首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
青海可可西里地区第四纪冰川与环境演化   总被引:11,自引:2,他引:11  
李世杰  李树德 《冰川冻土》1992,14(4):316-324
  相似文献   

2.
Remnants of an old aggradational landscape, Cerro Cuadrado Proglacial, are preserved on top of the high mesetas Pampa Alta and La Meseta on both sides of the upper Santa Cruz river valley, South Patagonia.A first dissection of the mesetas, attributable to extended river erosion, predates the expansion of glacier lobes down the piedmontane area. The glacial advance is represented by the moraines of Pampa Alta Glaciation displayed on the top of Meseta Pampa Alta. Glacifluvial outlets contribute to the proglacial plain, Pampa Alta Proglacial, which is widespread to the southeast.Strong and persistent fluvial erosion followed the retreat of the ice masses leading to the formation of several terrace levels in the main upper valley, La Australasia Terraces and San Fernando Terraces, and a step, Cordón Alto, that truncates the Meseta Pampa Alta. These foreland features and the relief covered by the basalts at Cerro Fraile in the cordillera, are probably a consequence of a diastrophic phase that affected both areas during this stage.Late Pliocene basaltic lavas draining into the main and tributary valleys overran this landscape. The evidence indicates that during the eruption of the basalts the glaciation was active in the cordillera and that coeval fluvial and lacustrine aggradation took place in the extra-andean valleys.During the Middle Pleistocene subsequent lava flows covered the high pampas and partially occupied the fluvial valleys again. After this last volcanic episode the glaciers reached their maximum expansion to the east.  相似文献   

3.
The sedimentary record from the Ugleelv Valley on central Jameson Land, East Greenland, adds new information about terrestrial palaeoenvironments and glaciations to the glacial history of the Scoresby Sund fjord area. A western extension of a coastal ice cap on Liverpool Land reached eastern Jameson Land during the early Scoresby Sund glaciation (≈the Saalian). During the following glacial maximum the Greenland Ice Sheet inundated the Jameson Land plateau from the west. The Weichselian also starts with an early phase of glacial advance from the Liverpool Land ice cap, while polar desert and ice‐free conditions characterised the subsequent part of the Weichselian on the Jameson Land plateau. The two glaciation cycles show a repeated pattern of interaction between the Greenland Ice Sheet in the west and an ice cap on Liverpool Land in the east. Each cycle starts with extensive glacier growth in the coastal mountains followed by a decline of the coastal glaciation, a change to cold and arid climate and a late stage of maximum extent of the Greenland Ice Sheet. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Geomorphological mapping of locally nourished glaciers was conducted in four glens in the southeastern Monadhliath Mountains, Scotland. Three glaciers are interpreted to be of Younger Dryas age based on geomorphological similarity to features in other Scottish upland areas known to have been glaciated during the Younger Dryas, and on comparison to adjacent ice‐free areas in the lower glens where landform‐sediment assemblages typically reflect peri/paraglacial readjustment during the stadial. Here we reconstruct Younger Dryas glacier termini based on moraine alignments and associated geomorphological and sedimentological evidence. An adjacent wide plateau area at high altitude may have permitted extensive ice accumulation, but no unequivocal geomorphological signature is evident. To establish upper glacier limits, a series of ice profiles are modelled. The results yield a range of realistic glacier configurations bracketed between two distinct scenarios: a valley glaciation with the glaciers' upper limit on the plateau edge, and a low‐domed icecap centred on the plateau with ice flowing radially into the lower glens. Reconstructed equilibrium‐line altitudes are 795 m a.s.l. for the valley‐glacier scenario and 894 m a.s.l. for the icecap scenario. Calculated mean ablation‐season temperatures at the ELA are 1.2°C and 0.4°C for the valley‐glacier and the icecap scenario, respectively, from which we infer mean annual precipitation rates between 323 and 520 mm a?1. Palaeoclimate results indicate a stadial climate in central Scotland 65–79% more arid than at present, comparable to that of western Norway for the stadial and to the present‐day Canadian Arctic.  相似文献   

5.
Analysis and summary of publications on southern East Sayan, eastern Tuva, and northern Mongolia have shown that the late Pleistocene glaciation covered a large area and had a complicated dynamics of glacier advance and retreat. Starting with MIS 5, the Todza Basin and, partly, the Oka Plateau, Azas Volcanic Plateau, Mondy Basin, and river valleys in southern East Sayan were periodically covered with ice. The thickness of ice in the eastern Todza Basin was 700 m, on the Azas Volcanic Plateau it reached 300–600 m, and in the valleys of southern East Sayan it is estimated as 700–800 m. The thickness of ice in the Mondy Basin was 300–350 m.Geological and geomorphological studies and isotope surface exposure dating (10Be method) of boulders from terminal moraine complexes have provided evidence for extensive MIS 2 glacier advance in the Mondy Basin and in the Sentsa, Jombolok, and Sailag river valleys (southern East Sayan). The average age of exposure for three groups of samples is 14, 16, and 22 ka.  相似文献   

6.
This is a synthesis of the glacial history of the northern Urals undertaken using published works and the results of geological surveys as well as recent geochronometric and remote sensing data. The conclusions differ from the classical model that considers the Urals as an important source of glacial ice and partly from the modern reconstructions. The principal supporting evidence for the conventional model – Uralian erratics found on the adjacent plains – is ambiguous because Uralian clasts were also delivered by a thick external ice sheet overriding the mountains during the Middle Pleistocene. Alternative evidence presented in this paper indicates that in the late Quaternary the Ural mountains produced only valley glaciers that partly coalesced in the western piedmont to form large piedmont lobes. The last maximum glaciation occurred in the Early Valdaian time at c. 70–90 ka when glacial ice from the Kara shelf invaded the lowlands and some montane valleys but an icecap over the mountains was not formed. The moraines of the alpine glaciation are preserved only beyond the limits of the Kara ice sheet and therefore cannot be younger than MIS 4. More limited glaciation during MIS 2 generated small alpine moraines around the cirques of the western Urals (Mangerud et al. 2008: Quaternary Science Reviews 27, 1047). The largest moraines of Transuralia were probably produced by the outlet glaciers of a Middle Pleistocene ice sheet that formed on the western plains and discharged across the Polar Urals. The resultant scheme of limited mountain glaciation is possibly also applicable as a model for older glacial cycles.  相似文献   

7.
A massive ground-ice body was found exposed in the headwall of a thaw flow developed within the Chapman Lake terminal moraine complex on the Blackstone Plateau (Ogilvie Mountains, central Yukon Territory), which is contemporaneous to the Reid glaciation. Based on visible cryostructures in the 4-m-high headwall, two units were identified: massive ground ice, overlain sharply by 2 m of icy diamicton. The nature and origin of the Chapman Lake massive ground ice was determined using cryostratigraphy, petrography, stable O-H isotopes and the molar concentration of occluded gases (CO2, O2, N2 and Ar) entrapped in the ice, a new technique in the field of periglacial geomorphology that allows to distinguish between glacial and non-glacial intrasedimental ice. Collectively, the results indicate that the Chapman Lake massive ground ice formed by firn densification with limited melting-refreezing and underwent deformation near its margin. Given that the massive ground-ice body consists of relict glacier ice, it suggests that permafrost persisted, at least locally, on plateau areas in the central Yukon Territory since the middle Pleistocene. In addition, the d value of Chapman Lake relict glacier ice suggests that the ice covering the area during the Reid glaciation originated from a local alpine glaciation in the Ogilvie Mountains.  相似文献   

8.
Detailed geomorphological mapping has revealed evidence for the development of plateau icefields in the central fells of the English Lake District during the Loch Lomond (Younger Dryas) Stadial (ca. 12.9–11.5 ka). The largest plateau icefield system, which covered an area of approximately 55 km2 (including outlet glaciers), was centred on High Raise. To the west, smaller plateau icefields developed on Grey Knotts/Brandreth and Dale Head, covering areas of 7 km2 and 3 km2 respectively. The geomorphological impact of these plateau icefields appears to have been minimal on the summits, where the survival of blockfields and other frost‐weathered debris (mostly peat‐covered) implies the existence of at least patches of protective, cold‐based ice. Ice‐moulded bedrock at some plateau edges, however, documents a transition to wet‐based, erosive conditions. Prominent moraine systems were produced by outlet glaciers, which descended into the surrounding valleys where their margins became sediment traps for supraglacial debris and inwash. In some valleys, ice‐marginal moraines record successive positions of outlet glaciers, which actively backwasted towards their plateau source. This interpretation differs from that of previous workers, who assumed an alpine style of glaciation, with reconstructed glaciers emanating from corries and valley heads. It is likely that plateau icefields were more common at this time in upland Britain than hitherto has been appreciated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
综合青藏高原第四纪冰川早期记录的研究进展和典型盆地地层、沉积、古生物、古环境研究的系统成果,扎达盆地香孜组上部冻融层的出现代表了区域的古海拔达到了高原冰缘的高度,即3 500 m以上.这一段地层的时代可能从2.3 Ma前后开始.并与贡巴砾石层下部冰水沉积层的时代基本一致.卓奥友冰期和希夏邦马冰期的时代与扎达盆地沉积结束后,直接覆盖其上的终碛垄和冰碛垄的时代大致相当,展现了这一时期喜马拉雅山脉的山岳冰川进一步发育,也说明喜马拉雅山脉作为青藏高原海拔最高的地区开始冰冻圈的环境很可能在早更新世早中期.川西地区的早更新世的冰川沉积说明东喜马拉雅构造结附近地区这一时期已经抬升至冰冻圈高度,但是,海拨高度与气候环境与喜马拉雅山脉应有不同.具体的时代仍需要深入工作.青藏高原普遍开始冰冻罔记录是在中更新世早期.伴随着全球冰期的到来,这一时期的冰川作用在青藏高原最为发育和广泛.这些暗示着青藏高原在中更新世早期整体性地较快速抬升进入冰冻圈,即海拔3 500 m以上.详细的过程仍有待深入研究.  相似文献   

10.
Central Ethiopia comprises a high plateau at 2000–3000 m, formed from Tertiary lava flows and bisected by the Eastern African Rift. Ten volcanic mountains rise to altitudes of just over 4000 m, but on only three has Quaternary glaciation been substantiated by published field observations. On the Bale Mountains (4400 m), a previous report based on limited evidence proposed an ice‐cap extending to 600 km2. Based on aerial photographs and ground surveys, this paper reports evidence of a more complex situation. A wide spread of large erratic boulders on the plateau records a central ice cap of 30 km2, though ice probably extended for a further 40 km2. Further north two groups of deeply incised and clearly glaciated valleys contain moraines and roches moutonnées (60 km2). On interfluves between them and on the open north slopes are moraines from an earlier stage of the same glaciation or from a distinct older event. Altogether about 180 km2 may have been glaciated. Cores dated by 14C from inside and outside the glaciated area suggest that at least the northern valley glaciers may date from the Last Glacial Maximum. Estimated equilibrium line altitudes for these glaciers and the ice‐cap are 3750–4230 m. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
In spite of a widespread distribution, the way in which plateau icefields affect the glaciation and deglaciation of adjacent terrains is not particularly well‐known. This paper aims to identify how the deglaciation of the fjord and plateau terrain of north Norway has influenced the glacial geomorphology and relative sea‐level history of both local and adjacent areas and so serve as a model for interpreting similar areas along the continental margins of northwest Europe and elsewhere. The identification of moraines and their relationships with the Main shoreline of northern Norway allows the margins of the Øksfjordjøkelen, Svartfjelljøkelen and Langfjordjøkelen plateau icefields to be identified in the adjacent terrains. In locations where ice margins are uncertain, it is also possible to reconstruct ice limits by means of glacier models appropriately constrained by known local conditions and dates. Earlier glacier margins, characterised in north Norway by ice shelves floating in the local inlets of major fjords, also can be related to known regional shorelines. The distribution of high shoreline fragments, augmented by radiocarbon dates, helps show the extent to which inter‐island channels and outermost parts of fjords can become deglaciated relatively early in comparison with published maps of regional deglaciation. Plateau‐icefield‐centred glaciation became important sometime after 14 000 14C yr BP and was characterised by glacier readvances up to, and in some locations beyond, earlier moraines and raised marine features. Although overlooked until recently, the identification of the influence of plateau icefields on local glaciation, and their interaction with local and regional marine limits, is of great importance in accurate palaeoenvironmental reconstruction. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The relief of the expedition area in NW-Sichuan and SE-Qinghai can simply be separated into two main areas: the catchment area of the Yangtze with deeply incised rivers in narrow V-shaped valleys up to about 3,000 m and the plateau area with old peneplains in the Huang He catchment with meandering rivers up to more than 4,000 m. Precipitation and temperature decrease towards the NW. All zonal boundaries, eg the vegetation boundaries or the snowline, are ascending in elevation towards the interior of the plateau. The natural vegetation, especially the forests, are modified by anthropo-zoogenic influences. Within the zone of alpine meadows and the uppermost region of natural forest as well as in the Red Basin evidence of pasture and agriculture goes back by at least 2,000 years. During the last 20 years within the transition zone of the deeply incised valleys towards the plateau one third of the forests have been cut down.The main investigation area of Nianbaoyeze is built up by a granite-dome being about 500 to 800 m higher than the surrounding peneplains. The extent of Pleistocene glaciations can be mapped by the distribution of terminal and lateral moraines and erratic granite boulders on the slopes of the surrounding schists. The altitude of terminal moraines indicates a snowline of the last glaciation at about 4,300 m, which is about 800 m below the present snowline. Three main Pleistocene glaciations can be separated due to palaeosols, the overlying stratum being either aeolian sandy silt or solifluction debris. The ice free areas shows several Pleistocene terraces and in addition loess deposits with palaeosols in the deeper basins. In summary there is a rising of the snowline of the last glaciation at the E margin of the Tibetan Plateau from about 4,000 m in the E (Minshan) to 4,300 m at Nianbaoyeze and to about 4,700 m in the W (Bayan Har Shan). The hypothesis of an extensive plateau glaciation could not be verified for this region.  相似文献   

13.
Until recently, the British‐Irish Ice Sheet (BIIS) was thought to have reached no farther than a mid‐continental shelf position in the Hebrides Sector, NW Britain, during the last glaciation (traditional model). However, recent discovery of widespread shelf‐edge moraines in this sector has led to a suggestion of much more extensive ice (Atlantic Shelf model). The position of the St Kilda archipelago, approximately mid‐way between the Outer Hebrides and the continental shelf edge, makes it ideal as an onshore location to test which of the two competing models is more viable. To this end, we (i) reassessed the characteristics, stratigraphy and morphology of the Quaternary sediments exposed on the largest island (Hirta), and (ii) applied time‐dependent 2D numerical modelling of possible glacier formation on Hirta. Instead of three glaciations (as previously suggested), we identified evidence of only two, including one of entirely local derivation. The numerical model supports the view that this glaciation was in the form of two short glaciers occupying the two valleys that dominate Hirta. The good state of preservation of the glacial sediments and associated moraine of this local glaciation indicate relatively recent formation. In view of the low inferred equilibrium line altitude of the glacier associated with the best morphological evidence (~120 m), considerable thickness of slope deposits outside the glacial limits and evidence of only one rather than two tills, a Late Devensian rather than Younger Dryas age is preferred for this glaciation. Re‐examination of the submarine moraine pattern from available bathymetry suggests that the ice sheet was forced to flow around St Kilda, implying that the ice was of insufficient thickness to overrun the islands. Accepting this leaves open the possibility that a St Kilda nunatak supported local ice while the ice sheet extended to the continental shelf edge.  相似文献   

14.
Large glaciers descended western valleys of the Olympic Mountains six times during the last (Wisconsin) glaciation, terminating in the Pacific coastal lowlands. The glaciers constructed extensive landforms and thick stratigraphic sequences, which commonly contain wood and other organic detritus. The organic material, coupled with stratigraphic data, provides a detailed radiocarbon chronology of late Pleistocene ice-margin fluctuations. The early Wisconsin Lyman Rapids advance, which terminated prior to ca. 54,000 14C yr B.P., represented the most extensive ice cover. Subsequent glacier expansions included the Hoh Oxbow 1 advance, which commenced between ca. 42,000 and 35,000 14C yr B.P.; the Hoh Oxbow 2 advance, ca. 30,800 to 26,300 14C yr B.P.; the Hoh Oxbow 3 advance, ca. 22,000–19,300 14C yr B.P.; the Twin Creeks 1 advance, 19,100–18,300 14C yr B.P.; and the subsequent, undated Twin Creeks 2 advance. The Hoh Oxbow 2 advance represents the greatest ice extent of the last 50,000 yr, with the glacier extending 22 km further downvalley than during the Twin Creeks 1 advance, which is correlative with the global last glacial maximum. Local pollen data indicate intensified summer cooling during successive stadial events. Because ice extent was diminished during colder stadial events, precipitation—not summer temperature—influenced the magnitude of glaciation most strongly. Regional aridity, independently documented by extensive pollen evidence, limited ice extent during the last glacial maximum. The timing of glacier advances suggests causal links with North Atlantic Bond cycles and Heinrich events.  相似文献   

15.
We present a chronology of late Pleistocene deglaciation and Neoglaciation for two valleys in the north‐central Brooks Range, Alaska, using cosmogenic 10Be exposure dating. The two valleys show evidence of ice retreat from the northern range front before ~16–15 ka, and into individual cirques by ~14 ka. There is no evidence for a standstill or re‐advance during the Lateglacial period, indicating that a glacier advance during the Younger Dryas, if any, was less extensive than during the Neoglaciation. The maximum glacier expansion during the Neoglacial is delimited by moraines in two cirques separated by about 200 km and dated to 4.6 ± 0.5 and 2.7 ± 0.2 cal ka BP. Both moraine ages agree with previously published lichen‐inferred ages, and confirm that glaciers in the Brooks Range experienced multiple advances of similar magnitude throughout the late Holocene. The similar extent of glaciers during the middle Holocene and the Little Ice Age may imply that the effect of decreasing summer insolation was surpassed by increasing aridity to limit glacier growth as Neoglaciation progressed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The Cordilleran Ice Sheet (CIS) covered much of the mountainous northwestern part of North America at least several times during the Pleistocene. The pattern and timing of its growth and decay are, however, poorly understood. Here, we present a reconstruction of the pattern of ice‐sheet retreat in central British Columbia at the end of the last glaciation based on a palaeoglaciological interpretation of ice‐marginal meltwater channels, eskers and deltas mapped from satellite imagery and digital elevation models. A consistent spatial pattern of high‐elevation (1600–2400 m a.s.l.), ice‐marginal meltwater channels is evident across central British Columbia. These landforms indicate the presence of ice domes over the Skeena Mountains and the central Coast Mountains early during deglaciation. Ice sourced in the Coast Mountains remained dominant over the southern and east‐central parts of the Interior Plateau during deglaciation. Our reconstruction shows a successive westward retreat of the ice margin from the western foot of the Rocky Mountains, accompanied by the formation and rapid evolution of a glacial lake in the upper Fraser River basin. The final stage of deglaciation is characterized by the frontal retreat of ice lobes through the valleys of the Skeena and Omineca Mountains and by the formation of large esker systems in the most prominent topographic lows of the Interior Plateau. We conclude that the CIS underwent a large‐scale reconfiguration early during deglaciation and was subsequently diminished by thinning and complex frontal retreat towards the Coast Mountains.  相似文献   

17.
Paleogeographic reconstructions for the Samarovo, Taz, Murukta, and Sartan glaciations reveal the formation conditions of proglacial lakes dammed by ice in intermontane depressions and valleys of large rivers in eastern Transbaikalia. Middle-Late Pleistocene climate change is reconstructed using spore-pollen spectra from Pleistocene sediments in northern Transbaikalia. The age and lifetime of proglacial lakes are constrained by radiocarbon, thermoluminescence, and varve chronology of their bottom sediments in the periglacial zone. The lake levels remain recorded in sediments produced by deposition and erosion along the former lake shores, as well as in morphology and lithology variations of terminal moraines. A large proglacial lake, with a maximum level of 1020 m, occupied vast areas in Transbaikalia and its surroundings during the Samarovo glaciation. After the glaciers degraded, the Amur River system expanded into the area of closed lake basins in the southeastern Baikal region, including North China and Mongolia. The obtained results have implications for the Middle-Late Pleistocene history of lake deposition.  相似文献   

18.
Key locations within an extensive area of the northeastern Tibetan Plateau, centred on Bayan Har Shan, have been mapped to distinguish glacial from non‐glacial deposits. Prior work suggests palaeo‐glaciers ranging from valley glaciers and local ice caps in the highest mountains to a regional or even plateau‐scale ice sheet. New field data show that glacial deposits are abundant in high mountain areas in association with large‐scale glacial landforms. In addition, glacial deposits are present in several locations outside areas with distinct glacial erosional landforms, indicating that the most extensive palaeo‐glaciers had little geomorphological impact on the landscape towards their margins. The glacial geological record does indicate extensive maximum glaciation, with local ice caps covering entire elevated mountain areas. However, absence of glacial traces in intervening lower‐lying plateau areas suggests that local ice caps did not merge to form a regional ice sheet on the northeastern Tibetan Plateau around Bayan Har Shan. No evidence exists for past ice sheet glaciation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
OBSERVATIONS ON THE QUATERNARY GEOLOGY OF THE LADAKH RANGE, NORTHWEST INDIAN HIMALAYA  相似文献   

20.
Recent estimates of the timing of the last glaciation in the southern and western Uinta Mountains of northeastern Utah suggest that the start of ice retreat and the climate-driven regression of pluvial Lake Bonneville both occurred at approximately 16 cal. ka. To further explore the possible climatic relationship of Uinta Mountain glaciers and the lake, and to add to the glacial chronology of the Rocky Mountains, we assembled a range-wide chronology of latest Pleistocene terminal moraines based on seventy-four cosmogenic 10Be surface-exposure ages from seven glacial valleys. New cosmogenic-exposure ages from moraines in three northern and eastern valleys of the Uinta Mountains indicate that glaciers in these parts of the range began retreating at 22–20 ka, whereas previously reported cosmogenic-exposure ages from four southern and western valleys indicate that ice retreat began there between 18 and 16.5 ka. This spatial asynchrony in the start of the last deglaciation was accompanied by a 400-m east-to-west decline in glacier equilibrium-line altitudes across the Uinta Mountains. When considered together, these two lines of evidence support the hypothesis that Lake Bonneville influenced the mass balance of glaciers in southern and western valleys of the range, but had a lesser impact on glaciers located farther east. Regional-scale variability in the timing of latest Pleistocene deglaciation in the Rocky Mountains may also reflect changing precipitation patterns, thereby highlighting the importance of precipitation controls on the mass balance of Pleistocene mountain glaciers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号