首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Soils of loamy sand on weathered, sandy dolomite were cored from six holes up to 70 ft beneath a municipal waste landfill in central Pennsylvania. Mn, Fe, Ni, Co, Cu, Zn, Cd, Pb, and Ag were determined in exchangeable and non-exchangeable forms in total and < 15 μm soil samples. Most of these metals were bound in Mn oxides, non-exchangeable with 0.5 M CaCl2. The Mn oxides (often X-ray amorphous) identified when crystalline as todorokite occurred chiefly as coatings on quartz grains.Somewhat higher amounts of acid leachable trace metals were found in the < 15 μm size fraction than in the total soil samples; however, trace metal/Mn ratios were similar in both. In general, the initial mild soil leaching, which dissolved chiefly Mn oxides, gave MnFeX>Co>Ni>Pb>Zn> Cu>Cd>Ag. The final leaching, which dissolved chiefly ferric oxides, gave Fe>Mn>Ni>Zn>Co> Cu>Pb>Cd>Ag. Samples taken from an unpolluted site and from the same soils affected for seven years by leachate from the refuse had similar metal contents.Soil extractable Co, Ni, Cu, and Zn could be predicted from the Mn extracted. Based in part on factor analysis of the data, Mn-rich oxides had at least tenfold higher heavy metal percentages than Fe-rich oxides (crystalline component goethite), reflecting their greater coprecipitation potential. Because of this potential and because of the generally higher solubility of Mn than Fe oxides, more heavy metals may be released from Mn-rich than from Fe-rich soils by disposal of organic-bearing wastes. However, leaching of the moisture-unsaturated soils in situ is rarely severe enough to completely dissolve both Mn and Fe oxides. Based on the Mn content, Cd, Cu, and Pb were depleted in soil moisture beneath the landfill relative to their amounts in the soil. This depletion may reflect factors including heterogeneity in metal content of the soil oxides; preferential resorption of these metals; and removal of the Cd, Cu, and Pb as organic precipitates or as inorganic precipitates such as carbonates.  相似文献   

2.
Dissolved and particulate concentrations of metals (Fe, Al, Mn, Co, Ni, Cu, Zn, Cd, Tl, Pb) and As were monitored over a 5 year period in the Amous River downstream of its confluence with a creek severely affected by acid mine drainage (AMD) originating from a former Pb–Zn mine. Water pH ranged from 6.5 to 8.8. Metals were predominantly in dissolved form, except Fe and Pb, which were in particulate form. In the particulate phase, metals were generally associated with Al oxides, whereas As was linked to Fe oxides. Metal concentrations in the dissolved and/or particulate phase were generally higher during the wet season due to higher generation of AMD. Average dissolved (size < 0.22 μm) metal concentrations (μg/L) were 1 ± 4 (Fe), 69 ± 49 (Al), 140 ± 118 (Mn), 4 ± 3 Co, 6 ± 4 (Ni), 1.3 ± 0.8 (Cu), 126 ± 81 (Zn), 1.1 ± 0.7 (Cd), 0.9 ± 0.5 (Tl), 2 ± 3 (Pb). Dissolved As concentrations ranged from 5 to 134 μg/L (30 ± 23 μg/L). During the survey, the concentration of colloidal metals (5 kDa < size < 0.22 μm) was less than 25% of dissolved concentrations. Dissolved metal concentrations were generally higher than the maximum concentrations allowed in European surface waters for priority substances (Ni, Cd and Pb) and higher than the environmental quality standards for other compounds. Using Diffusion Gradient in Thin Film (DGT) probes, metals were shown to be in potentially bioavailable form. The concentrations in Leuciscus cephalus were below the maximum Pb and Cd concentrations allowed in fish muscle for human consumption by the European Water Directive. Amongst the elements studied, only As, Pb and Tl were shown to bioaccumulate in liver tissue (As, Pb) or otoliths (Tl). Bioaccumulation of metals or As was not detected in muscle.  相似文献   

3.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

4.
The technique of diffusive gradients in thin films (DGT) was applied to obtain high-resolution vertical profiles of trace metals in sediment porewater of a eutrophic lake, Lake Chaohu. All sampling sediments were under anaerobic conditions with Eh values below 0, the redox potential profile in M4 was relatively stable, and higher Eh values in M4 than that in M1 were observed due to hydrodynamic effects. Fe, Mn and As exhibited closely corresponding profiles due to the co-release of Fe and Mn oxides and the reduction of As. Higher Fe and Mn concentrations and lower As concentrations were observed in M1 of the western half-lake than those in M4 of the eastern half-lake due to different sources and metal contamination levels in the two regions. Cu and Zn showed increasing concentrations similar to Mn and Fe at 1–2 cm depth of sediments, while DGT measured Co, Ni, Cd and Pb concentrations decreased down to 3–4 cm in the profiles. Co, Ni, Cu, Zn, Cd and Pb showed insignificant regional concentration variances in the western and eastern half-lakes. According to the R(C DGT/C centrifugation) values, the rank order of metal labilities decrease as follows: Fe (>1) > Cu, Pb, Zn (>0.9) > Co, Ni, Cd (>0.3) > Mn, As (>0.1).  相似文献   

5.
Different downstream variation patterns were observed for a range of bed sediment-borne metals (aqua regia-extractable fraction) in a subtropical stream system receiving acid mine drainage. Mine-originated Fe tended to be deposited in the acidic (mean pH < 4.9) upstream reach in forms of goethite and/or hematite. In contrast, other metals tended to be transported farther downstream and settled in a low-gradient reach with high pH (mean pH > 5.6). The peak of sediment-borne Al, Be, Ca, Cd, Co, Cu, La, Mn, Ni and Zn corresponded very well with the peak of the sediment-borne organic matter, suggesting a close association between the water-borne organic colloids and the inorganic metal oxides/hydroxides during their transport. The marked increase in the sediment-borne Al and Pb started more upstream than the other metals, suggesting that the water-borne Al and Pb were more susceptible to pH rise-induced precipitation, as compared to the other metals. It appeared that the organic colloids played no important role in Pb transport and settlement. The iron precipitates had a limited role to play in affecting the transport and fates of other metals since they were predominantly formed and deposited in the acidic reach, which made them incapable of scavenging cationic metals by co-precipitation or adsorption.  相似文献   

6.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

7.
The adsorption of five toxic metallic cations, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II), onto montmorillonite was investigated as a function of pH and ionic strength and a two-site surface complexation model was used to predict the adsorption data. The results showed that in the lower pH range, 3∼6 for Cd, Cu, Ni and Zn, and 3∼4.5 for Pb, the adsorption was greatly affected by ionic strength, while in the higher pH range, the adsorption was not. In the lower pH range, the metallic cations were mainly bound through the formation of outer-sphere surface on the permanently charged basal surface sites (≡X), while in the higher pH range the adsorption occurred mainly on the variably charged edge sites (≡SOH) through the formation of inner-sphere surface complexes. Acid-base surface constants and metal binding constants for the two sites were optimized using FITEQL. The adsorption affinity of the five metallic cations to the permanently charged sites of montmorillonite was Pb > Cu > Ni ≈ Zn ≈ Cd, while that to the variable charged sites was Pb ? Cu > Zn > Cd > Ni.  相似文献   

8.
Heavy metal and organic pollutants in sediments along the coastal zone of southeastern China have been investigated. Sediment samples are retrieved from three depositional environments: coast, estuary, and tide-affected river mouth. The relative abundance of heavy metal and organic pollutants is related to their geochemical properties as well as depositional environments and anthropogenic discharge. Based on a sequential extraction method, it is revealed that anthropogenic Pb, Cr, Cu, and Cd are mainly bound to Fe–Mn oxides, suggesting that adsorption and co-precipitation of Fe–Mn oxides are in the control of their transfer processes from water column to sediment. Heavy metal bound to carbonates is also an important pool especially for Cd, Mn, and Pb. The main organic pollutants found in the study area include petroleum-related alkanes, phthalic acid ester, organic silicon, chlorophenol, phenyl ether, and amine. The accumulation of heavy metals and organics in surficial sediments has a decrease tendency from estuarine environment to coastal environment and to tide-affected river mouth.  相似文献   

9.
影响向海湿地草根层土壤吸附铅、镉能力的因素   总被引:9,自引:7,他引:2  
利用向海湿地采集的草根层土壤进行吸附铅、镉的热力学实验,结果表明草根层土壤吸附铅、镉的过程符合Langmuir和Freundlich等温吸附曲线(n=8,p=0.01).吸附铅、镉存在干扰吸附现象,吸附铅的能力约是吸附镉的能力的3倍.而且草根层土壤吸附铅、镉的最大吸附量与土壤中的有机质和铁、锰氧化物含量存在着正相关性.土壤的理化性质是影响土壤吸附铅、镉能力的内在主要因素;pH等是影响草根层土壤吸附铅、镉能力的外部主要因素.  相似文献   

10.
The geochemistry and mineralogy of samples collected along depth profiles from an As-rich tailing deposit with abundant calcite was studied to determine the processes that influence the mobility of Fe, Zn, Cu, Ni, Cd, As, Sb, Cr and Tl. In spite of their near neutral pH, almost all of them are acid potential generators. Total concentrations decreased as: Fe > As > Zn > Pb > Cu > Sb > Cd > Cr > Ni > Tl. Soluble contents were lower and followed a slightly different order. Mobility decreased as: Tl > Cd, Zn, Cu, Sb, Ni, As > Fe, Pb > Cr. Higher soluble concentrations of Fe, Cu, Zn, As, Pb, and Ni were found in low-pH samples and of Sb and Tl in near-neutral samples. Sulfide oxidation processes are developing in the tailing’s dam. These processes do not have a trend with depth but occur mainly in acid layers. Near neutral layers formed by primary sulfides and calcite probably correspond to wastes produced from the processing of ore coming mainly from pods within the skarn, and acid layers with abundant secondary minerals from material mined from chimneys and mantos. The presence of calcite influences speciation, neutralizes acid mine drainage (AMD), and decreases the mobility of most toxic metals and metalloids (TMMs). However, a hard-pan layer was not observed in the studied profiles. Retention of TMM within tailings probably occurs through the formation of low solubility metal carbonates and from elevation of pH that promotes Fe hydroxides precipitation that may retain As, Sb and metals. Calcite occurrence promotes As, Cd, Cu, Fe, Zn, Pb, Cd and Cr retention, does not play a role on Tl and Ni mobilization, and increases Sb release.  相似文献   

11.
《Applied Geochemistry》2006,21(7):1135-1151
Trace metal adsorption to suspended particulate matter (SPM) influences bioavailability and toxicity of trace metals in natural waters. For highly contaminated urban catchments in the greater Auckland (New Zealand) area, trace metal adsorption to SPM was assessed and compared to similar data from non-urban catchments in the Auckland region, to determine whether there was any difference in the ability of the SPM to adsorb Cu, Pb and Zn. The degree of trace metal adsorption onto the SPM was assessed by way of adsorption edge experiments. It was found that the ability of the Auckland urban SPM to adsorb trace metals decreased in the order Pb > Cu > Zn. Little difference in adsorption was observed between the non-urban Waikato and Kaipara River SPM and urban SPM, or between urban SPM from different flow regimes and seasons, despite some compositional differences in the SPM. This suggests that on the basis of a single surface-binding site, metal adsorption onto SPM could be readily predicted across a range of urban and non-urban catchments in the Auckland region. Adsorption edges were modelled with a diffuse layer, surface complexation model to assess the role of Fe-oxide in adsorption. The MINTEQA2 model was used, assuming Fe-oxide (as HFO) was the only adsorbing surface. There was generally good agreement between observed and modelled adsorption for Pb, indicating the importance of Fe-oxide surfaces for Pb adsorption. However, the model did not predict Zn or Cu adsorption as well. The TOC content of the SPM, and presence of dissolved ligands and organic matter in the water column, appeared to play an important role in Cu adsorption to the SPM. For Zn, the presence of adsorbing surfaces other than HFO appeared to influence adsorption.  相似文献   

12.
The authors determine the composition of a river that is impacted by acid-mine drainage, evaluate dominant physical and geochemical processes controlling the composition, and assess dissolved metal speciation and toxicity using a combination of laboratory, field and modeling studies. Values of pH increase from 3.3 to 7.6 and the sum of dissolved base metal (Cd + Co + Cu + Ni + Pb + Zn) concentrations decreases from 6270 to 100 μg/L in the dynamic mixing and reaction zone that is downstream of the river’s confluence with acid-mine drainage. Mixing diagrams and PHREEQC calculations indicate that mixing and dilution affect the concentrations of all dissolved elements in the reach, and are the dominant processes controlling dissolved Ca, K, Li, Mn and SO4 concentrations. Additionally, dissolved Al and Fe concentrations decrease due to mineral precipitation (gibbsite, schwertmannite and ferrihydrite), whereas dissolved concentrations of Cd, Co, Cu, Ni, Pb and Zn decrease due to adsorption onto newly formed Fe precipitates.  相似文献   

13.
Assessment of heavy metal pollution in surface water   总被引:4,自引:3,他引:1  
A total of 96 surface water samples collected from river Ganga in West Bengal during 2004–05 was analyzed for pH, EC, Fe, Mn, Zn, Cu, Cd, Cr, Pb and Ni. The pH was found in the alkaline range (7.21–8.32), while conductance was obtained in the range of 0.225–0.615 mmhos/cm. Fe, Mn, Zn, Ni, Cr and Pb were detected in more than 92% of the samples in the range of 0.025–5.49, 0.025–2.72, 0.012–0.370, 0.012–0.375, 0.001–0.044 and 0.001–0.250 mg/L, respectively, whereas Cd and Cu were detected only in 20 and 36 samples (0.001–0.003 and 0.003–0.032 mg/L). Overall seasonal variation was significant for Fe, Mn, Cd and Cr. The maximum mean concentration of Fe (1.520 mg/L) was observed in summer, Mn (0.423 mg/L) in monsoon but Cd (0.003 mg/L) and Cr (0.020 mg/L) exhibited their maximum during the winter season. Fe, Mn and Cd concentration also varied with the change of sampling locations. The highest mean concentrations (mg/L) of Fe (1.485), Zn (0.085) and Cu (0.006) were observed at Palta, those for Mn (0.420) and Ni (0.054) at Berhampore, whereas the maximum of Pb (0.024 mg/L) and Cr (0.018 mg/L) was obtained at the downstream station, Uluberia. All in all, the dominance of various heavy metals in the surface water of the river Ganga followed the sequence: Fe > Mn > Ni > Cr > Pb > Zn > Cu > Cd. A significant positive correlation was exhibited for conductivity with Cd and Cr of water but Mn exhibited a negative correlation with conductivity.  相似文献   

14.
The concentration of trace metals like Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were studied in beach and estuarine sediments of the Velanganni Coast, South East coast of India to understand metal pollution due to urbanization/industrialization. This area was affected by the urbanization activity like untreated effluent discharge, transportation and incineration of solid waste, etc. In this context, quality of the sediments was evaluated based on the enrichment factor, geo-accumulation index (Igeo), pollution load index, and sediment quality guidelines. Furthermore, correlation matrix and principal compound analyses have been performed with SPSS 7.5 statistical software. The result illustrated that the metal enrichment is in the following order: Cd > Cr > Ni > Zn > Pb > Mn > Cu. The level of Igeo suggests that Cd has moderately polluted the sediment class. Similarly, principal component analysis showed that Cd and Pb accounted for the anthropogenic pollution, but Pb inferred as its tracers level. The results strongly indicate anthropogenic sources for moderate input of Cd contamination in to Velanganni coastal sediments.  相似文献   

15.
Concentrations of Co, Cu, Fe, Mn, Ni, Pb and Zn in four macroalgae species (Ulva lactuca, Chondracanthus squarrulosus, Sargassum sinicola and Gracilariopsis lemaneiformis) were obtained for the first time from the central part of the west coast of the Gulf of California. Generally, no differences in metal concentrations were found among the different seaweed species, although spatial differences were apparent. Iron, Mn and Cu exhibited higher concentrations at the stations located in front of Angel de la Guarda Island, probably because of high vertical mixing processes present in the zone. The results were compared with dissolved metal concentrations reported for the Gulf of California (Cd, Mn and Fe) and the North Pacific Ocean. The resulting linear regression of the results vs. North Pacific Ocean concentrations indicated that the levels of Cu, Ni and Zn measured in this study were within its 95% confidence level. Furthermore, this comparison was capable of detecting dissolved Fe and Mn enrichments in Gulf of California waters relative to the North Pacific Ocean concentrations. Calculations of total masses of metals associated with algal biomass on the west coast of the Gulf of California indicated that the lowest masses were represented by Cu (108 ± 25 kg) and Ni (184 ± 52 kg), whereas Pb (1.1 ± 0.6 ton) and Fe (10.9 ± 8.5 ton) were the elements with the highest associated masses.  相似文献   

16.
Passive treatment systems are widely used for remediation of acid mine drainage (AMD), but existing designs are prone to clogging or loss of reactivity due to Al- and Fe-precipitates when treating water with high Al and heavy metal concentrations. Dispersed alkaline substrate (DAS) mixed from a fine-grained alkaline reagent (e.g. calcite sand) and a coarse inert matrix (e.g. wood chips) had shown high reactivity and good hydraulic properties in previous laboratory column tests. In the present study, DAS was tested at pilot field scale in the Iberian Pyrite Belt (SW Spain) on metal mine drainage with pH near 3.3, net acidity 1400–1650 mg/L as CaCO3, and mean concentrations of 317 mg/L Fe (95% Fe(II)), 311 mg/L Zn, 74 mg/L Al, 20 mg/L Mn, and 1.5–0.1 mg/L Cu, Co, Ni, Cd, As and Pb. The DAS-tank removed an average of 870 mg/L net acidity as CaCO3 (56% of inflow), 25% Fe, 93% Al, 5% Zn, 95% Cu, 99% As, 98% Pb, and 14% Cd, but no Mn, Ni or Co. Average gross drain pipe alkalinity was 181 mg/L as CaCO3, which increased total Fe removal to 153 mg/L (48%) in subsequent sedimentation ponds. Unfortunately, the tank suffered clogging problems due to the formation of a hardpan of Al-rich precipitates. DAS lifetime could probably be increased by lowering Al-loads.  相似文献   

17.
The adsorption of thirteen trace metals from seawater was studied on interfacial sediment from MANOP site H. The adsorption data indicate a long (~20 day) equilibration time for most metals, an increase in adsorption with an increase in pH and particle concentration, a dependence of adsorption on total metal concentration at high adsorption densities, and a lack of correlation between metal binding ability and metal hydrolysis in solution.Apparent equilibrium binding constants normalized to the total number of available sites on the solid were determined for metal binding with the interfacial sediment. The binding constants indicate that the affinity sequence for metal interactions with the interfacial sediment is: Pb > Fe > Sn ? Co≈ Mn > Cu > Be > Sc ? Zn > Ni > Cd ? Ba > Cs at pH 7.82 in seawater.A comparison of the binding constants for suspended particles, interfacial sediment, and surface sediment indicate that the composition of particles influences the binding ability of the particles. Biogenic particles tend to bind most metals more strongly than lithogenic or authigenic particles.Based on limited data, there is a strong positive correlation between the measured binding constants and the observed partitioning of metals between sediment and seawater.  相似文献   

18.
The oxidation state and mineral phase association of Co, Ce, and Pb in hydrogenetic, diagenetic, and hydrothermal marine ferromanganese oxides were characterized by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy and chemical extraction. Cobalt is trivalent and associated exclusively with the Mn oxide component (vernadite). Cerium is tetravalent in all genetic-type oxides (detection limit for Ce(III) ∼ 5 at. %), including Fe-rich areas (ferrihydrite) of hydrogenetic oxides, and is associated primarily with vernadite. Thus, the extent of a Ce anomaly does not result from variations in redox conditions, but appears to be kinetically controlled, decreasing when the growth rate increases from hydrogenetic to diagenetic to hydrothermal oxides. Lead is divalent and associated with Mn and Fe oxides in variable proportions. According to EXAFS data, Pb is mostly sorbed on edge sites at chain terminations in Fe oxide and at layer edges in Mn oxide (ES complex), and also on interlayer vacancy sites in Mn oxide (TCS complex). Sequential leaching experiments, spectroscopic data, and electrochemical considerations suggest that the geochemical partitioning in favor of the Mn oxide component decreases from Co to Ce to Pb, and depends on their oxidative scavenging by Mn and Fe oxides.  相似文献   

19.
The distributions of particulate elements (Al, P, Mn, Fe, Co, Cu, Zn, Cd, and Pb), dissolved trace metals (Mn, Fe, Co, Cu, Zn, and Cd), and dissolved nutrients (nitrate, phosphate, and silicic acid) were investigated in the Gulf of the Farallones, a region of high productivity that is driven by the dynamic mixing of the San Francisco Bay plume, upwelled waters, and California coastal surface waters. Particulate metals were separated into >10 and 0.4-10 μm size-fractions and further fractionated into leachable (operationally defined with a 25% acetic acid leach) and refractory particulate concentrations. Dissolved metals (< 0.4 μm pore-size filtrate) were separated into colloidal (0.03-0.4 μm) and soluble (<0.03 μm) fractions. The percent leachable particulate fractions ranged from 2% to 99% of the total particulate concentration for these metals with Mn and Cd being predominantly leachable and Fe and Al being predominantly refractory. The leachable particulate Pb concentration was associated primarily with suspended sediments from San Francisco Bay and was a tracer of the plume in coastal waters. The particulate trace metal data suggest that the leachable fraction was an available source of trace metal micronutrients to the primary productivity in coastal waters. The dissolved trace metals in the San Francisco Bay plume and freshly upwelled surface waters were similar in concentration, with the exception of Cu and Co, which exhibited relatively high concentrations in plume waters and served as tracers of this water mass. The dissolved data and estimates of the plume dynamics suggest that the impact of anthropogenic inputs of nutrients and trace metals in the San Francisco Bay plume contributes substantially to the concentrations found in the Gulf of the Farallones (10-50% of estimated upwelled flux values), but does not greatly disrupt the natural stoichiometric balance of trace metal and nutrient elements within coastal waters given the similarity in concentrations to sources in upwelled water. In all, the data from this study demonstrate that the flux of dissolved nutrients and bioactive trace metals from the San Francisco Bay plume contribute to the high and relatively constant phytoplankton biomass observed in the Gulf of the Farallones.  相似文献   

20.
湿地水环境中表层沉积物吸附铅、镉能力的研究   总被引:6,自引:2,他引:6  
在选定的实验条件下,对向海自然保护区5个不同类型湿地水体的表层沉积物样品进行了铅、镉的热力学吸附实验.结果表明,沉积物样品吸附铅、镉的过程符合Langmuir和Freundlich(n=8,p= 0.01) 等温吸附曲线.在所讨论的范围内,沉积物样品吸附铅、镉的能力与样品中铁、锰氧化物及有机质含量存在着显著的相关性.表层沉积物吸附铅、镉的能力小于生物膜吸附铅、镉的能力,即在湿地水环境中,生物膜对重金属迁移转化的作用相对于表层沉积物而言更重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号