachyticlavas, and a Glass House comendite, have not been significantlymodified by wallrock assimilation processes. The erpted maficmagmas were also evidently modified by isotopic crustal wallrockinteractions, which independent petrological data suggest hasoccurred at intermediate to lower crustal depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号